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ASYMPTOTIC CONVERGENCE
TO TRAVELLING WAVES
FOR THE STEFAN PROBLEM
AND RELATED PROBLEMS

RICCARDO RICCI (Milano)

We investigate the stability of travelling wave solutions of the
one-dimensional supercooled Stefan problem and other related problem.
A complete characterization of the set of initial data under which the
free boundary is asymptotic to a travelling wave front is found. The
method applies also to other types of solutions like similarity solutions.

1. Introduction.

The Stefan problem is an old and intensively studied problem. It
is the simplest mathematical model for heat exchange driven phase
transition. We give a brief description of the problem which will be
usefull to fix notation. We limit from the start to the one-dimensional
problem, i.e. the case of planar symmetry, since our analysis will be
confined within this problem. We take a frame of reference with the
(y,z) axis on the plane of symmetry so that all relevant quantities
only depend on the z space variable and the time variable ¢. We
assume that the whole space is filled with a material in the liquid
state on the right of the plane z = s(¢), in the solid state on its left.
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The main assumptions of the Stefan description of the solid-liquid
transition is that the transition takes place at a fixed (melting)
temperature and it is confined on the (moving) interface, = = (1),
between the solid and the liquid. Then the material is solidifing
iff the interface is moving to the right ( s(t) > 0), the converse for
melting. Moreover the phenomenon is totally driven by heat exchange,
governed by Fourier’s law in the two phases. The melting of a volume
of solid demands an extra quantity of energy (in addition to that
required to rise the temperature) proportional to the volume itself, the
constant of proportionality is called the latent heat. Symmetrically
the solidification release the same amount of energy. The density
difference of the two phases is negletted. The mathematical setting
of the problem is then '

(1.1) Ut — Upy = 0, r#s(t), t>0,

(1.2) 5(0) = 0,

(1.3) u(st(t),8) = u(s~(),) =0, >0,

(1.4) ug (sT(1),t) — up (57 (1), 1) = —=As(2), t >0,
(1.5) u(2,0) = p(z), @€ (-00,00),

where u represents the temperature, eq. (1.3) is the assumption of
“local equilibrium” at the interface, the melting temperature being
scaled to zero. Eq. (1.4) is the so called Stefan condition which
gives the energy balance through the interface. In the following
we concetrate on a simpler problem, coming from the previous one
assuming that one of the phase is initially at the melting temperature
everywhere. For instance assume that ¢(z) = 0 for negative . Then
the maximum principle for the heat equation, [12] ensure that u(z,t)
is identically zero in all the region z < s(¢). We have to concetrate
only on what happens on the right of « = s(t), i.e. we have to consider
only the set of equations

(1.6) U — Uy =0, s(t)<z<o00, t>0,

(1.7) 5(0) = 0,
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(1.8) u(s(t),t) = 0, t>0,
(1.9) uz (s(t),t) = —As(t), t>0,
(1.10) u(z,0) = ¢(z), z € [0, 00).

The problem above is called one-phase Stefan problem. The
minus sign in (1.9) reminds that we are assuming that the phase on
the right of z = s(¢) is liquid, i.e. has higher energy than the phase on
the left. Accordingly the standard problem will have u(z,t) > 0, which
is the case if ¢(z) > 0. Consequently the Vyborny-Friedman boundary
point principle (the parabolic version of the Hopflemma, [12]) ensures
that the interface moves toward the left, i.e. the material melts.

However in some experiments the liquid can be undercooled
below the melting temperature without solidification. This makes
reasonable to investigate problem (1.6)-(1.10) even in the case of
¢(z) < 0 (and consequently u(z,t) < 0). This is the so called supercooled
Stefan problem.

The supercooled problem is much more delicate from the
mathematical point of view than the standard problem. In fact in the
case ¢ positive the problem can be mathematically solved under very
unrestrictive conditions on the initial data and the solution always
exists for any positive time, i.e. is a global solution. In the supercooled
problem strong restrictions on the initial data must be assumed in
order to be sure of the existence of the solution, expecially if we are
interested in the global existence.

The main reason for that is that the free’ boundary z = s(¢)
“blows up” if the temperature becomes too low. The precise meaning
of the above sentence can be found in [ 10], and [6], where it is proved
that § becomes infinite iff the level line u(z,t) = —A hits the free
boundary. In particular this immediatly implies that the supercooled
problem has no solution for initial data ¢ < —). On the confrary
if ¢ > —X everywhere, then local existence of the solution implies
global existence. What happens for initial data oscillating about the
value -\ is an open problem. In [11] examples of very complicated
behaviours are given: for instance the free boundary may blow up
at a given to, i.e. §(to) = +oco, but with the function u(z,t,) > -\ for
any z > s(to) and such that it can be used as an initial datum of the
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Stefan problem for ¢ > ¢,. Then the solution can be extended for ¢ > o
matching the solution for ¢ < ¢, with that corresponding to the initial
datum u(z,to) for ¢ > to. In this case the blow up is said "inessential”.

The typical solutions of problem (1.6)-(1.10) are the similargcy
solutions, i.e. solution depending on z and ¢ only through the ratio 7

with free boundary of the form z = 8v/t. These solutions correspond
to constant in space initial data ¢, § and ¢, being related by a
transcendental equation which is uniquely solvable iff ¢ > —2, [19].

There exist also travelling wave solutions of the problem,
corresponding to initial data which decay exponentially to —\ as
z — 0. This solutions are of less importance from the physical point
of view because their initial data are almost indiscernible.

However the stability analysis of these solutions is of importance
in a different contest. In fact, as we shall see, problem (1.6)-(1.10)
is closely related to a problem in the NEF (near equilibrium flame)
theory [2] where travelling waves are the typical solutions.

Our aim is to characterize the asymptotic behaviour of the
solutions of (1.6)-(1.10) in terms of the initial data. This problem
as been the object of previous investigations, see [4], [21], [8]. In
particular, in the letter reference, an asympotic analysis based on a
Laplace transform approach to the problem was performed, giving
some insite of the behaviour of the solution in the travelling waves
case.

In [4] the case of similarity solution was considered. The authors
were able to prove the following global existence result and asympotic
characterization of the free boundary behaviour.

THEOREM [4]. Suppose ¢ € C'[0,+00), ¢(0) =0, Jim (@) = Poo

and ¢(z) — poo € L'(0,+00).

a) Problem (1.6)-(1.10) has a unique global solution if ¢¢(z) > ——% .

b) If a global solution exists, then there exist n, N > 0 such that,
for t >0, one has (1 —¢)BVi—n < s(t) < (1 +€)BVt + N where 3 is
the coefficient of the parabola corresponding to the initial datum

u(z,0) = po and € — 0 as the Stefan number %’9— — 0.

Both this two resuts leave a quite large gap. For what the
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global solution is concerned we have noticed above that the condition
p(z) > —A is sufficient to guarantee the global existence once
some reasonable conditions for local existence are satisfied. Another
sufficient condition for global existence will be given later. In the
following we also prove that a sharper asymptotic characterization
can be proved even if one drops the ! assumption on the datum.

Our approach mainly consists in a tranformation of the original
problem into a more regular one, for which a global comparison
principle can be applied. An intermediate step in the regularization
transforms the Stefan problem into the NEF model of combustion
theory. For this problem global existence and asymptotic behaviour
were discussed in papers by Brauner and Schmidt-Lainé and by
Hilhorst and Hulshof. We discuss the relations among those papers
and our approch in the following.

2. Related problems.

For sake of simplicity we take A = 1 in the (1.9) throughout the
rest of the paper. If u(2,t) is a solution of problem (1.6)-(1.10) we
define a new function ¢(z,¢) by means of the Baiocchi-type transform
introduced in [10]: |

(2.1) c(z,t) = /8;) dy :t)(u(f,t) + 1) d¢.

The function c(z,t) is defined by (2.1) for any z > s(t). It is a simple
computation to verify that ¢(z,t) and the free boundary z = s(t) solves
a new free boundary problem.

(2.2) Ct— Cpp +1 =0, s(t)y<z<oo, t>0,
(2.3) e(s(t),t) =0, t>0,
(2.4) ez (s(t),t) =0, t>0,

(2.5) c(z,0) = co(2), 5(0) =0 <z < o0,
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where
(2.6) colo) = [ au ’ (ple) + 1) de.

Problem (2.2)-(2.5) is known as the oxygen consumption problem
since it was first introduced in [7] to describe the sorption of oxigen
into a living tissue. A constant sorption term is present in eq. (2.2)
and it can cause the function c(z,t) to become negative somewhere -
in z > s(t). If this does not happen, than the free boundary problem
(2.2)-(2.5) is equivalent to a variational inequality, [13], [9], namelly
to find the non negative solution of the equation .

(2.7) ¢t — ¢z + H(c) = 0, —co<z <00, t>0,

with initial datum c(z,0) = co(z),2 > 0 and ¢ =0,z < 0, where the H
is the Heaviside function

(2.8) H(c) = {(1) 228

Conversely, if problem (2.2)-(2.5) has a sufficiently regular
solution, positive in the domain « > s(t) and vanishing for z < s(t) for
some C! function s(t), then its time derivative u(z,t) = c:(2,t), and
the free boundary z = s(¢t) are the solution of the Stefan problem
(1.6)-(1.10).

In the case we are considering the positivity of the function ¢(x,?),
defined by (2.1) starting from the solution of the Stefan problem, is
granted if, for instance, u(z,t) > —1 (remember that this is the case
if u(z,0) > —1). : ,

In the present contest solutions of (2.7) have little physical
meaning because, with our choice of the data, they are unbounded.
However the main interest of problem (2.7) is that a comparison
principle holds for its solutions. This makes the tranformation from
the temperature u to the oxygen concentration ¢ a useful tool in
proving stability results.

Suppose now that the initial datum ¢ is such that ¢(z) fle
L1(0,+00) and let

(2.9) 0<f = /()w(¢(x) +1)dz < oo.
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Then we define a function v(z,t) by

(2.10) ety = f— / ;(u(s;t) +1)de,

where u(z,t) and s(t) give the solution to (1.6)-(1.10).
Now the couple (v, s) solves the free boundary problem

(2.11) vt — Vgp = 0, s(t) <z < oo, t>0,
(2.12) o(s(t),t) = f,,  t>0,

(2.13) ve(s(t),t) = =1,  ¢>0,

(2.14) v(z,0) = vo(z), s(0)=0<z< oo,

where v, is defined according to (2.10), vqg — 0 as z — co.

These equations were introduced by Buckmaster and Ludford,
[2] to describe the temperature evolution for the equidiffusion case in
the NEF (Near-Equilibrium Flames) theory. The value f, represents
the flame temperature and z = s(¢) is the location of the flame.

It is worth noting that the tranformation (2.10) can be defined
also when the sum ¢ + 1 is not in L!, simply by omitting the term
f.. The resulting v(z,t) is no more bounded but the existence and
uniqueness results kwown for the case v bounded can easily been
proved in this case if v(z,0) is negative for any z > 0.

For problem (2.11)-(2.14) travelling waves become significative,
since the wave speed is now controlled by the flame temperature f;,
which is a typical parameter of the problem.

The stability of these solutions has been considered by Brauner
and coworkers, see [1], and with a small modification in the equation,
which does not change the quality of the results, by Hilhorst and
Hulshof [14].

The technique used in [1] is an adapted form of a general
tecnique developped by Sattinger, [20] for nonlinear reaction diffusion
equation. This tecnique makes use of weighted space, introducing a
norm with exponentially growing weight. What is proved in [1] is
that, if the initial datum vy is close to a travelling wave profile in
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this norm then there exists a phase shift, such that the difference,
in the same norm, between the solution and shifted wave decreases
exponentially in time. However the norm involved requires that both
the difference between v, and the travelling wave profile, and that of
their derivatives, decay exponentially fast in space at infinity, limiting
this stability result to a very narrow class of initial perturbation of
travelling waves.

The approach by Hilhorst and Hulshof, [14], consists in imbedding
the free boundary problem into a fixed domain problem for an elliptic-
parabolic equation. The solution of (2.11)-(2.14) is prolongated with
constant slope behind the free boundary in order to construct a
- solution of the equation

(2.15) h(v); — vpp = 0, —o<r<oo, t>0,

where h(v) = max{v, f,}. (Actually in their paper also a convecting
nonlinear term wv, is present in the equation, but their resuts
hold also in the linear case). Assuming for the initial data that
vy € C%0,400) N L1(0,+00), and 0 < vy < f,, they were able to prove
asymptotic convergence to a travelling waves for any solution of the
problem.

3. Some properties of the solution of the oxigen problem.

Our results on the asymptotic behavior are deeply dependent on
some properties of the solutions of the oxigen problem (2.5)-(2.6). In
particular the comparison principle will be the most important tool
in the following. It states that equation (2.5) is order preserving, i.e.
if the initial data are ordered, so are the corresponding solutions. A
more general form, including a convection term in the equation is
the following

LEMMA 3.1. Let Q be a subdomain of R and let ci(z,t),2=1,2
be continuous non-negative functions satisfing

cit +a(@,t)ers — croe + H(er) > car + a(2,t)cos — copy + Hca),

in Dr =Q x (0,T)
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where a(z,t) is a bounded function and H is the Heaviside function
defined by (2.8). Assume that

c1 > o, on dpDr = Q x {0} U x (0,7).

Then
c1(z,t) > co(z, ), in Dr.

Proof.. Denote by é(z,t) = ¢;(z,t) — cz(2,t). Then 6 is solves the
following equation

6t — bpe > H(cz) — H(er) := f(z,1), —co< <00, t>0,
§=c1—cy >0, on 6PDT:QX{0}U59X(OV,T).

Notice that the non-homogeneous term f(z,t) is different from
zero only in the set

N = {(z,t) : |6] > c1c2 = 0},

i.e. only when one and only one of the ¢; is zero. Moreover in N
we have f = —1 where § > 0, f = 1 where § < 0. Then the maximum
principle for the heat equation implies § > 0.

There is a main difference with the heat equation which is worth
noting and it is that the comparison principle has only the previous
weak form and the strong maximum principle does not hold (the
simplest example is the case of ¢(z,0) = 1 on R, which has solution
c=l—tfort<lande=0fort>1)

The following lemma deals with the asympotic behaviour of the
difference between two solutions.

LEMMA 3.2. Let c¢;(z,t),i = 1,2, be two solutions of (2.7) and
suppose that ¢, — ¢, is a bounded function satisfing

| llim (¢1(z,0) = e3(z,0)) = 0,

then

(3.1) lim sup |e;(z,t) — ca(2,t)| = 0.
=00 yeR
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Proof. Denoting by § the difference of the two solutions the
maximum principle again implies that |6| is dominated by the solution
¢(z, ) of the heat equation with initial datum ¢(z,0) = [e;(2,0)—c5(z,0)].
The Lemma is a simple corollary of a general results on the asymptotic
behaviour of the solution of the heat equation proved by Mihailov
[16], which imply that ¢(z,t) tends to zero uniformly in R. This
can be proved directly looking carefully at the Poisson integral
representation of the solution of the heat equation [18].

Notice that it is not required that the two solutions are bounded
but only that their difference is, and this, in turn, is true if the
difference is bounded for some t; > 0. In case that the solutions
themselves are bounded the result is trivial since both of them will
vanish in finite time. :

A more delicate analysis is needed in order to establish some
estimates on the asymptotic behaviour of the free boundaries of
solution of (2.7).

The case in which we are interested in is that in which the
solutions of (2.7) are such that their support at any time ¢ is of
the form z > s(t) for some function s(t). Suppose that we have two
solution of this kind, and that the assumptions of Lemma 3.2 hold.
Then are the free boundaries s;(¢) and s,(¢t) asymptotically the same
ast— oo ?

The answer is yes. Let us first justify euristically why. The
solutions of (2.7) are continuous together with their first derivative
80 cz(s(t),t) = 0. However the second derivative c,, has a fixed jump
from zero to 1 at the free boundary. Since the ¢’s vanish on the left of
z = s;(t), this implies that, if the difference ¢1 — ¢y decay to zero like,
say, €(t), the diffence between the free boundaries must decay like
\€(t). To transform this argument into a rigorous proof will involve
a very delicate estimate from below of c,, which in turn will demand
extra assumptions on the data. However it is possible to prove the
above statement using supersolutions which are reminiscent of those
used by Bundle and. Stakgold for the dead core problem [3].

We give a sketch of the proof, se also [18]. In a moving reference
frame in which one of the free boundary is at rest, for instance with
the origin in z = s,(t), we construct a supersolution for the second
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solution ¢, of (2.7) as follows. We start from the solution of the
equation

(3.2) K vy +vyy = AH(v), y <0,
(3.3) v(0) = 6,

where y is the coordinate in the moving frame, K is a constant
greater than |5,(¢)|, and X is a positive parameter less than 1.

Then we add v to w(t) = 8o — (1 — A)(t — t1). Carefully choosing the
parameter &, and ¢, the function v(y) + w(t) is a supersolution for ¢,
vanishing after finite time for any y < ys < 0 where ys is the infimum
of the support of the solution of (3.2)-(8.3). This implies that the free
boundary of ¢; is eventually on the right of the point of coordinate
s1(t)+ys. Now we can choose § to be sup, |e;(z,t) - c(z, )|, which tends
zero as ¢ increases. Finally it remains to notice that ys is of order /8
- as 6 — 0 to obtain that (s; — s5); — 0. Reversing ¢; with ¢, we finally
have that |s;(t) — s3(t)] — 0 as t — .

We can now summarize the previous discussion.

PROPOSITION 3.3. Suppose ¢;,i = 1,2 are two solutions of (2.7)
as in Lemma 3.2 and suppose that
suppe;(-,t) = {(z,1), ¢i(z,t) > 0} = {(z,t), z > s; (1)},
5i(0) = b; > 400,
(3.7) si(1) < K, t>t,>0.

Then
Jim [s1(¢) — s2(t)] = 0.

4. Stability results for the Stefan problem.

We are now in a position to prove the stabilty results for the
Stefan problem. The idea to tackle the problem is relatively simple.
We transform the initial data of the Stefan problem into initial data
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for the oxigen problem: if the diffence between the data of the oxigen
problem tends to zero as z — oo, then the free boundaries will be
asympotically the same. In this way, for any fixed initial, datum we
can characterize a whole set of initial data whose corresponding free
boundaries are asympotic to the previous one. In particular this will
be done for the travelling waves case and for the similarity solutions.

Let us start with the travelling waves. Because of the invariance
of the problem under space and time translation, for any fixed speed,
there exists a one parameter family of travelling waves with the same
speed, differing only for a space shift (which for a travelling wave
is equivalent to a time shift). Then for the set of initial data whose
free boundary is asymptotic to a travelling wave we must expect one
condition to select the speed and one more condition to select the
initial shift. |

Let us assume the following hypotheses on the initial datum ¢

(H.1) ¢ bounded, continuous, ¢(z) > -1, z > 0;
(H.2) p(z) = =1 as z — 4oo;
(H.3) (p(z) +1) € LY(RY).

We can now state the stability result for travelling waves.

THEOREM 4.1. Let ¢ satisfy hypotheses (H.1), (H .’2) and (H.3)
and let

+co
CEI 7=/ @+

Then the following two conditions are equivalent:

(A)  There exists b€ R such that t liin (s(t) = Vi—1b)=0;

(B)  lim [%} _ co(x)] = L < +00;

= 400
where cy(z) is givén by (2.6). The value of b is given by

1

(4.2) _ b=VL v
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The proof of (B) = (A) is an immediate corollary of the stability
result of Proposition 3.3. Let us first recall that the travelling wave
solution to problem of (1.6)-(1.10) is given by

(4.3) Up o (2,t) = e~?E=b=v) _ 1 b+ovt=s(t)y<z, t>0,

where v is a positive number and b is any number.

In particular take v = V and consider the oxigen concetration
cy,v associated to the travelling wave solution defined by (4.3). Then

r-Vt y
co,v (1) =/ dy/ e~V (=0 ¢
b b

_ 1 L ve-viey
(1.4) _V(m_w-b)+-ﬁ(e -1).

Then the choice of b according to (4.2) ensure that

xl{r}rqoo (co(z) = ep,v(2,0)) = 0,
where ¢, is the initial datum for the oxigen problem corresponding to
¢ by (2.6). Then proposition 3.3 implies (A).

The converse is also true. In fact, if we assume that (A) holds
together with L = +co in (B), we end with a contraddiction. We refer
to [18] for details.

Observe that condition (B) can be written in equivalent way, if
our hypotheses (H) are satisfied, as

(B) z(¢(z) +1) € L'(RT).

It worth noting that assumption (H.1) is a quite natural
assumption for the Stefan problem since it says that the local energy
density of the liquid phase is higher that the energy density of the
solid at the melting temperature.

The mathematical role of this condition in our analysis is twofold:
for one side it is a sufficient condition for the global existence of the
solution of the Stefan problem, as we already noticed. From the other
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side condition (H.1) trivially implies the existence of the limit (finite
or infinite)

Jim [ Gete)+

which is used in proving the equivalence of conditions (B) and (B’).
Then we can reformulate our results substituting (H.1) with the
explicit requirement that the solution of the Stefan problem globally
exists and that the above integral as a limit.

In particular (H.1) is nomore a natural condition when the
combustion problem (2.11)-(2.14) is concerned, since in this case it
would implies that the initial datum is a monotone function, which is
a unnaturally restrictive condition. However in this case the global
existence of the solution can be proved independently from (H.1). In
fact the global existence proof of [14] can be rephrased with minor
changes to be adapted to the general case of problem (1.6)-(1.10),
even if the condition ¢+ 1 € L! is not satifisfied. In this case we define
the function v by

W%ﬂ=—/;@@0+D&,

instead of (2.10) (v can be unbounded). Now it turns out that the
solution globally exists if v(z,0) < 0 for any z > 0. This is a natural
condition for the combustion problem since it means that the initial
temperature is everywhere less than the flame temperature (here the
flame temperature is taken to be zero). This condition can also be
rephrased in the Stefan problem language saying, at the initial time,
the total energy of the portion of the melt that is between the front
and z is larger than the energy of the same quantity of solid at the
melting temperature, for any z > 0. This is a weaker assumption with
respect to ¢ > 0, since it does not forbid that somewhere ”sufficiently
far from the melting front” the energy density may drop below that
of the solid at melting temperature.

As a corollary of Thoerem 4.1 and the comparison principle for
the oxigen problem we can also prove a weaker stability result in the
case that condition (B) does not hold.

THEOREM 4.2. Let ¢ satisfy hypotheses (H.1), and (H.2) Then the
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following condition is equivalent to (H.3)

(C) There exists V > 0 such that tlizloo f@)_t"ﬂ = 0.

The proof of this theorem simply follows comparing the initial
datum with initial data for travelling waves with speeds V;, < V < V4.

This result can be rephrased for the combustion problem saying
that any solution to problem (4.11)-(4.14) has a free boundary which
satisfies (C).

A similar asymptotic analysis can be done for the case of
similarity solutions. We just state here the main result.

- THEOREM 6.1. Suppose ¢ > —1 and limy_ ;e ¢(2) = oo > —1,
then

. S(t) - :8(9000)\/{ _
v t—l-rlinoo \/t_ o O
where z = B(p)Vt is the free boundary corresponding to the initial
datum u(z,0) = Peo. ' _
Moreover, if ¢(z) — ¢ and z(p(z) — o) belong to L'(RY), then

lim (s(t) — B(o)Vt —to — 20) =0,

t—+o0

where ty and z, are solution of the system

[ (o= purin = s (£)
/,: ) (/_: exp (~) d“) de — (oo + 1) 0
/0+00 2(p — pos) dz = fexp (%2)

400 +-co 1
/ z /_ exp (—u?) du dx——2—(<poo+1)sg

2V
where sy = /1o + 2o .

Notice that a slight difference exists from this case and that of
the travelling waves. In this case the existence of the limit at 40 is
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enough to select the asymptotic behaviour and to ensure the weak
stability result. Two extra conditions are now needed in order to have
the strong asymptotic result, This is because time and space shifts
are nomore equivalent for the parabola shaped free boundaries of the
similarity solutions and they must be fixed solving a system of two
coupled equations.
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