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COVARIANT FLUX-LIMITED DIFFUSION THEORY
VITTORIO ROMANO (Catania)

Explicit flux-limited expression are obtained for relativistic radiation
energy flux and stress tensor in the case of small shear.

1. Introduction.

In this article, following an earlier approach by M.A. Anile
and M. Sammartino [2] , we present a general relativistic flux-
limited diffusion theory, which holds for arbitrary inhomogeneous and
nonstationary media, provided the shear is sufficiently small.

The latter limitation is essential if we want ot obtain explicit
expressions for the radiation energy-flux and stress tensor because,
otherwise, a host of highly non-linear terms describing the coupling

of the radiation energy-density gradient and shear would appear. In
“section 2 we start from the covariant radiative transfer equation and
set up the basic approximation method and in section 3 we perform
a small shear analysis.
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2. Covariant radiative transfer equation and flux-limit dif-
~ fusion approximation.

For the sake of simplicity we treat the case of gray medium and
neglet polarization, dispersion and coherence of the radiation field.
Then the integrated form of the radiative trasfer equation, explicitly
covariant (see [1]), is:

(ut + )|V, I+ 411V juy + (Y, ua)u"l"gll;
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where I = I(u#,1#) is the integrated intensity, I = [ frddvy (f being
the invariant distribution function), vo the rest-frame frequency as
measured by the ‘observer Whose 4-velocity is u¥, I is the unit vector
in the observer's rest frame, I#I,=1, I#u,=0, S is the isotropic source
function and 7 the photon mean free path.

Let J,H# K* denote the radiation energy density, energy-flux
and stress tensor as measured in the observer's rest frame,
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where dQ is the element of solid angle dQ = §(u,I*)6(1%1, — 1)d*l.

In terms of normalized intensity v = I/J, using an expansion
in spherical harmonics of 3, introducing the standard kinematic
decomposition V,u, = %@hw + 0uo + Wyo — o u, Where ©,0,,,w,, are
the expansion , shear and rotatlon and h,, is the projection tensor,
eq. (1) can be rewritten

Y(u? + )V, J + J(u” + IV +4JY |I%a, + © + ou % +
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+ J [agl?l? —a, + 0, M1 — 10, — HWHP] —

As discussed by Anile and Sammartino [3], we generalize the
Levermore and Pomraning ansatz [4] by supposing that ¢ is slowly
varing along the bicharacteristics of (3), i.e.

0y

ale =0

(4) (u# 1)V 1h + (agl®l? — ay + 04, HI°1° — HoHP — [FHP) —
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Let f# denote the normalized flux (H* = Jf#), with f# =
1 . . . .ps
yp I*4dQ. By using the sperical harmonics decomposition and the
Q
energy equation for the radiation we obtain

S —
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3. Small shear analysis.

From the definitions (2) and the explicit expression (4) for
¥, it follows that both f# and K*¥ are functions of ¢*/ and of
R™ = (1/S)h8(VsJ + 4Jag). From exact representation theorem [5] for
small shear, keeping only linear terms in ¢,,, we obtain

(6) f” = (/\1 + /\20'”?}%7.}%9)}%” + GG””RV

. 1 “ o~
KH* = g(al + a0 R, R,)Jh*Y + Bot? +
(7)
+ 0" R, R, + (81 + 620™P R, R,)R* R”

with A\, A2, 0,01, @4, ,7, 61,6, functions of J , R*R,,.

In this paper we consider only the case o#"R,R, = 0 (for the
general case we refer to an article to appear [3]). Then, by using eq.
(2) and (5), we obtain, for small shear:
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where J = rJ/S. Then, by choosing an orthonormal tetrad (u*, 62‘&‘)
i = 1,2,3), in which R = e(s)R, 033 =0, eq. (8, 9, 10) can be inverted
and yield

O'TRKT'R = 0rp ]:

(11) | A = }_1% [%—cothf%]
which coincides with the shear free case [2].

Now, from the representation (6) we have f# fu (M R)? +
2X10,, Ry R, (A R? + o) + O(02,) and therefore, for o#’R,R, = 0, we
obtain

= (M R)?
which gives a flux-limited theory. The remainig coefficients are then
given by

oy g[l-i—cothR(——cot >]
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