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POLYSOLITON SOLUTIONS FOR
PLANE DISCRETE VELOCITY MODELS
OF A GAS WITH CHEMICAL REACTIONS

A. ROSSANI (Genova)

Exact polysoliton solutions are given for plane discrete velocity
models of a gas with chemical reactions. A technique due to Osland
and Wu is sistematically applied [3].

1. Introduction.

The discrete velocity models in kinetic theory are models of the
Boltzmann equation where the gas particles can attain only to a
finite set of allowed velocities.

In this paper we shall deal with exact particular solutions for
certain discrete velocity models of reacting gases. ’

Let us first sketch briefly the background of this kind of research.

Exact solutions for the DBE (discrete Boltzmann equation) have
‘been given in the past mainly by Cornille (a number of soliton
and polysoliton solutions [1]) and by Wu (initial value problems for
particular scattering models [2,3]).

Boffi and Spiga have studied problems which include absorption
and creation of particles (extended kinetic theory [4]).
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A DBE for gases with chemical reactions has been introduced
recently by Monaco et al. [5]. Exact solutions for these equations
have been given for the 1D case by Monaco and Platkowski [6].

The aim of this paper is to study exact solutions for plane
discrete velocity models of a gas with chemical reactions by applying
a technique suggested by Osland and Wu [3].

In spite of the different physical situation they considered, this
method turns out to be useful in our case too.

We study the following reaction schemes:

A + A—B

A + A—B + C.

Under the hypothesis that the cross sections of reaction are much
greater than the cross section of scattering, our model contains only
the collisional terms due to reactions. The equations for particles A
are then decoupled from the ones for the products.

We shall confine our analysis to the number densities for particles
A, whose form allows the application of the Osland-Wu technique.
Particular exact solutions are found for both the reaction schemes.

2. The two velocity problem.

The results we shall obtain here will be recalled in the study of
the full plane discrete velocity models and they have to be considered
only preliminaries.

Consider particles A endowed with only two velocities,v; and v;,
in the plane.

They can interact between themseves only according the following
scheme:

Ai + A; — products.

The equations for the number densities f; and f; are given by

<¢37 + Vi'V) fi = —ai; fif;
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9 ;
(55 + v; 'V> fi = —aijfif;

where
L0 .0
V= lfa—x' +J B
and ga;; is the collision frequency of the reaction.
Following Osland and Wu we set

fi (x’t) =0 (X,t) /D (x’t:)

1=i,j, so that

D (5? + vy 'V) o= <-8_t + vy -V> D = —aij9i9;.

We may satisfy this equation by imposing simultaneously

0
(1)- (5{ +vp- V) g1 = g

0
(2) <5t- + vy 'V> D =anign + oD

=17 n#l where o is an arbitrary constant.
Now look for solutions of the following kind

g;(x,t) = C{A[Ez(x,t)

D(X,t) = C;E,‘(X,t) + CjEj(x,t‘)

where E; = exp(pit + qi -x), C1 >0, A >0, =1,
Once we have inserted this ansatz into (1) and (2) we get the
following conditions:

(3) ntqvi=o

(4) P+ Ve = andr + ap

=147 n#l



370 A. ROSSANI

By eliminating «; and «; we are reduced to

(5a) pi—pi +vi-(di —qj) = aij A

(5b) pi —pi + Vi (qj — i) = aijA;

which can be regarded as two equations for the three unknowns
pi—p; and q; —q; . |

Setting vi; = pi — p; Bij = fu = (q;i — q;)/(pi —p;) (>0, Jul=1)
equations (5) give

8= -—(A,; -+ Aj)/(A,-w,; + Ajw]')
iy = aij (Ayw; + Ajw;)/(wi — w;)
where w; = v; - u.

In correspondence to given values of 4;,4; and u such that
(A;jvj + A;vi) -u < 0, the number densities are given by

fi(x,t) = CLA/{Ci + Crezplyni(t + B - x)]}

n # | which is a well known soliton solution [1].

3. Reaction 4+ 4 — B.

Particles M (M = A,B) are endowed with the following 6
velocities in the plane: viyr = evyr 1=1,2,...,6 M=A B where

e; = —eq =]
1. .
e = —e5 = —(j + V3i)
‘ 1. .
es = —eg = ——2—(_] —+/31).
The only possible events are

A1+ Ay — Bg, As+ As — B3

Az + Az — By, As+ As — By
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Az + A1 — By, As + Ay — Bs.
Momentum conservation imposes mav4 = mpvp = P. Energy and
mass conservation are expressed as follows

(6) %Pz(Q/mA —1/mp)=¢>0

mp = 2my4
where ¢ is the chemical link energy of the reaction.
Equation (6) fixes P:

P =2y/mue/3.

Observe that particles 4;, A, and .43 interact only among
themselves. The same holds for particles 4,, A4s and As. The
equations for particles A;, A, and Az are decoupled from the ones
for A3, A4 and As and are written as follows:

(7) (% +‘VI ' V> fi = =kfilfigx1 + frg2)

I=1,2,3 (I4+3—1) where v; = vi4 and k is the collision frequency of
the reaction. Now, following the Osland-Wu approach we are led to

0 0
D <5¥ +vr V) 91— g (E + vy V) D = —kgi(gi41 + 9142)

and
8 (9 V) g =
(8) _(73;+V1' g = oq
0 ,
9) (52 + vy V) D = k(gi41+ gi42) + D

1=1,2,3, which are 6 equations in 4 unknowns.
We look for solutions of this kind:

ai(x,t) = C}A;Ez(x,t)

D(x,t) =Y CiEi(x,1).
=1
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Conditions (3) and (4) hold again (with a,; = k) but now they
represent 9 equations for the 9 unknowns

b, q

[=1,2,3.
It is convenient to set

m=P+PF, q=Q+Q
where P and Q solve the following system:
P+v1AQ=az 1=1,2,3.
The equations for P and Q; are then.
| P+v;-Qi=0

Pitv, Qi=kA4
n # I, which are easily solved by

2k 2k
P = ?A'I, Q= —3?141"1- |

In correspondence to given values of 4;, 4, and A; we get then

1+2
fix,t) = CiAi/ {Cz + Y Chezplyn(t + B 'x)]}

n=Il+41
where
(10) Yl =pn—m1=FP,— P
(11) BnI:(Qn"‘QI)/(pn_pl):(Qn_Ql)/(Pn_PI)-

All the f; depend on the following 3 arguments only:
t+Bio-x, t+Biz-x, t+ By -x.

Furthermore, for each couple ij conditions (5) hold again. Then
we can say that our solution represents the interaction of 3 solitons:
12, 13, and 23.
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In order to understand the physical meaning of this solution, we
fix a point x (Jx| < o0) and study f; as a function of t for t € ®. In the
case A3 < A, < A; we have

. lim fi(x,t) = . lim fo(x,8) =0

t—lrn—noo f3(x’t) = AS
Jim fo(x,t) = lim f3(x,1) =0

t—l}inoo fi(x,t) = A;.

The functions f; and f; are monotonically increasing and decreasing,
respectively. Function f, increases, reaches a maximum and decreases.
At t - —o0o we have only particles 3 at finite. Then all the three
species are present and react among themselves. At ¢t — +oo only
particles 1 survive.

4.. Reaction A+ A — B+ C.

Particles M (M = A,B,C) are endowed with the following 4
velocities in the plane

viy =evy 1=1,2,3,4 M=A B, C

where

e :—e3=i
€y = —e4 = ].

The only possible events are the following

, By +Cs
Bs + Cy
Al + AH-? - B2 + C4
Bs + Cy
“head on” collisions, and
Bi+Ciyr
.AI + .Al+1 {Bl+l 4 Cl
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collisions ”at angle”.
Momentum conservation imposes

mav4 = mpuvg = meve = P.

Energy and mass conservation are expressed as follows:
7)2 .
(12) —é—(l/m3+1/mc—2/m,4):c>0

2my4 = mp + mg.

Equation (12) fixes P:

P = 2¢/empmcmy [|mec.— mp|.

The equations for the number densities are then

(% +v; - V) fi==filkfixa + h(fig1 + f1+3)]

1=1,2,3,4 (I+4—1), where k and h are the collision frequencies
relevant, respectively, to the "head on” and ”at angle” collisions.

Following the Osland-Wu approach we are led to

8 8 ’
D (-37 + vy V) g —aq (52 + v -V) D = —gilkgi+2 + h(g141 + 9143)]
and
(13) g +vi-V]g=«
Ftv g1 = oy
s,
(14) . (5; +vi- V) D = kgiyo+ h(gi41 + g143) + D

1=1,2,3,4, which are 8 equations in 5 unknowns.
We look for solutions of this kind

g;(x, t) = C]A[E{(X, t)

D(x,t) = Z CiE(x,1).

i=1
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Conditions (38) and (4) hold (with an; =k for I=n+2 and an =
h for 1 # n+2) and we regard them as 16 equations for the 16
unknowns p;, qi, ai.

By eliminating p; and q; we get
a1 + o + kA = g + args + 2hA;

1=1,2,3,4. _

These equations are compatible only if ¥ = 2h. This condition
holds in the frame of the so called VHS (very hard sphere) model,
which was studied by Ernst and Hendriks [7].

In this case we have
a1+ oy = o3+ oy

and we can find P and Q such that

P+v Q = o
1=1,2,3,4.
Now we set

m=P+ P

a=Q+Q
where P; and Q; are given by
(15) P4vi-Q =0
(16) P+, QI = anIAI

n # I, which are easily solved as follows

k
= —A
P 54

Q= —‘—?I%AIVI.
In correspondence to given values of A, A, A3 and A4 we have
then ’ '
1+3
filx,t) = CzAz/{Cz + Y Crezplyn(t + B -X)]}

n=I+1
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where v,; and B,;; are defined again as in (10) and (11).
All the f; depend on the following 6 arguments only:

t+ B, - x, t+Byg-x, t4+By-x

t+B23«x, t+B24~x, t+‘B34'X.

For each couple nl, equations (5) hold and we can say that our
solution represents the intera\ction of 6 solitons: 12, 13, 14, 23, 24, 34.

The -condition k = 2k can be dropped if we suppose that one of
the f; is 0. In this case the problem is similar to the three velocity
one. For f; = 0, the equations for the number densities are

(58{ +v; ~V> fi==fi(kfirz+hfs) 1=2,4

(% s v) fo = —hfa(fs + fa).

Following the Osland~Wu approach we get

0
(52+V1°V> gr=ag 1=2,3,4

0
(—a—t—}—Vz-V) D:Ot(D+kg1+2+hg3 =24

0
(E +vs - V) D = azD + h(gs + g4).
Looking for solutions of this kind

g1(x,t) = CLAIE (x,t) 1=2,3,4

4
D(x,t) = Y _CiEi(x,t),
i=2
we can set
n=P+P q=Q+Q

where
P4+v; Q=g =234
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The equations for P, and Q; are again (15) and (16), where 1 =2,3,4
n # 1. Their solution is -

k A
Pi=gd, Q= ;21[(/1 ~ k/2)vs — kv, /2]
1=24,
hA
Py = hA3, Qs= ——U—ZEVB-

The number densities are then given by

fi(x,t) = CiA;/ {C'z -+ chexp[’)/nz(t + B, x)]}

where [ = 2,3,4 and
n=3,4 for 1=2

n=24 for =3

n=23 for =4
[v»1 and By, are still defined as in (10) and (11)].
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