LE MATEMATICHE
Vol. XIVI (1991) - Fasc. I, pp. 379-391

PHONON GAS AND CHANGES OF SHAPE
OF SECOND SOUND WAVE

T. RUGGERI (Bologna)

A generalized non linear Maxwell-Cattaneo equation is used to
study shock waves propagating in a rigid heat conductor at low
temperature.

Taking into account the experimental values for the second sound
velocity, the existence of a critical temperature # characteristic of
the materials and separating two families of shocks, the ”hot” and
the ”cold” ones, is proved both numerically and analytically. Finally
a possible explanation of the distortion of the initial second sound
thermal pulse during its propagation is proposed.

1. Introduction.

In 1947 Peshkow [1] suggested that heat could propagate in pure
crystals as a true temperature wave, called second sound. In the
following years a great work has been developed to understand the
theoretical bases of this idea (see, in particular, the papers of Guyer
and Krumhansl [2], [3]) and for finding experimentally the new wave.
At the first time, second sound was observed in pure crystals of *He
(1966) and then in high-purity crystals of 3He (1969), NaF (1970)
and B: (1972).

To study the heat pulses in very pure crystals at low temperatures
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the starting point lies in considering the crystal as a phonon system..
Here the normal processes (N-processes) in which phonon momentum
is conserved are stronger, in certain temperature ranges, than the
R-processes (dissipative processes not conserving momentum) and so
the second sound can be identified. Two interesting features must be
underlined: the first is the existence of a critical temperature such
that the second sound is most clearly seen (for example, about 15°K in
NaF and 3.5°K in Bi) and the second one concerns the modifications
of the initial square wave form during its propagation according to
the different temperatures of the crystal.

2. Generalized Maxwell{Cattaneo equation and second sound
propagation.

The phenomenology previously illustrated cannot be interpreted
by Fourier’s theory because of the ”paradox of instantaneous
propagation” and so it is necessary to find a suitable set of hyperbolic
field equations.

In the spirit of Extended Thermodynamics [4], [5], [6], let us
now consider a general system of two balance laws writing, in
correspondence to the state pair (4, q)

(2.1) pe+divqg=10

(2.2) W+ divT = —b.

The first equation is the usual balance law of energy; p, e, q, are
respectively the (constant) mass density, the internal energy and the
heat flux vector. Moreover the superposed dot indicates the time
derivative. Using representation theorems for w, T, b and supposing
to be near the equilibrium state, the system (2.1)-(2.2) becomes [7],
[8], [9], [10]

(2.3) . pe+divgq=0

/

(2.4) (aq)* + Vv = —-V;q
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Here « = x(f) represents the heat conductivity and the remaining
functions «, v together with ¢ are constitutive quantities depending
on the absolute temperature ¢ (the apex denotes the derivative with
respect to 6 and V is the gradient operator). When « is equal to a
constant, the Maxwell-Cattaneo equation

(2.5) Tq+q=—-kV0l

is obtained (7 = ax/v’) while, if o = 0, we have the Fourier law.

The most important feature of (2.4) lies in the presence of the
not constant factor « playing the role of thermal inertia. In fact,
if « = «(f), the entropy principle as well as the hyperbolicity of
the differential system (2.3)-(2.4) are satisfied without requiring the
dependence of ¢ on q in addition to temperature [11]. Besides the
great generality due to the function «() allows us to recover the
stability criterion of the maximum of entropy at equilibrium.

~ Let us impose now the compatibility of eqs. (2.3)-(2.4) with the
entropy principle taken in the form

(2.6) h° +divh < 0

with

(2.7) . K=-S, h=-3

(S is the specific entropy). Then we obtain [10]

(2.8) a= 7/(1/’02;), 4 = const., k>0,
| 2

(2.9) h° = —pS = —pSg(9) +—2-—(—Z%—2—)3

where Sg is the equilibrium entropy density.

Also the convexity condition for h°, with respect to the field
u = (pe, aq)” is imposed and this implies our system is symmetrlc-
hyperbolic (in the sense of Friedrichs)(). If

(2.10) v>0, c@)=€(@)>0

(}) For such systems a general theorem on the well- -position of the Cauchy
problem (locally) holds.
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where ¢ is the equilibrium specific heat.

Taking into -account that e = e(f) is known (for example, in
the case of crystals at low temperature ¢ = ¢§*/4) and also x(f) is
found through experimental data, we have at this step that the only
arbitrary quantities are v(9) and the constant y. Besides the second
sound velocity at equilibrium, Ur = Ug(9), can be identified with
the characteristic velocities of the system (2.3)-(2.4) evaluated in an
equilibrium state (q = 0). The characteristic velocities in a generic
state are given by the roots of the characteristic polynomial

(2.11) ‘ pead’ + Aa'qn — V' =0,

where ¢, = q-n and n is the unit normal to the characteristic wave
front. :
_ Therefore from (2.8); and (2.11), when q = 0, the constitutive
function v in terms of Ug is obtained

v U E(O)
2.12 = / e(6)do.
(2.12) N V()
Since it is possible to verify that v is an inessential common
factor we have no more free parameters: in other words all
the constitutive functions are univocally determined knowing the
equilibrium quantities e = ¢(0), « = x(9), Ug = Ug(9) [10].

3. Shock waves in high purity crystals.

As (2.3), (2.4) represent a system of balance laws (i.e. the first
member is in the form of space-time divergence), it is possible to write
it in an integral form and to study weak solutions and, in particular,
shock waves [14]; then the Rankine-Hugoniot compatibility conditions
across the shock front allow us to evaluate the shock velocity s in
terms of the temperature 4,, 8, respectively ahead and behind the
shock surface.

In order to pick out the physically relevant shocks among all
the mathematical solutions of the Rankine-Hugoniot equations, two
selection rules are often used: i) the entropy growth criterion [15],
[16] and ii) the Lax shock conditions [17], [18], [19], [20].
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The first one consists in accepting only the shock wave solutions
for which the entropy production 7 across the shock front is non-
negative; the second one states that the admissible shocks are those
satisfying the condition U; > s > U, ( U, and U; are the values of the
characteristic velocities A evaluated respectively in the states ahead
and behind the shock front). From the mathematical theory of shock
waves it is well known that the two criteria are equivalent for weak
shocks, i.e. in a neighbourhood of the null shock, but we underline
that, in general, this is not true for strong shocks as it will be showed
in the following.

Let us apply now the present approach to the case of NaF and
Bi crystals specifying in accordance with previous results, only the
functions Ug(8) and e(6). | _

The values of Ur obtained from experiments by Jackson et al.
(for NaF) [21] and by Narayanamurti-Dynes (for Bi) [22] are well
described by the empirical equation [23]

(3.1) Uz? = A+ Bo"

in the temperature range 10°K < 6§ < 18.5°K (for NaF) and 1.4°K <
6 < 4°K (for Bi), where heat pulses were observed with properties
expected of second sound. Values of the parameters A, B, n giving an
excellent fit are [23] '

n=310, A=9.09-10""2, B=1222.10"% (NaF)

n=375, A=907-10"", B=758-10""% (Bi)

for Ug in centimeters per second and ¢ in Kelvin degrees. Furthermore
we take the equilibrium specific heat ¢ = <63, with ¢ = 23 erg ecm™3
°K~* for NaF and ¢ = 550 erg ecm~3 °K~* for Bi.

Considering a plane shock wave propagating in the z-direction
(n = (1,0,0)), from the Rankine-Hugoniot equations it is possible to
obtain s = s(6,,60,) and U; = Uy(8,,6,) where 4, is the unperturbed
temperature while ¢, is the perturbed one (shock parameter).

Then, a numerical evaluation [14] allows us to plot s and U;
vs. temperature ¢, for a fixed value of 6,, in both cases of NaF
and Bi. Figures 1= 3 refer to NaF case. We observe that when the
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first, of type displayed in fig. 1 and then as in fig. 2.
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Note that, in both figures, the Lax conditions impose that the
possible shocks there exist only if | 6, -4, | is bounded (unlike the usual
shocks which occur, for example, in fluid dynamics). In particular in
fig. 1 it is clearly seen that the Lax conditions are verified in the
range 0, < 6; < 6;* (6, depending on 6,). The shock wave can then
propagate through the material only if we generate a heat pulse with
a positive jump of temperature not exceeding the maximum value of
0. — ¢,. Let us call this shock a hot shock. In fig. 2 we note that
there is a very different physical situation since the Lax conditions
are verified in the range 6;* < 6; < 6,. The shock propagation takes
place now if the initial temperature jump is negative and does not
exceed in absolute value | 6;% — 4, | (cold shock).

The transition from a situation to the other one is shown in
fig. 3 where it is pointed out the existence of a critical temperature
§ = 15.36°K such that 0, = 0 = §,%. In this particular case, the Lax
conditions are not satisfied and no shock is possible.

It turns out that 0 is a structural temperature, i.e. characteristic
of NaF, defining the boundary between two very different phenomena:
for 6, < 0 a hot shock is generated while the cold shock appears for
6, > 0 and we point out that § is the temperature for which the heat
flux behind the front changes sign [14].

The same qualitative behaviour is observed in Bi in the range
1.4°K ~ 4°K. In this case the critical temperature § = 3.38°K is found.

The non wusual cold shock might appear inconsistent with
thermodynamics but the study of the function 5 characterizing the
entropy growth across the shock surface shows that » > 0 in the Lax
region. Furthermore note that the temperature range for which > 0
is larger than the previous one: 6,7 < 6,* < 4, < 6, (in fig. 4 n/p vs. 0,
with a fixed 4, > 4, i.e. in the case of cold shock, is plotted for NaF).

The explanation of this fact is that the density of entropy at
non equilibrium depends not only on the temperature but also on
the heat flux [10] and in the function 5 the heat flux ¢, plays a
very important role. Therefore cold shocks are compatible with the
thermodynamics principles (in a different context a similar situation
was already noted by Nielsen and Shklovskii [24]).

‘The condition n > 0 provides the same qualitative results of the
Lax conditions also for hot shocks with a 6,” > 6;*. Observing as
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the plot of the function 7/p is modified changing the unperturbed
temperature 6,, it results that the value of the critical temperature ¢



PHONON GAS AND CHANGES OF SHAPE 387

remains unchanged.

So we want to remark that the present model shows unusual
shocks characterized, from a macroscopic point of view, by the
existence of a critical structural temperature ¢ for which the ”state”
of the material changes in a very unexpected way. In particular the
value § = 15.36°K 1is found very close to the value (~ 15°K) at which
a new pulse, identified as second sound, is clearly seen in a highly
pure dielectric crystal of NaF. Also the value § = 3.38°K is practically
coincident with the value (~ 3.5°K) at which the saturation of the
velocity in the second sound regime has been observed in a pure
crystal of the semimetal bismuth.

The value 6 of the critical temperature was found by the plots of
s and U; changing the value of ¢,. In fact, the presence of two very
different shocks (hot and cold shocks) enables us to find numerically
the transition temperature for which any shock at all is forbidden by
the Lax conditions.

However using a bifurcation analysis of the Rankine Hugoniot
equations, it is possible for a generic system to prove [25] that there
exists a necessary analytical condition for the existence of a particular
unperturbed state i,, such that the Lax conditions are violated also
for weak shocks, i.e.

(3.2) (VA-d)g, =

where V = 0/0u, and )\, d are respectively an eigenvalue and
the corresponding right eigenvector of the characteristic eigenvalue
problem. Therefore in particular for the existence of , it is necessary
that the system is not genuinely non linear.

In the present case (3.2) implies that 6 is the value for which
the function

(3.3) | B(0) = Up(0)§5/°

has a maximum. Using for Up the empirical relationship (3.1) it
follows

34) 0= {ﬁ?i—A_?)}l/n
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and then also Uy can be found analytically i.e.

~ 3n—9H
3.5 =4/ -,
( ) Us 3nA

The relationships (3.4), (8.5) give

(3.6) 0 =15.36°K,  Ug=226-10%m/sec  (for NaF)

(3.7) 0 =338°K, Ug=183 10°m/sec  (for Bi)

coincident with the values obtained numerically in our previous paper
[14]. | '

It is interesting to underline that using the function (3.3) it is
possible to find ¢ also for the cases of 3He and *He; as it will be
reported in [25], the values so obtained are again very close to the
values for which the second sound is clearly picked out in these
crystals.

4. Changes of shape on second sound wave.

To conclude we present a possible explanation, based on the
previous general results, of the distortion of the initial thermal pulse
during its propagation in a rigid heat conductor. The results obtained
could be a check for verifying experimentally the limits of validity of
our model. Suppose we generate an heat pulse by some type of heater:
usually, with a good approximation, the schematic shape of the initial
pulse is rectangular. It is possible to imagine the rectangular profile
of the initial wave as two successive shock fronts: the first one is
generated when the heater is on and corresponds to the hot shock
studied in the previous section; therefore this shock is stable and
can be propagated if 4, < 6 and 9, < 0%. The second one (heater off),
does not correspond to the cold shock, because at present the right
side of the shock (unperturbed region) is the non equilibrium state
(61,q1 # 0), while the left side (perturbed region) is the equilibrium
state (4,,¢, = 0). Since in the previous shock analysis we have chosen
always the right side coincident with the equilibrium state, then to
study the second shock it is necessary to change the equilibrium
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state with the non equilibrium one and vice versa. However, it is a
simple matter to show that the expressions of s(4,,0,) and U,(0,,0;)
remain unchanged, while the entropy production across the second
shock coincides, except for the sign, with the entropy production of
the first shock. The Lax conditions become now, the complementary
ones:

(4.1) Uy < 5 < Us;

and therefore it is possible to use all the previous figures by considering
as admissible region for the Lax conditions the complementary set in
which (4.1) holds. Moreover, the entropy growth condition differs by
the sign with repsect the entropy growth condition of the first front.

Let’s consider now the two cases: i) 6, < 6; ii) 6, > 4.

e Casei) 9, <@ (fig.1 for NaF)

— i1) If 6, < 6F, the Lax conditions are satisfied as regards the
first front, but are violated for the second one and therefore
the second front is unstable and the back part of the signal
is regularised. This case corresponds, substantially, to weak
amplitude.

— i2) If 6, > 6F both the shocks violate the Lax conditions
and the only possibility is a regularization of both sides of
the wave (strong amplitude). Incidentally, we observe that
when 6; > 07 the second front satisfies (4.1) but the proper
Lax conditions are violated because the shock does not pass
through the null shock.

e Case ii): 6, > 6 (fig 2 for NaF)

In this case, the first shock is always forbidden and the second
one verifies, V6, > §,, the Lax conditions (4.1): we have a shape
change in which only the front part is regularizedas independently of
the amplitude.

The same results arise by using the entropy growth criteria.

This behaviour seems in a good agreement with all the-available
experiments. In particular in all the materials under consideration
there exists a temperature range in a neighbourhood of § for which
the wave appears regularised; the second sound shape described in
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the case il) it is well supported by the oscilloscope traces in the
case of “*He and, moreover, in the case of NaF it can be deduced
indirectly observing that the difference between the arrival times
for leading edges and peaks increases with the temperature. On
the other hand (unlike the case of superfluid Helium) the shape as
described in ii) does not appear so evident in the experiments. In
our opinions the reason, probably, could be that when 6, > § we have
the transition from the second sound range to the diffusion one and
so our hyperbolic model loses its validity and it is necessary to add
parabolic terms. If this is true the critical temperature § becomes the
transition temperature separating the hyperbolicity region (second
sound wave) from the parabolic region (diffusion). From this point of
view § seems, somehow, to play the role of the lambda point in the
superfluid Helium.

A detailed version of these results may be seen in the paper [25].
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