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ON THE HYPERBOLICITY CONDITION
IN LINEAR ELASTICITY

REMIGIO RUSSO (Napoli)

This talk, which is mainly expository and based on [2-5], discusses
the hyperbolicity condition in linear elastodynamics. Particular emphasis
is devoted to the key role it plays in the uniqueness questions associated
with the mixed boundary-initial value problem in unbounded domains.

Notation - Light face letters indicate scalars; bold face lower-case
letters, different from o and x, denote vectors (on R™, n = 2,3), while
o and x stand respectively for the origin of the reference frame
{o;ei} (1 =1,.,n) and the generic point of R"; bold face upper-case
letters denote second-order tensors (linear transformations from
R"™ into R"); Lin denotes the set of all second-order tensors and
Sym = {A : A = AT}; Vu is the second-order tensor with components
(Vu)i; = w5 (;= 0/0x;); divS is the vector with components Sijj

1. The system of linear elastodynamics.

Let B an linearly elastic body we identify with the regular open
connected set B of R" (n = 2,3) it occupies in an assigned reference
configuration. As is well-known, the regular motions of 8 are the one
parameter families of regions of R™ {x + u(x,t), (x,t) € Q = Bx(0, +00)},
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where the displacements u are the classical solutions (*) to the system

[1]
(1) pii = dive(Vu) + b,

where

p (positive) mass density;
b body force per unit volume;
C elasticity tensor : B x Lin — Sym, regular on B,
linear on Lin and : C(W) =0, Vskew W.

Assume that B is unbounded. Moreover, assume that C is
symmetric, i.e., ; _ .
L-C(M)=M-C(L), VL, M,
and, setting 7(L) = L -C(L), satisfies at least one of the following
definiteness conditions: '

positive semi-definiteness <= w(L)>0, VL;
semi-strong ellipticity <= =(L)>0, VL=a®b;
strong ellipticity < =(L)>0, VL=aQ®b#0.

Let 8, B and 9, B be two disjoint subsets of d B such that 8, BU§, B = dB.
Let us assign:
a) two smooth fields a (surface displacement) and § (surface
traction) on 8, B x [0,4+00) and ‘9, B x [0, +00); '
aa) two smooth fields u* (initial displacement) and u* (initial
distribution of velocities) on B.

The mixed boundary—initial value problem of elastodynamics
consists in finding a classical solution u to System (1) which satisfies
the boundary conditions

u= 1 on 9, B x [0,+00)
C(Vu)n = s on 93 B x [0, +00)

and the initial conditions

u=u*, a=1" on B x {0},

(1) By a classical solution to System (1) we mean a vector field u on Q \_N_hich '
satisfies pointwise (1) on  and is twice continuously differentiable on Q.
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where n denotes the outward unit normal to 9B,

When §,B = §§ [resp. 8, B = ] the above boundary-initial value
problem is known as displacement problem [resp. traction problem]
of linear elastodynamics.

We denote by € the set of all classical solutions to System (1).

An interesting problem related to elastic solutions is concerned
with the research of the best assumptions at infinity on the material
data p and € assuring the boundedness of the support (at each
instant) of an elastic solution which corresponds to data b, W, §, u*
and u* having compact supports. To this end we give the followmg
definition.

DEFINITION 1. System (1) is said to be hyperbolic in the class
J, if any u € IN € corresponding to data vanishing outside bounded
regions, has a compact support at each instant. a

2. The hyperbolicity condition. Uniqueness theorems.

Let A(m) (m : m| = 1) be the acoustic tensor for the direction m,
defined by [1]
’ A(m)a=p 'C(a®@m)a, Va.

Let
¢”(%o,€) = max{|A(m) ), x €B N S¢(xs), m : jm| =1},

pcorr) = [ (o, 87 5 ¢2(0,6) = ¢2(6), plo,r) = p(0),

where r = |[x - o], x, € B, r, is a fixed (but arbitrarily chosen) constant
and S¢(x,) is the ball of radius ¢ centered at x,.

It is evident that p(x,,r) is a smooth, positive and nondecreasing

function of r, so that -
Tim_plxe, ) = I(xa) € (0, +od]
Of course, the inverse function p=!(x,,r) exists only in [0, I(x,)).

It is worth observing that ¢(x,, ¢) represents the maximum speed
of propagation in BN S¢(x,) corresponding to € and p, and p(xo,7)
gives un upper bound for the time employed by a signal travelling
with velocity ¢(x,,¢) to reach BndS,(x,) by starting from B NSy, (xo).
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Taking into account the above observation, we realize that a
necessary condition in order that System (1) is hyperbolic is

2) " I(xe) = +00, VYxo €B.
Since

o) = [ o 7 d6 2 [ fo(lxo — ol + )7 6
=p(r+[x—ol) > p(r),
we see that
l(xo) = 400 Vxo € B (o) = +00,

so that (2) is equivalent to
(3) I(0) = +oo.

Since, as we shall see, (8) is necessary and sufficient to
the uniqueness of solutions to the boundary-initial value problems
of elastodynamics and it is sufficient to guarantee, among other
important properties, the hyperbolicity of System (1), we are led to
give the following [2]

DEFINITION 2. The acoustic tensor is said to satisfy the
hyperbolicity condition iff (3) holds. ' |

Observe that, if A satisfies the hyperbolicity condition, then
p(x,,7) is one-to one, Vx, € B. Moreover, A certainly satisfies the
hyperbolicity condition if there exists a smooth, increasing and
unbounded function ¢ such that

4 [(*)]2[A(m)| < C on B,
for some positive constants C. If we choose ¢ = logr, then (4) reads

|A(m)| < Cr? on B.

The following theorems are proved in [2, 3] and [4] respectively(?).

(%) For previous results about uniqueness and the hyperbolicity of System
(1) (in the sense of Definition 1) cf. [1] and the references here quoted.
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THEOREM 1. Let C be positive semi-definite and let A satisfy the
hyperbolicity condition. Then, System (1) is hyperbolic in € and the
mixed boundary-initial value problem of elastodynamics has at most
one classical solution. ' ' a

THEOREM 2. Let ¥ be a finite regular subset of 8B, Let A satisfy
the hyperbolicity condition and let C be either strongly elliptic or
constant and semi-strongly elliptic. Then, System (1) is hyperbolic in
the class

{ue€:u=0o0n (0B\Z) x [0,+0)}.

Moreover, if 0,B is bounded, then the mixed boundary—initial value
problem of elastodynamics has at most one classical solution. a

3. Counter-examples to uniqueness

We aim at showing now that, if the acoustic tensor does not satisfy
the hyperbolicity condition, then the solutions to the boundary—initial
value problems of linear elastodynamics in an unbounded domain
are not uniquely determined by the boundary and initial data and
the body forces. Of course, since System (1) is linear, in order to
show nonuniqueness, it is sufficient to prove existence of nontrivial
solutions to the associated homogeneous system.

Let p be a smooth and increasing function on R such that
lim p=1 Let B=[l,+o0) and let

400

6) ~ p=r(2), C(z)=[p'(2)]"", ¥z €[0,+00),

with p(1) = 0. .

It is a simple matter to verify that in such a case the acoustic
tensor (which is now the scalar p~1C) does not satisfy the hyperbolicity
condition.
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Set '
Iy ={(z,t) : 2 € [1,400), 0 <t < p(2)};

To={(z,t)  z € [1,+00), ¢ > p(z)};
Is ={(z,t) : 2 € [, +00), 0 <t <1~ p(a)};
Is = {(2,1) : 2 € [1,400), t > 1= p(z)};
Is ={(z,t) ;2 € R, 0 <t < p(x) +1};

s = {(z,t) :z € R, t > p(z) +1}.

a) Counter-examples to the displacement problem.
Given the above data, the homogeneous boundary-initial value
problem of linear elastodynamics takes the form

plii=0.[(p')"'0su]  on [I,400) x [0, +00),
(6) u=0, u=0 on [1,+o00) x {0},
u=0 on {1} x [0, +00).
Since equation (6); can be written as
(P'0; + 02)(0 ~ (') 82 )u =0,
its general solution is expressed by the D’Alembert integral
u(z, 1) = uy(t = p(2)) + ua(t + p(2))

We are able to show that System (6) admits infinitely many non
trivial solutions depending on the additional condition

(7) lim u(z,?) = ue(t),

r-—+-+400

provided the additional datum u..(t) is suitably chosen. To this aim,
consider a regular function @, on [0,+c0) such that

Tl (0) = fieo (1) = fieo (20) = & (1)
o ~/(2[) = ~”(l) = ’&”(21) = 0

and let
Uoo (1) = Ueo(t) = Uo (t +21), VE>0.
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In order to show that System (6)—(7) admits nonzero solutions,
we first look for a solution @(z,t) = ui(¢ — p(z)) to System (6);5 such
that.

lim @(z,t) = @ (t)

400

and easily get

. 0 onZi,
(8) i(z,t) = {ﬂoo(t _.p(:(;)—{—l) on I,.

Then, setting
fhoo (1) = — oo (t + 21),
we look for a solution a(z,t) = us(t + p(z)) to System (6); » such that

lim (z,1) = deo ()

=400
and find
A _ {0 on I3,
(9) i(z,t) = { foo (t + p(z) = 1) on Iy.

It is obvious that the function
(10) u(z,t) = i(z,t) + a(z,t)
satisfies (6);,2—(7). Finally, since
w(1,t) = a(1,8) + (1,1) = o (t + 1) + oot = 1) = 0, V£ >0,

(10) satisfies (6); too. Thus, it results a nonzero solution to System
(6). O
b) Counter-examples to the traction problem |
Let
Uoo (1) = Too (t) + oo (t + 21).
Then, the function

Ueo (2, t) = (z,t) — U(z,t),

with d(z,t) and u(z,t) given by (8) and (9) respectively, satisfies
(6)1,2 — (7). Moreover, since
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the corresponding tractions vanish on the boundary. Then, it furnishes
‘a nontrivial solution to the traction problem of elastodynamics
corresponding to vanishing data.
It is not difficult, by reproducing the above technique, to obtain
some counter-examples to the mixed problem in the case where
B = (—00,—-1]U[1, +00). O

¢) Counter-examples to the Cauchy problem

As far as the Cauchy problem is concerned, let B = R and let p
and C be given by (5), where p is an odd function. Then, System (6)
becomes

(11) p,& = :6x[(pl)_1ax'u] on R X [O, +OO),
u=0, =0 on R x {0}.

By using the previous arguments, we show that (11) admits
nonzero solutions. Indeed, let wu.(t) be a regular function on R,
periodic with period 2! and such that

Ueo (0) = uly (0) = v/ (0) = 0.
Then, it is readily seen that the function

A = 0 on Zs,
Ut =yt = p(e) = 1) on I,

is a nonzero solution to System (11) which satisfies (7). ) o

From the above results we derive now the desired counter-
examples in the n-dimensional case.

A) Counter-examples in exterior domains

Let B = S5{ and assume that B is isotropic with Lamé moduli
A= A(r) and p = p(r) such that A+ x = 0. In the case n = 3 [resp.
n = 2] this assumption assures that the elasticity tensor is strongly
elliptic [resp. positive definite].

For the sake of simplicity, we look for solutions of the type
u(x,t) = u(r,t)e;. Then, the system of linear elastodynamics with
vanishing body force is reduced to the equation

(12) | pii = 0;(ud;u),
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A strightforward calculation shows that (12) is equivalent to
(13) r*pii =6, (r" " b, ) .
If we assume that

e =p'(r), Pl = [P,

we see that the acoustic tensor up~! does not satisfy the hyperbolicity
condition and (13) becomes

(14) | p(r)i=0:[(p')""0ru].

Since (14) is formally equivalent to (6);, nontrivial solutions
to the displacement, traction and Cauchy problems are found by
replacing z by r in all the relations concerning the one-dimensional
counter-examples a), b) and c). | i

B) Counter-examples in domains with unbounded boundaries

Let B be the exterior of the infinite cylindrical region having
axis z3 and radius 1, and let B be isotropic with Lamé moduli ) and
pt such that A =0, so that the elasticity tensor is positive definite.

Let (r,0,z3) be a cylindrical coordinate system. An elastic solution
of the tipe u(x,t) = u(r,t)es corresponding to zero body force satisfies
the equation

(15) rpt = 0,(rud,u).
If we assume that A and x are given by
ro=p'(r), ru(r) =[],

we see that the acoustic tensor does not satisfy the hyperbolicity
condition and (15) becomes

plii =0, [(p/f)_l'ar u,
so that the conclusion of ) holds in this case too. O

The counter—examples given in a) and ) have been established
in [2, 5].

The results of this section show that, when the hyperbolicity
condition is violated, then the system of linear elastodynamics may
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admit solutions corresponding to zero data that are different from
zero on the whole of B in the time interval [I(0),+0o0). Hence it
follows that System (1) is not hyperbolic in the whole class of elastic
solutions.
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