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A TRANSPORT EQUATION FOR THE EVOLUTION
OF SHOCK AMPLITUDES ALONG RAYS

GIOVANNI RUSSO (L’Aquila) - JOHN K. HUNTER(*) (California)

A new asymptotic method is derived for the study of the evolution
of weak shocs in several dimension. The method is based on the
Generalized Wavefront Expansion derived in [1]. In that paper the
propagation of a shock into a known background was studied under
the assumption that shock is weak, i.e. Mach Number = 1 + O(e),
¢ € 1, and that the perturbation of the field varies over a length scale
O(¢). To the lowest order, the shock surface evolves along the rays
associated with the unperturbed state.

An infinite system of compatibility relations was derived for the
jump in the field and its normal derivatives along the shock, but no
valid criterion was found for a truncation of the system.

Here we show that the infinite hierarchy is equivalent to a single
equation that describes the evolution of the shock along the rays. We
show that this method gives equivalent results to those obtained by
Weakly Nonlinear Geometrical Optics [2].

The infinite hierarchy.

Let us consider a hyperbolic quasi-linear system of conservation
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laws:
(1) 8£°(U) + 0, (U) = g

where U € IRY is a vector field and £*(U) € IRV, @ = 0,...,3 are smooth
vector functions of U in an open domain @ c IRY, and g = g(U, z°) is
smooth on Q x IR*. Summation over repeated indices from 1 to 3 is
assumed. We define the N x N

A%(U) = Vpf*(U),

for « = 0,...,3. We suppose that U is a known smooth unperturbed
solution of system (1) and consider the propagation of a weak shock
into the unperturbed state U(®. Let ©(¢) denote a moving surface of
discontinuity for system (1), Vs the normal speed of propagation of &
and (ny,n2,n3) its unit normal. The jump conditions across ¥ are [3]

—Ve[f°]+ ni[f']=0

where, for any quantity i(U) we denote [A] = h(U-) - h(Uy4), with U_
and U, the states just ahead and behind Z(t).

We denote by L and R respectively the left and right null vectors
of the matrix ‘

Afn; — A8 40

corresponding to the eigenvalue A(*)(n;) (which we assume to be
simple), computed in the unperturbed state.

Let us define the normal jump of the space derivatives of the
field:
Y? =[ULY! =[n'6;U],..., Yt =[n'r ... 0" 0f , U]...

The basic asymptotic assumption on the field is [1]

Y% =0(e), Y = 0(1),..., Yt = O(e™*]y, ..
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We make use of the formal expansion
YO =eY)+ Y9+ ...

Y =Yl 4eY! 4.,
Y = Pyl ety

and apply it to the kinematic and geometric compatibility conditions
across the shock front ¥ to system (1) and to its space derivatives.
To the lowest order in ¢ one obtains the following infinite system
of compatlblhty relations for the jump in the field and its normal
derivatives [1]:

dn* i

k :
(2) ot ( )Wpﬂk—p+1 + (8 + ky)m* + %Woﬂk+l =0,
p=1 p

where k& > 0,
| mo=LY? ..., m = LY?*,.
and «, 8,v are given by:

(3) 61 ELVU.AiTliRR

(4) B =L(8; + An'8;)R + LAVyRGU® 4 LA gﬁxiﬁ

LVyA'RO; U — LVygR
(5) v =LVyA'nl6;U%n,R

Here 8; = (6;; —nin;)0; is the tangential derivative on I, Xij = Oinj
is the second fundamental form of £, and d/dt represents the derivative
along the rays [1]. These transport coefficients are evaluated in the
unperturbed state just ahead of the shock and depend on the field
U® and on the geometry of the surface. System (2) is supplemented
with equations that describe the evolution of the geometry, i.e. with
transport equations for the position 2* on the ray and x;; [4].
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The generating function.

The infinite system (2) can be interpreted as a power series
expansion of a single partial differential equation for a generating
function. Let

7(0,t) = Z Wk(t)i:—'—.
k=0 )

Then the Cauchy product of the series corresponding to = and
I /08 is:

On = LIyg* g%
(6) T = Z (Z ( >7r-pﬂ.k—p+1) —

69 k=0 \p=0 p : ) k

Let us muliply the k-th equation of (2) by 6% /k!, sum over & and
make use of (6). We obtain the following equation for 7(6,1):
or 1, on

(7 58—t—+[a(7r——2—7r)+70}bz+,67r_0
where 7 = x(0,t) is the unknown function, 7°(t) = n(0,t), @, B and ¥
are functions of ¢ that can be evaluated from the known background.
The function #°(t) is most important because it is related to the shock
amplitude, which is the principal quantity of interest. This equation
must be supplemented with transport equations for the rays and the
curvature of the shock front. At the lowest order in the perturbation

expansion these equations are not coupled to the shock. Therefore we
can solve these equations to compute «, 8 and v as functions of time.

We shall consider the initial value problem for Eq. (7)', with

0 £E>0
”“”*z{ﬂa £<0

The quantity f(¢) could be defined via the power series:
HGEDIE: )7
k=0

or, better, as

(8) F(€) = L(&)(U(E,0) — UO(e))
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where ¢ is the arc length along the rays and we interpret the left
eigenvector and the initial value of the field as functions of ¢.

Equation (7) can be written in characteristic form,

(9) %zt‘: + ﬁ(t)’n’ =0
(10) gg = a(t) [ﬂ(&,t-) — %W(O,t)] +y(t)8.

Integrating the first equation gives

. t

(11) 7 = f(€)exp (——/ ﬂ(r)dr) ,
0

and substituting in the second yields

12 T=a) [f(é‘) exp (— / ﬂ(r)dr) - %w”(t)} +(1)0.

Integrating this equation gives

(13) e<e,t>={s+ / F(©a(r)B(r) — 57()a(r)| p(r).dr}/p(t),

where

(14) p(t) = exp (—/ ’}’(T)d‘l‘) , E(t) = exp (—/ ﬂ(r)dr) :

By setting 6(£,t) = 0 and using (11) evaluated at ¢ = £(¢) to
eliminate 7°, we obtain the parameter £(¢) of the characteristic which
terminates on the shock at time ¢. The relation has the form of an
integral equation for £(¢):

(15) () + FE@) / F(r)dr — -;— / FET)F(r)dr =0
where

(16) F(t) = a(t) E(t)p(t).
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Differentiating equation (15) with respect to time we obtain an
ordinary differential equation for £(t):

& _ 1 JEOFQ
9 [1

(17) == .
1+ f1(&) / F(r)dr

Solution of the equation.
With the change of variable
t .
= / F(r)dr
0

Eq. (17) can be written in the form

dy 2 f’(f)
€~ f(6) f(f)

Solving the linear equation one obtains an integral relation
between F(t) and f(¢):

| t f
(18) 5€7 | Feyar 2 | reie=0

This relation, together with the relation (11) gives the time
evolution of the shock.

When applied to the propagation of weak shocks in gas dynamics
in a stratified atmosphere, one finds a good agreement with numerical
results.

- Propagation into a constant state.

In this case « is constant and 8 = —(d/dt) log J, where J is the
expansion of the rays. In the case of 1— D propagation in plane,
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cylindrical and spherical geometry, Eq. (18) can be solved for ¢:
.
2 [ (e)ae
0
af?(£)

/ ey
atoﬂ(f)

1D t = —

2

2D t =t 1—-=
(19) .

o o[ reepae

— _ &
3D t =tgexp (@) ol

In the case of triangular initial profile these relations can be
solved for £(¢).

The resulting expression give the well-known shock decay for
the three geometries [5].

Comparison with Weakly Nonlinear Geometrical Optics.

The theory of weakly nonlinear geoemtrical optics (WNGO),
introduced by Choquet-Bruhat [6] to study the evolution of a high
frequency wave in quasilinear systems without shocks, has been
extended in [2] to the case of several waves in systems of conservation
laws in presence of shocks.

It is assumed that the vector field is a: superposition of an
unperturbed field and m small-amplitude, high-frequency waves.
Here we shall consider the case of a single high-frequency wave (the
one corresponding to the eigenvalue A(*)). One looks for solutions of
system (1) of the form

(20) | U(z®,€) = UD(2%) + V(2% 0) + O(e?)

where o = ¢/¢, and 4(z*) is a phase variable to be determined.
Performing a detailed asymptotic analisys, one obtains an expression
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for the asymptotic solution (20) in terms of the phase ¢ and known
functions of the unperturbed field [2]. The asymptotic solution takes
the form

U(a®,¢) = UO(2%) + ca(a®,¢(2%)/IR(z*) + O()

where the amplitude satisfies a scalar equation

(21) g—j + a[v¢|agg- + Ba = 0.

Here /0t is the derivative with respect to time along the rays.
In this framework, shocks can be treated by applying shock-fitting to
Eq. (21). We consider (21) with intial data a(e,0) = f(o), with f(o) =0
for o > 0. Let z(t) be the initial value of ¢ on the characteristic hitting
the shock from behind at time t¢. Shock-fitting [2, 5] shows that » and

the shock strength a(z(t),t) are given by,

(22) [Ul=aR, a= f(2)E(), 2/ FOd¢+ FA(2)IR) =0
| 0

with

(23) E(t) = exp {—/ ﬁ(r)dr} , I{t) = / a|V¢|Edr,

0

Here f(¢) is given by (8), 3 is defined in Eq. (4), and R is the
same as the one used in the previous sections. The phase ¢(z¢,t)
satisfies the eikonal equation

¢t + A[Vg| =0,

and the intial value along the phase is the arc length of the ray:
#(0,z;) = €. '

We shall prove that in this case GWE and WNGO give the same
evolution law for the shock amplitude. Comparing Eq. (22) with Eq.
(18), and using (14) and (16), it follows that the two methods give
the same evolution law for the shock amplitude, provided that

(24) I(t) = / a(r)E(t)exp [—/ 7(t')dt’} dr,

0
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where all the terms appearing in the integral are evaluated along
the rays.
From (23), Eq. (24) is satisfied if

(25) |Vé| = exp [—/ 7(t')dt'] .

0

In order to prove Eq. (25) we obtain a differential equation for
|V¢|. The derivative of |V¢| along the ray is

dve| _ o, 06 d 0
(26) 7 =1Vel5 G

where the derivative along the ray, d/dt, is given by
o )

— = AT

dt — ot Ozt’

Here A’ is the ray velocity [1, 2] defined by

A = LAR = 22
6711'
We assume, without loss of generality, that 4° =7 and LR = 1.
Using this expression for d/dt in (26) gives
dog _ (0 ;0\ ¢
&t 02 (5;“ a—) o
9 ¢

- i JA..
= G o0 TN i

0
6:12,'

= —%\:IVQSI + ¢ij (A7 = nd)

(=AIVE]) + A gy;

where the eikonal equation has been used and ¢ij = (0%¢/dz;0x;).
Substituting this equation into (26) gives

d[Vé|  OX 9¢

— T (A% — Ami
dt —  Oz; Oxt i (A"~ An')

(27)
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From the definition of n;, we have
9 k
@i = —827(|V¢|ni) = nin"gr; + |V|xi;.
Using this equation in (27) gives
nd ¢ii (A* = An') = |Vg|nd xi; (A — An®) + nP;pn? (Afn; — ) = 0,

because y;;n/ = 0 and, from the eigenvalue equation for A, A’n; — X = 0.
It now follows from (27) that

diVeg| 8¢ 0x . ou©)
Cdt T Oz Ozt ~[Véln; VuA oz;

To prove (25), we observe that v can be written as

U0
Ox;

(28) vy =n;VuA

In fact, differentiating the eigenvalue equation for A, and left
multiplying it by L, it follows that

- LVuAin;R = V.

Substituting this expression in Eq. (5), Eq. (28) follows.

diVé| _

Integrating this ODE gives (25), which proves the result.

REFERENCES

[1] Anile A M,, Russo G., Generalized Wavefront Expansion I. Higher Order
Corrections for the Propagation of Weak Shock Waves, Wave Motion 8,
(1986) 243-258.

[2] Hunter J.K., Keller J.B., Weakly Nonlinear High Frequency Waves,
Comm. Pure Appl. Math., XXXVI; (1983) 547-569.

[3] Jeffrey A., Quasilinear Hyperbolic Systems and Waves, Pitman. London
(1976).



_A TRANSPORT EQUATION FOR THE EVOLUTION,... 413

[4] Russo G., On the evolution of ordinary discontinuities and characteristic
shocks, Le Matematiche, University of Catania, Italy, XLI, (1986) 123-
141.

[5] Whitham G.B., Linear and Nonlinear Wauves, Wiley, New York (1974).

[6] Choquet-Bruhat Y., Ondes asymptotique et approchées pour systemes
d’équations aux dériv’ees partielles nonlinéaires, J. Math. Pures et
Appl., 48, (1969) 117-158.

Giovanni Russo
University of L’Aquila

John K. Hunter
University of California, Davis



