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ON THE CONDITIONAL TOTAL STABILITY
OF EQUILIBRIUM FOR MECHANICAL SYSTEMS

L. SALVADORI (Trento) (*)

In" connection with the problem of observability, properties of
* total stability restricted to classes of perturbations of the governing
equations are discussed for the equilibrium of holonomic mechanical
systems. These systems are subject to positional conservative and
dissipative forces. The particular case of a null dissipation is included.
The perturbations to which the total stability is restricted are
those obtained by modifying the kinetic energy, the potential of the
conservative force, and the dissipative terms, without altering the
Lagrangian form of the equations of motion.

1. Introduction.

The aim of this talk is to revisit some results concerning the
total stability of equilibrium for holonomic mechanical systems with
time independent constraints, and subject to positional conservative
and dissipative forces (including the case of a null dissipation). These
results have been given in a paper in cooperation with F. Visentin
[7]. In contrast with the assumptions in [7], we suppose here that
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the dissipative forces are time independent, in order to restrict our
analysis to autonomous Lagrangian equations and avoid inessential
complications.

It is known that no periodic orbits, and then no equilibrium
positions, of a positional conservative system are (uniformly) totally
stable in the sense of the classic definition of Dubosin [2]. Therefore
serious problems of observability arise when the conservative schema
is adopted ([1], [5]), and an explanation of the observability of
equilibrium is obtained by a modification of this schema. Indeed,
under the assumptions in the Lagrange-Dirichlet theorem, and
some regularity conditions, an isolated equilibrium position becomes
(uniformly) asymptotically stable, and then totally stable [4], when
small strictly dissipative forces which have been neglected in a first
approximation, are taken into account.

An alternative explanation of observability may be obtained by
requiring stable behaviors restricted to classes of perturbations of the
equations of motion that are of prevalent importance in the problem
under examination. For instance in Celestial Mechanics concepts
of total stability with respect to conservative perturbations, that
is perturbations which lead from a conservative system to another
conservative system, are very significant.

The interest to analyze the occurrence of properties of conditional
total stability, that is of total stability with respect to perturbations
which satisfy appropriate conditions, then arises in the most natural
way. We notice that when the perturbations of the governing equations
are zero along a motion, the conditional total stability of this motion
does not always coincide with its secular stability, that is with the
property that the motion is stable and the stability is preserved under
the above mentioned perturbations. Here, as in [7], the perturbations
to which the total stability of equilibrium will be restricted, are
those obtained by modifying the coefficients of the kinetic energy, the
potential of the conservative force, and the dissipative terms, without
altering the Lagrangian form of the equations of motion.



ON THE CONDITIONAL TOTAL STABILITY OF EQUILIBRIUM, ETC. 417

2 Liapunov stability and conditional total stability for
ordinary differential equations.

Let D C R’, s > 1, be an open set which contains the origin 0 of
R°. Consider the differential equation

(2.1) z = f(z),

where f € C(D,R?), f(0) = 0. Uniqueness is not necessary and is not
assumed. Let F(zo) be the set of all noncontinuable solutions ¢ = z(¢, zo)
of (2.1) which satisfy the initial condition (0,2¢). For « € F(z,) let
J(z) be the interval of existence of z and J*(z) = {t € J(z),t > 0}.
We denote by ||-|| the Euclidean norm in R?, by B(y), v > 0,
the ball {¢ € R* : |[z]| < 7}, and by B[y] the closure of B(y). Let
x =sup{y > 0: B(y) C D}. We recall some stability concepts in the
Liapunov sense. The solution z = 0 of (2.1) is said to be:

(i) stable if for any ¢ € (0,x) there exists é = §(¢) € (0,¢) such that if
llzo|| < 6 and z € F(zo), then ||z(¢)]| < ¢ for ¢t > 0;

(ii) asymptotically stable if it is stable and there exist v € (0,),
o € (0,8(7)), such that if ||zo|| < ¢, and = € F(zo), then z(t) — 0
for ¢t — 400 uniformly in zg;

(iii) unstable if it is not stable, i.e. there exist n > 0, a sequence {z;}
in D,||z;|] — 0, such that for any i € N one has Haz(t)l[ > n, for
some z € F(z;), and some t € J*(z).

If 2 =0 is stable, then given any ¢ > 0 the supremum r(¢) of
the numbers é(¢) in (i) will be called e-radius of stability. If z = 0 is
unstable, we set

R =sup{n > 0:3{;} C D, ||z;]| = 0, such that for any i € N there
exist ¢ € F(2;) and ¢t € J*(z) with ||z(¢)|| > 7).

The number R (finite or infinite) will be called radius of instability.

Let B be a Banach space and let |.|s be a norm in B. Let A C B
~ be a domain which contains the origin w of B and such that w is an
accumulation point for A. Let g € C(D x A,R?) be such that

(K) a(|Als) < llg(=, A) = ()] < b(|A5)

for any (z,)\) € Dx A and some pair of continuous functions
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a,b: Rt — R*, strictly increasing with a(0) = 5(0) = 0. Let & be the
set of all perturbations of f given by

U={g(,X)—F:reA}
For any ) € A consider the perturbed equation
(2.2) z=g(z,A),

and denote by G(A,z,) the set of all noncontinuable solutions of (2.2)
which satisfy the initial condition (0,2,). The solution z = 0 of the
unperturbed equation (2.1) is said to be #-totally stable if for any
e € (0,x) there exist oy = 01(e) € (0,¢) and o, = 03(¢) > 0 such that if
Hzoll < o1, A €A, |AlB < g, and z € G(), zo), then ||z(t)]| < ¢ for ¢ > 0.
In other words the solution z = 0 of (2.1) is U-totally stable if the
solution z = 0, A = w of the system & = g(z,)), A = 0 is stable in the
Liapunov sense. _
Assume now in particular that ¢(0,) = 0 so that z = 0 is solution
of (2.2) for each X € A. As we have pointed out in Section 1, a
priori there is no relationship between the total stability of the zero
solution of the unperturbed equation (2.1) and the stability of the
zero solution of each perturbed equation. In particular, we may have:
(a) the origin is stable for all perturbed equations and is not /-totally
stable;
(b) the origin is unstable for all perturbed equations (with A # w)
and is U/-totally stable.

Concerning the eventualities (a) and (b) the following proposition
holds:

PROPOSITION 2.1. Let g(0,)).= 0 for all X € \. Then:

(I) Assume that for any A € A the zero solution of (2.2) is stable and
let r()\ €) be the corresponding e-radius of stability. Then the zero
solution of (2.1) is U-totally stable if and only if for any € > 0 one
has lim)_,, r(}, ) > 0.

(II) Assume that the zero solution of (2.2) is unstable for any A € A—{w},
and let R(\) be the corresponding radius of instability. Then
lim}_,,, R()) > 0 implies that the zero solution of (2.1) is not
U-totally stable. ‘
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We notice that Proposition 2.1 (II) is not in general invertible. For
instance consider the planar system &; = —z,, #, = z; in a bounded
open set D C R? which contains the origin and assume for & a set
of perturbations depending on a scalar parameter \,if = {hy : D — D,
ha(z) = Az(l|z|]*> — A)%, A > 0}. Then, given any X > 0, the origin is
unstable for the corresponding perturbed system with a radius of
instability which tends to zero as A — 0, while the zero solution of
the unperturbed system is stable but not U-totally stable.

3. Holonomic systems and conditional total stability of
equilibrium.

Let ® and ¥ be bounded sets in R", n > 1, containing the origin.
Let T € C*(® x ¥,R) and I € C'(®,R) be such that:

(@) T(q,v) = (2)~!(v, A(g)v) where A(q) is an n x n symmetric positive
definite matrix; '

(b) T(0) = 0, VII(0) = 0.
Consider the 2n-dimensional system
d 0T oT
7 g (40) = W(q,v) = ~VII(g) + Q(g,v)

dq
a =Y

where Q € C(® x ¥,R") satisfies the condition (Q(g,v),v) < 0 for all
(¢,v) € & x ¥. System (3.1) may be reduced to the form (2.1) with
s=2n, 2 = (q,v), D =& x ¥. In the discussion of (3.1) we will adopt
the notations of Section 2. Furthermore, we denote by B’(y) the ball
{g € R" : J|q]| < 7}. If g0 € @ satisfies VII(go) = 0, then ¢ and TI(g)
are said to be a critical point and a critical value respectively of II.
Since @ is continuous, the condition (Q(g,v),v) < 0 implies Q(g,0) = 0.
Hence ¢o € ® is an equilibrium position if and only if ¢, is a critical
point of II. In particular ¢ = 0 is one of such positions. The derivative
along the solutions of (3.1) of the total energy, H = T + II, satisfies
the condition H(g,v) = (Q(q,v),v) < 0.

We include the case that @ is nonenergic, that is (Q(¢,v),v) = 0,
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as well as the case that @ is a strictly dissipative force, that is
(Q(g,v),v) <0 for v #0.

Let B; and B; be the spaces, both equipped with the norm
C", of the bounded functions C*(® x ¥,R) and C'(®,R) respectively.
Moreover let B; be the space, equipped with the norm C° of the
bounded functions C(¥ x &, R"). Consider the space B; x B, x B3 with
the norm | -|p = | |5, + | |5, +|-|s,. Consider the subset A; of B,
consisting of all the functions such that \;(q,v) = (2)7}(v, Ax,(q)v)
where A,,(¢q) is an n x n symmetric positive definite matrix. Moreover,
denote by Az the subset of B3 of the functions such that (A3(¢,v),v) <0
for every (q,v) € ® x ¥. Finally, Let A, = B, and A = A; x Ay x As.
For any A = (A1, )9, A3) consider the differential system which has the
form (3.1) with 7,11, Q replaced by the functions 7'+ A\, T + A2, Q@ + A3
respectively. This system will be denoted by S,. It is easy to see
that S, may assume the form (2.2) with = = (¢,v) and g satisfying
the condition (K). For this system, and with reference to A, we
will define the set & as in Section 2. From now on, we will study
the conditional total stability of the solution ¢ = 0, v = 0 of (3.1)
with respect to the set of perturbations i/, which takes into account
only the small perturbations obtained by modifying the coefficients
of the kinetic energy, the potential energy and the dissipative force.
The following theorem shows that under the same hypotheses of
the Lagrang-Dirichlet theorem, the zero solution of system (3.1) is
totally stable with respect to the above perturbations. The theorem
stresses for system (3.1) a property already pointed out in [6] for
perturbations depending on a finite number of parametrs, and more
generally in [8].

THEOREM 3.1. Assume the potential energy has a strict minimum
at ¢ = 0. Then the solution ¢q =0, v=0 of (3.1) is U-totally stable.

Proof. One can proceed as for the proof of the Lagrange-Dirichlet
theorem. The function /7 is positive definite. Then, given ¢ € (0, x)
small and setting m = min{H(q,v),||(¢,v)|| = ¢}, one has m > 0. For
each ) € A let H. be the total energy relative to the perturbed system
Sy. Along the solutions of S, we have H(g,v) < 0. Moreover there
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exist o1 = ¢1(¢) €(0,¢) and o5 = 02(¢) > 0 such that

m

[Ha(g,0)l < 2

if ”(qo,’vo)” < o1 and I)\IB < 03,

(g, v) > zg, if [|(¢,v)]| = € and |\|s < 0.

Let (qo,v0) be such that [{(¢go,v0)|] < o1, and let (q(t),v(t)) €
G(A, 10,90, v0). This solution exists and satisfies ||(¢(¢),v(¢))|| < ¢ for all
t > 0. Indeed, the existence of t; > ¢, such that

|1(g(t),v(t))|] < € for each t € [to,¢;) and ||(¢(t1),v(t1))]| = ¢,
implies
T > |Ha(g0,%)] 2 Ha(do,v0) 2 Hala(t:),v(t) 2 7,
that is a contradiction.

Remark 3.1.

(i) Let A € A—{w} be such that VII,(0) = 0, i.e. ¢ = 0 is an equilibrium
position of the perturbed system S,. We emphasize that the total
stability of the zero solution of (3.1) does not imply in general
that , for X close to w, ¢ =0, v =0 is a stable solution of §,.
For example, assume that II is a positive definite form of (even)
degree > 4. Furthermore, assume M = {(A,X2,X3) € A : )\ = w,
Az = ph(q), A3 = w, u > 0} where & is a quadratic form whose range
contains negative values. In this case, by virtue of Theorem 3.1
the zero solution of the unperturbed system is U-totally stable,
whereas for any ) € A*, A # w, the zero solution of S, is unstable.

(ii) It is well known that the zero solution of system (3.1) is stable if
the assumption that II has a strict minimum at ¢ = 0 is replaced
by that of the existence of a fundamental family F of open
neighborhoods of ¢ = 0 such that for every A € F' and for every
q € OA one has II(¢) > 0. It is easy to prove that this is also a
sufficient condition for the /-total stability of the solution.

THEOREM 3.2. Assume that:

(i) the potential energy does not have a relative minimum at ¢ = 0;



422 L. SALVADORI

(ii) there exists v € (0,x) such that there are no equilibrium positions
in the set P ={q:||q|| <, H(q) < 0}.
Then, the zero solution of (3.1) is not U-totally stable.

Proof. Let
A* = {()‘1”\2”\3) : A1 = w, ’\2 =W, /\3 = ﬂé(Q)v)a H 2 0}’

where O ¢ C(® x ¥,R™) is a strictly dissipative force. By virtue of
Proposition 2.1 (II) the proof that the zero solution of (3.1) is not
U-totally stable is obtained if it is shown that for any x > 0 the zero
solution of the perturbed differential system Sxuy corresponding to
this 4 € A* is unstable and the radius of instability R(p) is greater
than a positive number independent of .. We have

(3.2) H,(¢g,v) <0 and Hu(q,v) =0 if and only if v =0,

where H, is the derivative of H along the solutions of Sy(,.
Let ¢o € (0,7) such that I(g) = Iy < 0. Let zo = (g,0) and let.
z(t) = (¢(t),v(¢)) be a noncontinuable solution of Sx(wy for which
2(0) = z9. Clearly [lzo|| < v and we assume that z(t) exists and
satisfies ||2(t)|| < v for all ¢ > 0. Hence the positive limit set T+ of this
solution is nonempty. From (3.2) it follows

H(q(t),v(t)) < H(g0,0) <0 and T(g(t)) < (go) <0, for all ¢ > 0.

The first of these inequalities implies the existence of a € (0,v) such
that ||z(¢)|| > a for all ¢t > 0. Therefore we have z(t) € B(y) — B(a)
and TI(g(t)) < 0 for all ¢ > 0. By using again (3.2) and the LaSalle
invariance principle [3] we obtain that T't is contained in the
union M of the noncontinuable orbits of Sx) lying in the set
{z = (¢,v) : 2 € B[y] = B(a), T(¢) < 0, v = 0}. Since there are no critical
points in P, it follows that M is empty. This contradicts the previous
assertion that T't is nonempty and thus we have proved that for
each p > 0 the zero solution of Sx(x) 1s unstable and the radius of
instability satisfies R(u) > v. Then the proof is complete.

Under the assumptions (i), (ii) in Theorem 3.2, unless Q is itself
strictly dissipative, the zero solution of (3.1) may be stable. It is
known indeed that the Lagrange-Dirichlet theorem does not admit in
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general a converse, even if Q = 0 and (ii) holds. It is also known that
when @ is nonenergic, the equilibrium ¢ = 0 of (3.1) may be stable even
if the equilibrium is unstable for Q = 0 (gyroscopic stabilization). We
also notice that if the equilibrium position ¢ = 0 is isolated, then the
condition that II has a relative minimum is necessary and sufficient
in order to have U-total stability. In conclusion, by using «/-total
stability concepts, the classic theorems of Lord Kelvin concerning the
secular stability of equilibrium, are reinterpreted and enriched.

Assume now that II is a (real) analytic function. Then any
compact set contains only a finite number of critical values of II [9].
Therefore, by using the continuity of II, there exists v € (0,x) such
that zero is the unique critical value of II in B’[y]. Hence condition
(ii) in Theorem 3.2 is automatically satisfied and then the following
theorem holds:

THEOREM 3.3. Assume that 11 is an analytic function which
does not have a relative minimum at q = 0. Then the zero solution of
(3.1) is not U-totally stable.

Returning to consider a C' potential energy II, we wish now
~ to inspect the case were II has a nonstrict relative minimum at
g = 0. We conjecture that in this case the solution ¢ =0, v = 0 of
the unperturbed system (3.1) is not /-totally stable and a general
analysis concerning this question is in progress. In the present paper
we restrict ourselves to consider some particular cases.

LEMMA 3.1. Assume that TI has a nonstrict relative minimum at
q = 0. For a given m > 2 and for u> 0. Let

M, (q) = T(g) — ullgll™.

Assume there exist v € (0,x) and two sequences {a;},{p:}, with
a; € (0,7), pi >0, aj — 0, p; — 0, such that for every i € N and p = u;,
M,(q) does not have critical points in the set {q:q € B'[y] — B'(a:),
I1,(q) < 0}. Then the zero solution of (3.1) is not U-totally stable.

Proof. We may assume II(¢) > 0 in B'[y]. Let {¢.} be a sequence
of points in B’(y) with ¢, # 0 and ¢, — 0. Let '

A = {(A1,22,23) : A = w, da = —pllal|™, A3 = pQ(q,v), p> 0},
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where Q € C(® x ¥, R™) is a strictly dissipative force. For each 1 > 0
let Sy(.) be the perturbed differential system corresponding to this
# in A*. Given any n in N and ¢ > 0 there exist a € (0,7) and
p# € (0,e) such that ¢, € B'(y) ~ B'(a) and M, does not have critical
points in the set P = {¢:q¢ € B'[y] - B'(a), M,(q) < 0}. Let zo = (¢,,0)
and let z(t) = (¢(¢),v(t)) be a noncontinuable solution of Sx(uy such
that 2(0) = zo. We have ||zo]| < v and we assume that z(¢) exists and
satisfies ||z(t)|| < v for all ¢ > 0. Hence the positive limit set T+ of this
solution is nonempty. Denote by H, the total energy for Sxw) and by
H), its derivative along the solutions of Sy,. Since H,(g,v) <0, we
have

0 < 1(g(1)) < plla®N™ = ullgnll™.

Therefore v > ||¢(t)]] > |lgn|| > a, 2(t) € B(y)— B(a) and I ,(¢(t)) < 0
for all ¢ > 0. Since T, does not have critical points in P, and
H,(q,v) = 0 if and only if v = 0, then, by using again the LaSalle
invariance principle, we find that T't is empty. We get a contradiction,
and, in view of the arbitrariness of n, ¢, the proof is complete.

LEMMA 3.2. Let us assume that 11 has a nonstrict relative
minimum at ¢ = 0. Moreover suppose that for some v € (0,x) and any
a € (0,7) there exists k > 0 such that

(3.3) kTI(g) — (VI(q),q) > 0,

in the annulus B'[y] — B’(a). Then the zero solution of (3.1) is not
U-totally stable.

Proof. We may assume II(¢) > 0 in B’[y]. For a given u > maz{2,k}
and for u > 0 let

u(g) = T(q) — pllgl|™.

By virtue of Lemma 3.1, the proof will be obtained if we prove
that for any p > 0 there are no critical points of II, in the set
{g :a <|lgfl <, Mu(q) < 0}. For this it is sufficient to show that if
¢ € B'[y] - B'(a) satisfies (VIIu(q),q) = 0, then IT,(¢) > 0. Since

(VILu(9), q) = (VII(g),q) — mullq||™,



ON THE CONDITIONAL TOTAL STABILITY OF EQUILIBRIUM, ETC. 425
then (VII,(q),q) = 0 implies

M.(q) = T(g) — (m)"(VII(q), q),

and then II,(¢) > 0 by virtue of (3.3) and taking into account that
m > k and TI(¢) > 0. The proof is complete.

PROPOSITION 3.1. Suppose that T has at ¢ = 0 a nonisolated
zero and

h
(3.4) () = o(g) > ;H(a),
2
where h > 2, T(y),..., M) are forms of degree 2,..., k for which
(3.5) > il (@) >0, s=2,...,h,
2

and o is a C' function such that o(q) > 0 for all q # 0 in a neighborhood
of the origin. Then the zero solution of (3.1) is not U-totally stable.

Proof. Let v > 0 be such that o(q) > 0 for all ¢ € B'(v) - {0}. For
any a € (0,7) there exists k£ > h such that

(3.6). (k—h)o(q) — (Vo(g),q) > 0, for all ¢ € B'[y] — B'(a)

Then we have_:
h h
kTI() = (VII(g),4) = 0(q) Y (k= Nl(5(q) — (Va(e), a) S ;Ti0(g) =
h h—1
= [(k = R)o(9) = (Vo(q), )] Y i T(5y(g) + o(q) > 0 i(h= Hy(a).
We easily verify that
h—1 h—1 h—2 3
> ith=NMy(e) =D 5T(e) + > Ty(g) + -+ > il (@) + sy,

Hence, by virtue of (3.5), (3.6) we get

kTl(q) - (VII(q),q) > 0, for all ¢ € B'[y] - B'(a).
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Then the result follows from Lemma 3.2.

PROPOSITION 3.2. Assume that T depends only on r < n
coordinates, say qi,...,q,, and is positive definite in these coordinates.
Then the solution ¢ =0, v=0 of (3.1) is not U-totally stable.

Proof. Let y=(q1,...,¢-) and z = (¢r41,-..,¢n). For pp > 0 let
(3.7) M (y, 2) = TW(y) — pll(y, H)II*.

Let v € (O,x-) be such that TI(y) > 0 for all y:0 < |Jy|] < v, and
assume u > 0. Clearly VII,(y,z) = 0 if and only if

VI(y) =2py and z=0.

For any a € (0,v) the critical points ¢ = (y,z) of II, lying in
the annulus B’[y] — B’(a) satisfy v > ||y|| > a and ||z|| = 0. Hence if
i > 0 is small enough, for each one of these critical points we have
IM,(y,z) > 0. Then the result follows from Lemma 3.1.
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