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SOME REMARKS ON THE WIGNER TRANSFORM
AND THE WIGNER-POISSON SYSTEM

C. SEAN BOHUN (Victoria) - REINHARD ILLNER (Victoria)
| PAUL F. ZWEIFEL (Blacksburg)

We discuss the derivation of the quantum Liouville equation and the
Wigner-Poisson system (or quantum Vlasov equation) from elementary
quantum mechanical principles via the Wigner transformation.

1. Introduction.

In this paper, we use the ideas of Imre, Ozimir, Rosenbaum
and Zweifel [3] to derive the quantum Liouville equation and to
develop the physical basis of the Wigner method. However, we avoid
the use of non-normalizable quantum states which mars, to some
extent, the discussion of Imre et al. Our treatment is similar to
Wigner [10], who defined the Wigner function first and then derived
the evolution equation that it obeyed. Markowich [5] began with the
evolution equation and proved that a Wigner function constructed
from wavefunctions was a solution. While Markowich’s treatment is
completely rigorous, it does not serve to explicate the physical content
of the Wigner function in any detail. Wigner’s analysis is more formal
- Markowich’s work serves to make it mathematically precise. Our
treatment is semi-formal, but could be made precise along the lines of
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Ref. [5], a task we do not undertake here. The reason for our chosen
approach is that we feel it provides an excellent intuition into the
meaning of the Wigner method and, in particular, it’s raison d’étre.
It replaces the heuristic treatment of Ref. [3].

2. The Wigner Transform.

Let A represent a (linear) operator in the Hilbert space H of
quantum states; specifically, think of ¥ = L2 (®%") for a system
containing N particles. We shall denote the position operator by X
and the momentum operator by P; lower case letters z and p simply
denote points in ®3V. Also, let (u;)$2, be an orthonormal basis for .
Then

DEFINITION. The Wigner transform A, (z,p) of an operator A :
H—>His

(1) Auw(z,p) = /RSN eP#/h ;;uz (:L' - -;—) Uk (-’c + g—} (ur, Auy) dz.

Here, & is Planck’s constant (scaled by 27) and the inner product
(f,9) is assumed to be linear in ¢ (Reed-Simon notation) [9]. An
example of a technical question we do not address here is, for what
class of operators does the series in (1) converge [2]?

PROPOSITION 1. For every trace class operator A,

(2) Tr A = (27rh)'3N/ dzdp Ay (2,p).

RIN wR3IN

(If A is not trace class, the integral is unbounded.)

Proof. The simple proof is based on the fact that the dp integral
of Eq. (1) gives 6 (z) (2x1)*N while the dx integral gives 6y;.

One proves similarly

PROPOSITION 2. Let A, B be trace class operators in M such that
AB is trace class. Then,

(3) Tr AB = (27rh)_3N/ dedp Ay (z,p) By (2,p).

%3]‘] x%3N
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This result is a bit unexpected since when computing traces, there is
usually a sum over intermediate states which is not the case in the
Wigner representation!

The Wigner function py (z,p), can be defined as the Wigner
transform of the density matrix p [8]. Since quantum averages, or
expectation values, are computed according to

(A) =Tr pA,

proposition 2 tells us how to compute such averages by integration
over the phase space R3V x ®3V | in analogy with statistical mechanics.
The real variables ¢ and p may be thought of as the class1ca1 position
and momentum variables, as we now explain.

PROPOSITION 3. Let the operator A be a function of X alone;
A= A(X). Then Ay (z,p)= A(z). Similarly if the operator B = B (P),
then By (z,p) = B(p).

Proof. Since A(X) is a multiplication operator [8], [4], we can
write the inner product in Eq. (1) as

() (A w) = [ @) AW) e ) dy
Now

Su(e-3) L, 5004000 dy= (e E) (o= ),

so Eq. (1) can be written as
Ay (z,p) = /%SN eip'z/hzk:ﬂk (:L’-’r %) U (x - —;:) A (:c — —;—) dz.

Since, in the sense of Hilbert space,
_ z z\
S (e 5o+ £) = o0

the result follows.

The proof of the second half of the proposition, concerning
B (P), is similar, except that one introduces the Fourier integral



432 C. SEAN BOHUN - REINHARD ILLNER - PAUL F ZWEIFEL

representation of the basis vectors u;:
) s ) = ) [t ) d

and uses the fact that in momentum space [10], B (P) becomes the
multiplication operator B (p).

We consider this proposition sufficient justification for viewing
the real variables ¢ and p as the classical position and momentum |
(3N) vectors of the system. In the same way, the Wigner transform of
the density matrix p has some similarity to the classical distribution
function of statistical mechanics.

If the wavefunction of a system is indeterminate, it may still
be described as the projection sum over the states of the ensemble.
Specifically, if the states ¥ = {¢1} of the ensemble systems are
distributed with probilities {)\;} then the density operator may be
written as [8], [4], [1]

p=> AP
k

where P, is the orthogonal projection onto the state vector ;. We
observe that the v obey the time-dependent Schrédinger equation

(6) thOyhy = Hipg, ¢x (1 =0) =
where H is the Hamiltonian of the N-body system. Also Z)"C = 1;

for a system in a pure state Yo 88Y, Ap = Ok k,-
From Eq. (1) we find immediately

@ mEn=Nn /% g (2= 2) g (24 D) a

Except for the sum over k, this is the formula with which Wigner
[10] began his treatment. It is also the formula which Markowich [5]
derived as a solution of the quantum Liouville equation.

Since Tr p = Z)\k = 1< oo, p is trace class. Therefore, using

k
proposition 1, we observe

Trp=1 = pw (z,p) dzdp = (2rh)>Y

%37\7 x§R3N
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This Wigner function can not be a true distribution, because it is not
positive; it is real because p is self-adjoint. The Wigner transform of
a general operator is not necessarily real [7]. However, the spatial
density n(z) is positive
n(@)i= @)™ [ dppu (a,p)
RIN
®) 2
=D Ml (2) 2
k

In fact, Eq. (8) is the usual expression for the spatial density in
standard quantum mechanics [8]. Similarly, the density in momentum
space is readily seen, by integrating p, over z and using Eq. (5), to be

= (27h) 73N x py (2
h@) = @er) ™ [ dzpu (a,p)
— T —-3N/2 e—ip-:n/ﬁ 7 x?
©) =300 oty [T o) e
= Aelti ()
k

which is also standard. According to proposition 3, if 4 = A(X) then

(10.a) (A) = ASN A(z)n(z) dz
while if B = B (P)
(10.) (B)= [ BG)h) dp

More generally, for any operator C

(10.¢) (C) = (2xh)™3N /

RIN xR

y Cw (2,p) pw (z,p) dz dp.

3. Quantum Transport Equation.

We now derive a kinetic equation for p, assuming that the
Hamiltonian H is of the form
N hg
(11) H=-> ——A+V(z).

— 2m;
1=1
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From Eqgs. (6) and (7),

10 ==Y
1 = - _—
tPuw a k > om;

(12) < (B ¥0) 5 =97 (Aapasgoi)] 02
4 Zk:Ak /a;aN e"p‘z/ﬁ,[V(m _ %) -V (x + %)] 1/){1%2’ dz

~ where vE = (a: + 2) The Fourier transform of the ngner function
with respect to momentum is defined by

(15.0) w(@n)= [P 5, (2,p) dp

with inverse

(13.5) ' pw (z,p) = (271')"3N /ei”"”u_(a:,n) dn.
From Eq. (7) we see that

(14) (o) = o™ T ( - %’1) i ( + -’?-22) .

Thus, the second term on the right hand side of Eq. (12) can be
written

(15) =0 (V) pu (2,7)

where © (V) is the pseudo-differential operator with symbol

(16) sym@(V):v<x+%’Z>—V(m—ﬁ2—”).

The first term on the right hand side of Eq. (12) can be simplified by
partial integration to

2pi ip-z - - 7
(17) zhz/\k Z m; / dz e /h vzi‘pk ~ ¥ vza‘lblﬂ

= —thv - Vypy (z,p)
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where we have introduced the velocity vector v with components
pi/m;. Putting together Eqgs. (12), (15) and (17) leads to the quantum
Liouville equation

(18) Bipw + v - Vapy — %@(V) pw = 0.

Therefore, utilizing Eq. (13.a), Fourier transformation of the
quantum Liouville equation (18) with respect to v results in

(19.a) | Eﬁtu—i—ivn-vxu——%[V <m+%—q>—V<x—%ﬂ)]u:O
which is to be compared to the Fourier transform of the classical

Liouville equation [5]
(19.5) 8:f +iV, - Vof = VoVinf = 0.

We have denoted the Fourier transform of the classical particle
momentum density f = f(z,p) with respect to momentum as f (z, 7).
Then, as k — 0, formally

) hn hn .
3 [V <a:+ —2—) -V <:c-— —2—)} — iV, V

and the quantum Liouville equation (18) turns into the classical
Liouville equation. '

The mean-field counterpart to the quantum Liouville equation
(18) is the Wigner-Poisson system

(20.a) Bupl + v Vapl — %e (V)pL =0

CON V@)= @)y

where ¢ € #%, v € 3, n = [, pl dv and p. is the one-particle Wigner
distribution function [6]. As discussed for the corresponding Liouville
equations, Eq. (20) turns formally into the Vlasov-Poisson system as
h — 0. This is completely transparent if the Fourier transforms of the
systems are considered. It is, however, an interesting open problem
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to show that the global classical solutions of the Wigner-Poisson
system converge in this limit to the global classical solutions of the
Vlasov-Poisson system.

The previous discussion shows clearly how the quantum Liouville
equation (and, in the mean field sense, the Wigner-Poisson system)
result via Wigner transformation from systems of Schrédinger
equations. Under mild and physically reasonable assumptions on the
initial value pl (z,p,0) of the Wigner-Poisson system, it is possible
to reverse this procedure and obtain solutions of Wigner-Poisson by
solving a system of coupled Schrédinger equations [5]. Specifically,
let u(z,n) be the Fourier transform of pl (z,p,0). Define the new
variables r, s by

) R /N
(21.a) r__:c+2, s=r—
and set
(21.0) z(r,5,0) = (27rh)"3u(a: (r,s),n(r,s)).

Assume that z is the kernel of a trace class operator with nonnegative
real eigenvalues ), then we can expand z is terms of its normalized
eigenfunctions ¢, as

(21.c) 2(r,5,0) = Apr (s) @ (1),
koL
ie.
3 B hn
u(z,n) = (27h) A r— — e+ — .
n ‘ Ek: kPk ( ) ) Pk ( ) )

Compare this with Eq. (14). A solution p}, (z, p,t) of Wigner-Poisson can
be constructed by solving coupled systems of Schrédinger equations

2
thowy (z,t) = ——%—;Avﬁk (z,t) 4+ V (z,t) ¢ (z,1),

V)= [ ve-nnt)

n(y) = 27h)> Y el (v) P,
k
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and by forming
z(r,s,t) = > Nt (5,8) G (1)
k

then taking the inverse Fourier transform of -
u(z,nt) = (27R)° Y Nty (x— hn di {2+ hn\
! g ) T
See [5] for details. We note that
(22) n(z,t) =u(e,0,t) = (27h)° 2 (2, 2,1),
i.e. the normalization
/ py (2,p) dpde =1,
R3IXRD
implies that

(23) | /%3 2(z,2,t) de = (27h) >,
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