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FLUID DYNAMIC LIMIT FOR A MODIFIED
BROADWELL SYSTEM

MARSHALL SLEMROD (Madison)

This report discusses a new approach to the resolution of the fluid
dynamic limit for the Broadwell system modeling gas dynamics. The
main idea is to replace the Knudsen number ¢ in the Broadwell model
by et, t the time variable to obtain self similar solutions in £ = ¢/t and
then let ¢ — 0+. The limit thus obtained is a solution of the Riemann

- problem for the fluid dynamic limit equations.

The Broadwell system of discrete kinetic theory is given by the

system of partial differential equations

(1)

'68/;1 Lo 8-’;1 =o(fafs+ fsfs — 2f1f2),
66];2 %J;z = o(fafa+ fofo = 20152),
=6a];3 +e (9f3 =o(fife+ fsfe —2fsfs),
86,7;4 ?f&i =o(fifz+ fsfo — 2fafs),
601} + %];5' = o(fufz+ fafa—2/5fs),
0fs 3f6 _

T P o(fife+ fafa—2fsfs) .
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The model describes a gas of particles with identical masses moving
along three perpendicular coordinate axes with the same speed
c. Results of a particular collision have the same probability and
only binary collisions are considered. The functions fi = fi(z,y,t,1),
t=1,...,6 denote the densities of particles moving in the six allowed
directions; o/2c is the cross section for binary collisions.

For flows which are independent of y,z and for which f; = f, =
fs = fe the above six velocity Broadwell model reduces to the simpler
form

0 ' 1
on. (5= n1)
(2)_ %ﬁz—%zé(faz—flﬁ)
%ff = %(ﬁfz —f32)

where for simplicity we have set ¢ =1 and ¢ = 515; ¢ the Knudsen
number or “mean free path” of the gas. As the “mean free path” is the
distance between successive collisions, a small mean free path means
the gas becomes less rarefied and a “macroscropic” description of the
gas based on fluid dynamic Euler and/or Navier-Stokes equations
should become meaningful.

The problem of rigorously passing to the fluid dynamic limit
has a long history. Here I give a quick summary of relevant results.
Additional references may be found in the book of Cercignani [4] for
work on the Boltzmann equation and the review paper of Platkowski
and Illner [11] with regard to research on discrete velocity model in
the kinetic theory of gases.

First within the realm of discrete velocity models the Carleman
model does allow for rigorous passage to the hydrodynamic limit.
This was done in the work of Kurtz [10]. But as the Carleman model
does not conserve momentum it is perhaps a poor test case.

For the Broadwell model the basic result is due to Broadwell
himself [1]. One begins by rewriting the system (2) as
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%(fl +f2+4f3)_+ ;;(fl —f2)=10.

) arhi = R+ (it £y =0,

0 1
—6% = E(ﬁfz ~-f3).

Next one makes the ansatz of travelling wave solutions f, = f1(6),

T — st
fQ:fZ(H)_y f3:f3(0))0: c
Substitution of this ansatz into (3) yields the system of ordinary
differential equations

—s(fi+fot+4fs) +(fi— f2) =0

where s will be the speed of the wave.

(4) —s(fi=fo) +(fi+ f2) =0

~sfi=S(hfo-12).

We pose downstream and upstream positive, constant data
(f1,f2,f3) — (ff,ff,ff) as § — +oo which of course is consistent

with (4) if and only if the data are Maxwellians, ie. fiff = f2.
Next since s is a constant (4a), (46) may be integrated from —oco to ¢
to yield:

~s(f1+ Lo +4f3)+ (i = f2) = —=s(f; + f5 +4f5)+ (T = f7),
=s(fi— fo) + (fr + f2) = =s(f7 = )+ (f7 +f5).

These two equations determine fi, f, as functions of f3(8) and s.
Substitution of these functions into (4¢) will yield an autonomous scalar
ordinary differential equation for f; with precisely two equilibrium

points at f3 = f57 = \/fff{. Since such boundary value problems
must possess solutions it follows that such a travelling wave solution
must exist. The value of s is found by integrating (4) from —oo to +oo:

—s(fF + £ AT ENY) + U - £)
(5) = —s(f7 + f7 HAUTID) + U7 - £7),
=sUT = )+ G+ D) = —sUT = £7)+ (U7 + £7),
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and solving the system (5) for s. This is just the Rankine-Hugoniot
jump condition.

Once the existence of a travelling wave solution to (3) is
established we can immediately let ¢ — 0+ to see that

(Froforfo) = (F7 S5\ JIT ) 3 =< st
(f1+,f2+,\/f1+f2+) if z>st as e—0+ .

The limit function is a distributional solution of the limiting fluid
dynamic conservation laws

( | %(fl +f2+4(f1f2)_1/2) + %(fl — f2) =10,
6)
) 5 5

{9'{(161 — f2)+ 55(](1 + f2) = 0.

This is because the limit function is piecewise constant possessing a
jump discontinuity across the shock z = st and across z = st the limit
function satisfies the jump condition (5). In fact the limit function is
a solution to the Riemann problem (6) with piecewise constant initial
data |

fi=fT (:c<0)_,f1+ (z > 0);

(7) |
fo=f7 (2<0), ff (2>0).

It should be noted that the Boltzmann equation also possesses
a travelling wave solution for Maxwellian data which are close (see
Caflisch and Nicolaenko [2]). Of course their data must also be
consistent with relevant fluid dynamic jump condition which is the
Rankine-Hugoniot jump condition for a shock wave in an ideal fluid.

In summary we see for Riemann data satisfying the Rankine-
Hugoniot jump condition associated with the fluid dynamic limit
equations passage to the fluid dynamic limit for the Broadwell model
can be achieved (and with a smallness assumption on the variation
of the data for the Boltzmann equation also).

What can be said regarding the fluid dynamic limit for arbitrary
data or for that manner even the more restricted case of arbitrary
Riemann data?
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For the case of smooth data Inoue and Nishida [9] have shown
that one can pass to the fluid dynamic limit for the Broadwell system
on a sufficiently small time interval to yield a smooth solution of
the fluid dynamic limit equations. Thus they were able to show
compactness of the parametrized sequence {f:, f:, f5} satsfying the
Broadwell system in a space which allowed passage to the fluid
dynamic limit. Of course this result misses the fundamental issue of
recovery of the fluid dynamic limit when the limit equations possess
solutions with shocks.

In a similar spirit to Inoue and Nishida’s result, Caflisch and
Papanicalaou [3] showed that a given smooth solution (shockless)
to the limit equations can be approximated by a solution to the
Broadwell system when ¢ is small. This approximation approach has
been continued by Xin [14] where he showed that if the Broadwell
fluid dynamic limit equation has a piecewise smooth solution with
finitely many noninteracting shocks of suitably small oscillation, then
he can construct solutions to the Broadwell system which converge
asymptotically to the fluid dynamical solution as ¢ — 0+. However
this convergence does not hold in thin shock layers. Of course the
whole notion of the approximation program of Caflisch, Papanicalaou,
and Xin presupposed knowledge of an “admissible” solution to the
underlying limit conservation laws (6) and is intended as a method
to solve the Broadwell system (2) based on solutions to (6). The
compactness method is the reverse, one attempts to solve (6) as a
limit of solutions of (2).

In the research discussed here I continue in the spirit of the
compactness issue. The goal is to extend the success of Broadwell’s
original travelling wave idea to more general Riemann data, i.e.
to data not necessarily consistent with the Rankine-Hugoniot jump
conditions. The idea is based on the following observation: For any
system of conservation laws '

®) T+ B =0,

U :(=00,00) x (0,00) = IRY | F,G: IRY — IR with Riemann data
U(z,0) = Uo(z),

(9)
U(z)=U" <0, U=U" z>0,
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must possess space-time dilation invariance. This means that for
any positive constant o > 0, the change of variable (z,t) — (az,at)
preserves both the equations and the initial data. Hence solutions
of Riemann problems should depend only on the similarity variable
§=%2ie Uz,t)=U(§).

For example if one was attempting to solve the Riemann problem
for a system of conservation laws as a “viscous” limit of the system

OF(U) GG O
(10) ot + bz 022

one might first consider substitution of the ansatz U(z,t) = U(£) into
(10). But unfortunately (10) does not possess space-time dilational
invariance. It was for this reason that Dafermos [5] suggested a new
type of “viscous” limit problem

' OF(U) o0GWU) _ o0%U
(11) ot + Oz _d@xz

t > 0, which does possess space-time dilation invariance. Substitution
of U(z,t) = U(¢) into (11) yields the system of ordinary differential
equations

(12) —EF(U(€)) +GU(E)) =eU"
and (9) implies boundary conditions
(13) U(—oo)_:U_,U(+oo)_:U+.

In papers [5], [6] Dafermos and DiPerna showed that for N = 2 a large
class of Riemann problems for hyperbolic conservation laws may be
- solved as limits of solutions of (12), (13) as ¢ — 0+. The program has
been continued in the work of Slemrod [12], Fan [7], and Slemrod
and Tzavaras [13].

In the same spirit we easily recognize that the Broadwell system
does not possess space-time dilational invariance. Hence we are
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motivated to consider an artificial Broadwell system

0 0 1

Tgt‘l‘ + gfj = gz(fs?' — fif2),
0 0 1

(14) '.éff‘*—a%: Ez(faz—flfz)_,
0 1

O o = 1),

which does possess space-time dilational invariance. (Of course the
same observation is true for the Boltzmann equation and any of the
standard discrete velocity models in the kinetic theory of gases.)

We now make the ansatz fi(z,t) = f1(€), f2(z,t) = f2(£), fa(z,t) =
f3(€), and substitute into (14) to obtain the system of non-autonomous
ordinary differential equations

—(€ = V)fi(€) = (f3 = fLf2) /e,
(15) —(E+ 1)f58) = (f3 = f1f2)/e,
—Efs = (f1fo = f2)/2¢.

Since we wish f;(z,{) — fji for z50 as ¢t — 0+ for 7 = 1,2,3 we
impose boundary data

where [ f; = f5%, [ f =137

System (15), (16) is considerably harder to analyze than system
(4) obtained from the travelling wave ansatz. The reasons are obvious:
(i) (15) is non-autonomous in the similarity variable ¢ and (ii) (15)
does not possess any first integrals that will allow us to reduce the
number of dependent variables.

System (15), (16) does possess one small simplification. Since
(f1, fa, f3) = (fE, fE, fE) are equilibria on —co < ¢ < =1 and 1 < € < o0
we must have (f1, f2, f3)(€) = (f1, fo, f3) and (f1, f2, £3)(€) = (ft, £, )
respectively. Hence the boundary conditions at ¢ = 400 are replaced
by

(17) (=1 =f7, () =1 5=1,2,3
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and (15) need only be considered on —1 < ¢ < 1.

The goal now is twofold. First we must solve the boundary
value problem (15), (17) for ¢ > 0 fixed. Second we must show that
as ¢ — 0+ solutions (ff, f5, f5) of (15), (17) possess a limit which is
weak solution to the Riemann problem (6), (7) for the fluid limit
system. Remarkably the second part of this program is easier than
the first. At the moment (in joint work with A. Tzavaras) only a
class of Maxwellian data fi fjJr j=1,2,3 has been found for which
solutions exist to (15), (17) for all ¢ > 0. However for any data for
which solutions (ff, f£, f5§) of (15), (17) are known to exist for all € > 0
we are guaranteed that we can extract a convergence subsequence so
that (ff, 5, f5)(€) — (f1, f2, f3) boundedly a.e. in —c0 < ¢ < 0o where
fs =Jif: ae. and fi, fs, fs is a weak solution of the Riemann
problem (6), (7). The proof is based on obtaining estimates on the
total variation of solution of (16), (17) and applying Helly’s theorem.

Finally it is interesting to compare the approach given here to a
recent paper of F. Golse [8]. In his paper Golse makes the self-similar
ansatz for the Broadwell system

(18) fite,) = F5(&)/t , =123

where again ¢ = %

Substitution of (18) into (2) yields the system of ordinary
differential equations

=€ - D)F(&)) = (F5 — P\ Fy)/e
(19) =€+ D)) = (F5 — I Fy)/e
“[§F3(f)_]l = (Fle - F32)_/25 )

which differs from (15) in the fact that the left hand side of (15) has
differentiation followed by multiplication while (19) has the reverse.
System (19) then has the same properties as (4) of possessing two first
integrals and hence the ability to sufficiently simplify the analysis.
Golse exploits this property to show the existence of an analytic on
—1 < ¢ <1 solutions Fy, Fy, F5 of (19). The importance of the result is

that it displays explicitly the large time O(—tl—) behavior of a class of
solutions to the Broadwell system (2). The solutions fi, f2, f5 of course
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do not possess space-time dilational invariance and will not be useful
in resolution of the Riemann problem for the limit fluid dynamic
system (6), (7).
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