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ON AN EVOLUTION PROBLEM
OF THERMOCAPILLARY CONVECTION

V.A. SOLONNIKOYV (Leningrad)

We consider a free boundary problem of incompressible viscous
flow governing the motion of an isolated liquid mass. The liquid is
subjected to capillary forces at the boundary, and the coefficient of
the surface tension depends on the temperature satisfying the heat
equation with convection and dissipation terms.

It is shown that this problem is solvable in a certain finite time
interval, however, if the data are close to the rest state, the solution
can be extended to the interval ¢ > 0. In the case when the temperature
satisfies the heat equation without dissipation term a local existence
theorem was proved by M.V. Lagunova and V.A. Solonnikov [2], and
global result was obtained by V.A. Solonnikov [7].

1. Introduction.

Consider the following free boundary problem: find a bounded
domain Q; c IR, ¢+ > 0, velocity vector filed @(z,t) = (vi,v2,v3) and
scalar pressure p(z,t) and temperature 0(z,t) satisfying in Q; the
following equations, initial and boundary conditions:
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p(B: 4+ (#- V)3 = VT = pf, V-5 =0,
pep(0y + (5 - V)0) — V - k70 = -‘zi|3(a)|2 (z € Qi,t > 0),

(11) 1~)It=0 = 170(w),0|t=o = 60(23) (33 € QO):

a6
75‘7;-4-/89—0,

T — 6(6)Hn = Vo0(0) (z € Ty = 0,1 > 0).

Here p,x,p,c,,8 are positive constants, o¢(f) (the coefficient
of the surface tension) is a smooth strictly positive function of

9, 0 0
the temperature: o(0) > 0q > 0, V = <8m1 ' Dz’ Doa >, Vp = gradp,
° 0 oo
V5 =dive, VT = [ > Ty , V,0 = Vo—fi— is the gradient
i=1 Oz k=1,2,3 on

of o at the surface I';, # is a unit exterior normal to Ty, H(z,t) is the
twice mean curvature of T; at the point z which is negative if Q; is

convex in the neighbourhood of z, T = —pI+ p §(?) is the stress tensor,
Ov; 0v;
Oz;  Oxy
The domain Q; is given at the initial moment ¢t = 0; for ¢ > 0 €, is
the set of points z = z(¢,t) such that the corresponding radii-vectors

z(¢,t) are solutions to the Cauchy problem

and $(7) is the strain tensor with the elements S;; =

9 et ), 0SS,

(1.2) T
53(6’0):&:) V’EEQO

If Q, is defined by the equation

(1.3) 2| = R(I%I‘,t)

the kinematic boundary condition (1.2) can be written in an equivalent
form

(1.4) RR; = Rv, — VR -,
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where V,R(w,t), is the gradient of R on the unit sphere S, : lw| =1,
v, and ¥, = ¥ — —:Iz—vr are radial and angular components of #,

||

respectively.

Condition (1.2) makes it possible to rewrite our free-boundary
problem as a nonlinear initial-boundary value problem in a given
domain g, using the Lagrangean coordinates ¢ € Q.

Let (¢, 1) = 9(2(£,1),1), 4(&, 1) = p(2(€, 1), 1), ¥(&,¢) = 6(2(¢,t),1). The
Cauchy problem (1.2) is easily integrated:

t
5:£+/ A, T)dr = X (€,t)

Q-

and (1.1) take the form

= pVii+ Vg = f(Xu,t), Vy i =0,

Ye — xVay = A Bu(@)* = 0 (£ € Q,t > 0),
(1.5) Uli=0 = 90(€), Yle=o = 0a(€) (£ € Qo),

Tufi — o(Y)A) Xy = (Vu = (7 - Vy))o(y),

- Vyp+ Byp =0 (€ € Ty)

where V, = 4V, 4 is a matrix with the elements Ay = %@—
t Ti
. 0z; Ouy;
which can be computed as cofactors of Gj = 5 = by + | ——==dr,
0¢; o 9§
3 dw; Ow; \
= — U uw(W))s; = A —=— T —— .
T = —p T 8@, (Su(@ = 3 (Aa G+ 52
We have put p =1, y = —f—, A= -*_ and used the formula
pCp 2pc

Hn = A(t)X, where A(t) is the Laplace¥Bpeltrami operator on the

surface I'y = X, (Tg). The exterior normals to T'; and to T, at the points

Anq

| Afg]
Problem (1.5) is considered in anisotropic Holder spaces C2+a1+%

(Qr), Qr = Q4 % (0,7) whose definition can be found in particular in

Lagunova and Solonnikov [2]. The initial data %, and 6, are taken

Xu(€,t) and ¢ are related to each other by the foi‘mula n=
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from the isotropic Holder spaces 2+ (). Norms in C»7(Qr) and in
, 1,
C'(Q) are denoted by |- ]g;z) and |-|$}.

THEOREM 1. Let Qq be a bounded domain with the boundary
Ty € C3t%, « € (0,1), and let f, fs, € okl (IR? x (0,T)) where
e € (0,1 — ). For arbitrary 6y € C**(Qq), 9q € C*t*(Qq) satisfying the
compatibility conditions

o e - . e .0
V-5 =0, u(8()ig — fig(Ra - B(F0)M0))|re = (V - n%) a(00)|re»

,—g—@— + Bbalr, =0

g :

problem (1.5) has a unique solution in the interval (0,7"), T < T,
with the following differentiability properties: § € C*** % (Qr:), & €
Cz+a’1+%—(QT/), Vg € Ca’%(QT/'), q € CH'O(.I—%i (STI) (STI =T % (O,T,)).
The magnitude of T' depends on the norms of the data ©,, 6q and on
Cy.

THEOREM 2. Let the hypotheses of theorem 1 hold and let Qq be

defined by the equation (1.3) |z|= R (TZT,O), R e C3te(S,).

If
50l + 1605 + |R - Rol$T™ < ey

where Ry = (3[&“

then the solution exists for all t > 0, and ; is defined by (1.3)
with R(-,t) € C3t%(S)) satisfying (1.4). As t — oo, it tends to a
quasistationary solution of problem (1.1)-(1.2), which corresponds to
a uniform motion of a liquid mass rotating as a rigid body about a
certain axis, and having the temperature 6, = 0.

and €; is a sufficiently small number,

In the case ) = 0 these theorems are proved by M.V. Lagunova
and V.A. Solonnikov [2] and by V.A. Solonnikov [7]. We refer the
reader to the review paper of V.A. Pukhnachov [6] for many other
results conserning problems of thermocapillary convection.

The proof of theorems 1 and 2 is based on estimates of solutions
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of the linear initial-boundary value problems
¢t"‘XVZ¢=f(€,t) (SEQOatE(O;T)))
(16) Qplt:(} = %(5),

AV + By =g (€ € To)

Wy — pV2H+ Vs = f, Vo -0 = p,

(1.7) Wlt=q = W,

T (, s — o (£)A(7 - A(t) f ddr) =} (£ €Ty)
0

with a given vector field @ € C***!+% (Qr) satisfying the condition

(1.8) (T +THES ) <,

§ < 1. Problem (1.7) is treated in the papers by I. Sh. Mogilevskii
and V.A. Solonnikov [4, 5]. It is proved that this problem is uniquely
solvable in Hélder spaces of functions, and in the case p = 0 the
solution satisfies the estimate

< (2te i+ 5 (o, 2 1+a, 1t = (o, 2L
1) vl (=) 4+ 51 < oyl 4

~ ~‘1+Q,L,‘&"
) 1l & + 5T
Co(T)(T*5 |V vl )y (|
+ Co(THT 7 |Vilgr + [Vilgy, * ) (|@ala+

+ [V, + [B(+, 0) - fig|ry)

where ¢ € (0,1 — @), Vi = { Ou; } , |wla = sup |w(&)].
0 Jij=1,23 £eQ

The case p # 0 is also considered. Problem (1.6) is a usual
parabolic problem and the estimate for the Holder norm of its solution
follows from results of the book O.A. Ladyzhenskaya, V.A. Solonnikov,
N.M. Uraltzeva [1] (see also M.V. Lagunova, V.A. Solonnikov [2]).



454 V.A. SOLONNIKOV

This estimate has a form

24,14 & o, & a 14, Lo
IS ) < g1 F) 1ol @ 4 g (e E )4

(1.10)
+ CoT 75 |Vitlgp | Vibola,

2. Proof of theorem 1,

Let us present main ideas of the proof of theorem 1. Following
the arguments of M.V. Lagunova and V.A. Solonnikov [2], we construct
the solution of (1.5) by the method of successive approximations. We
put @Y =0, ¢ = 0 and we define first M+ then (G(m+1), ¢(m+1)),
m > 1 as solutions of linear problems

D — X VR = 3§ (@M
$MTV 0 = 64(6),
(2.1)
fim + Vi gD 4 gyt o = 0,

At w2 G0 L v, = (X, 0,

Vi - @™+ = 0,
@™ D}mg = 6(¢),
22 w][,IL, $n@™ D = [T, [, Vmo (),
fig - W (@™ HD) gOn+Dyg ()G - 0 (1) X1 [eers =
=fig [ [ Vo (p(m+D)

t
where V., = Vi), Xm = Xym(£,1) = € + / @m(¢, 7Ydr, 8 (W) =
Q

Bumy (@), T = Tyemy, [Ioh = h — fim(fim - 1),
the exterior normal to the surface T,, =
Laplace-Beltrami operator on T,,.

fim = Amfig|Aniia|~! is
Xm(Ta), Am(t) is the
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In particular, the function (! is defined for all ¢ > 0; the estimate
(1.10) implies

2+4a,1+ % P
O[S E) < 0o,

The initial-boundary value problem for (%1, ¢(*)) can be written
in the form

i) — pv? a4+ Vg = J&,), V-0 = 0, @M]izo = F0(8),

i
(@M, (D)iig — o(p)iig (ﬁo -AO/ ﬁde) leere =
Q
= (v _ ﬁo—;»> a(¢M)) + o (M) Ho(€)

g

where [y = #iq - A¢ is the mean curvature of Ty. This problem is
solvable in the interval (0,7) and in virtue of (1.9)

oy, (2t V5 1+a, 15
EOIGTE) 4 g §rE) 4 g <
s ’3%1. a~ a4 1+a)"1‘j§-9"'
< AT 415l EH + (Voo () 54
. 14a, e
+ lnod(w(l))HOIg: ))-

Suppose that @), ¢0), 90 j=1,..., m+1, are defined on the
interval (0,7},) and that @) satisfy (1.8) for T < T,,,. Then for T < T,

(2 2t TN
l"ﬁ(]ﬂ)lgr ) < C'3(|90-|§1: "4 A(Isj(um)lgh ))2+
4 T—‘—%ilva(j)mT [Vbala, < C’4(|00|§120+a) + (|50l§zlja))2+

+ 62 4+ T2 |Vigla, | Voala,) = ©1(T),
since
]Sj(ﬁ(j))lg’;T) < ISJ-(’T)Q)‘(O"T) + | 8; (a9 — 60)|g);'§') <

T

- ~ 1o 1 (Yl 24a, 14+ F . o _
< Gy(linlf ™ + THIDG ) < Co(lml )+ 5),

Vi g, < |VIEY) — Gio)lor + [Viala, < |Violn, + 6



456 V.A. SOLONNIKOV

The differences wU+1) = U+ _ () ;> 1, are solutions to the
problems

Wt AV2wUHD = (O () — 1G-D (g4
+ (1 8; (@) ~ | ;-1 (@I,
w(j+1)|t£0 =0,
fi .vjw(j+1) +ﬁw(j+1)l£er‘o = A (W) — )\(.7'—1)(1)&(.7'))
where 10)() = x(V2 = V2), \)(9) = (fig - 7 = 7 - V; ).
These problems differ from problems (8.7) in [2] by the term

M| 8;(@9)|? = | 8;-1(@9~D|?2) in the heat equation for w(@*1), hence
wU+1) satisfis the estimate analogous to (3.10) from [2], namely.

WG E) < Coou (M) (Mrla®) + T2 (VDo +

+ CrA|[ 85 (@) - | 8-, (a0 -2 F)

t
with Mp[d / |G|(2+)dt +  sup h” / (|Vd|qa, + |Diid|a,)dr,
0<h<t<T t—h

DU+ = g+ — 30), As
|8;(@9)]7 = | 8;1 (@92 =[8; (@) — §;_1(8D)) + 8;_1(3D)] :
(85 (@) + §;_1 (59

and
N T
18,69) - 85 < on(| [waIG e
Q

4
+  sup h‘%/ |vw<f>1nodr)|va<f>|g°;j‘f) < 095|Vg,(j)|g??),
<h<t<T ik

VaDI5eF) < 6| V50[§) + CroTHaD|ZH ),
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we have in virtue of (1.8)
183 @) =185 @058 < Cua(19aD(§e®) 10 vaol)
x (Va5 ) 1 19a6=01§ ) < 0y, (5100 G 1)

851 V30l 1V 5 %)
and consequently

: o, 142 (1) l—a (s
(2.3) lw°+”l§f ") < Cia@1(TH{ Mr [0 + T75% [va) |, +
2.3
~(1) 2+ (o 1+ 5 ~ o - a, <
+ 8D E) 15 175, 7w (9

The differences @) = gl+h) — 4@, §(UH+D= ¢G+D _ 4() satisfy
the same equations and boundary conditions as in M.V, Lagunova
and V.A. Solonnikov [2] (see problem (3.8)), hence the inequality
(3.16) holds, i.e. :

Np[@U+D) sG+D] = ]@(Hl)l(Qz:a’H%) + lvg(j+1)|g:% +
(2:4) Gy Cra{é6Np[wD, SO + Mp[a@)]+

Va5 45, (5l (1 + 0, (1))

(T < Tpn), provided that (T—J} T+)04(T) < 6.
Norms in the right-hand side of (2.4) satisfy the estimates

~ () o5 ~(i} (24, 1+ & s
VD5 E) < g G E) | o)), <

*

T
~ (2o 1+ ~ ~ () 2ta 1+ 5
S Elw(J)IQT(a ) + 01563'1"00'00 + 015/ Iw(])l(QT o4 2 )d—t,
Q

t
sup h~% / (VD g, +[DF0D|q,)dr < ela®[GF = F)y
0<ht<T e

T
+ 016(6)[I13(j)qu~ +/ Itf)(")lng"’l*?)dt] <
Q

T
~ (i) 240,14 & (il 240,14 2 -
ge|w0>|gT 2)+2016 / |wm|gt Q)dt+0166jllvo|no,
¢
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hence, (2.4) implies

Np[@U+D, SGHD] < Cry(1 + ©,(T))*+*{(6 + 26) Np[@), SO+
T
(2.5)  +(Cis+2Ci6 + 1)/ N [@@), SOt + 6;1[([T0|5 )2+
Q

+ (C1s + C16)|valn, ] }-

After the summation with respect to j = 1,...,m we obtain the
m+1
following estimate for 3° . (T) = Z Np[wW), SU):
j=1 ‘

S mr1(T) < Np[d®, SO] 4 Cra(1 + ©4(T))H{(5 + 26)x

T
x Np[w), S0)] 4 (C1is + 2C16 + 1)/ Zm+1(t)dt+
0

+ ([Bale ) + (Cis + Cie)lFalaa

Suppose that § is so small and ¢ is chosen so small that

1

(2.6) Cra(1+O1(T))* (6 + 2¢) < 2

Then
T
> ma1(T) < 2Np [, 5D+ Cyq { / S a1 (dt + (J5l G )2 + lﬁolno}
: Q

and the Gronwall’s lemma yields ‘

@27) D e (T) < ST NT[ED, O] + Cral(fiol,*)? + [Folan]}
The conditions (1.8) for @™+ will be fulfilled, if

(28) (T +TH)e (2N (@D, ¢ + Cyaliiola, + Crr(lvalGr ¥)?} < 6

The left-hand sides of (2.6), (2.8) do not depend on m, hence
there exists 7' > 0 such that (1.8), (2.7) hold for T < 7". From (2.3),
(2.7) it follows that the sequence {(™),#(™) ¢(™)} is convergent to the
solution of (1.5).
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To prove the uniqueness, we repeat the above calculations and
show that the difference w = o — 4/, & — @ = W, ¢ — ¢ = s of two
solutions satisfies the inequalities analogous to (2.3),(2.5), namely

Nr[, 5] < Cra(1+ 901 (T)*+*{(6 + 2) Np [, s]+

T
+ (Ci5 + 2C16 + 1)/ N:[w, s]dt}
Q

lwng:w,H%) < G304 (TY{ M (] + T5* |Vulo, + 5lwlg2:a’l+%)

If (2.6), (2.8) hold, it follows that & = 0, s = 0 and as a consequence
w=0, ¥ -9 =0. Theorem 1 is proved.

The proof of theorem 2 is close to the proof of theorem 1.2 in
V.A. Solonnikov [7].

We observe at the conclusion that theorems 1 and 2 hold also in
the case when the visconsity 4 and heat conductivity x are positive
functions of the temperature 0. Necessary estimates for the solution
of a linearized problem of the type (1.5) with a variable viscosity are
obtained by I. Sh. Mogilevskii [3].
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