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INSTABILITY PROBLEMS IN EHD, FHD AND MHD
BRIAN STRAUGHAN (Glasgow)

Classes of linear instability and nonlinear stability problems are
discussed in the fields of electrohydrodynamics, ferrohydrodynamics
and magnetohydrodynamics.

1. Introduction.

The letters EHD, FHD and MHD stand for, respectively, elec-
trohydrodynamics, ferrohydrodynamics and magnetohydrodynamics.
Basically, these subjects are concerned with the interaction of electric,
magnetic and temperature fields in a fluid. Due to the many practical
applications these topics have been attracting much recent attention.
More precisely, electrohydrodynamics is the branch of fluid mechanics
which is concerned with electric force effects, ferrohydrodynamics
deals with the mechanics of fluid motion induced by strong forces
of magnetic polarization and magnetohydrodynamics studies the
interaction between magnetic fields and fluid conductors of electricity.

In this paper we review some findings concerning problems of
hydrodynamic instability in these areas. We pay particular attention
to topics within the scope of the conference, namely waves and
stability. Uses of an integral relation technique nowadays referred
to as the energy method for establishing criteria for nonlinear



462 BRIAN STRAUGHAN

stability are outlined as are applications of nonlinear acceleration
wave methods. Detailed discussions of energy theory in these and
related fields may be found in the book by Straughan [42].

2. Electrohydrodynamic instability problems

Early theoretical studies of convection-like instabilities in insu-
lating fluid layers subject to temperature gradients and electrical
potential differences across the layer are those of Roberts [31] and
Turnbull [43].

Roberts [31] studies two models, one which allows the dielectric
constant of the fluid to vary with temperature, and a second which
is effectively also investigated independently by Turnbull [43] and
which has the electrical conductivity temperature dependent. The
temperature dependent conductivity model is studied further by
Martin & Richardson [19].

These papers had some success in agreeing with experimental
work, but were not totally successful. This work is reviewed at length
in [42].

Concurrently another approach hed been followed by P.Atten
and his co-workers, cf. Lacroix et al. [15]. These writers concentrated
on mobility models of charge transport. Indeed, current thinking
-would appear to follow a mixture of the ideas of Atten, Roberts and
Turnbull, see e.g. Castellanos et al. [5,6], Gonzalez & Castellanos [12],
Gonzidles et al. [13], Hoburg [14], McCluskey & Atten [18], Mohamed
& El Shehawey [20], Sneyd [39], Worraker & Richardson [45]. For
an account of the application of energy methods to study nonlinear
stability in these areas see e.g. [42].

Particularly interesting articles in EHD are those of Gonzilez
et al. [13], and Rosensweig et al. [35]. The work of [13] is concerned
with the problem of confinement of a liquid and may have application
to the floating zone technique for growing high quality crystals of
electronic materials such as Silicon, Gallium Arsenide and Indium
Phosphide. This paper studies the shape bifurcation and stability of
a liquid bridge of dielectric fluid under the influence of an applied
electric field. The labyrinthine instability observed by Rosensweig et
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al. [35] is a fascinating one and occurs also in magnetic fluids (FHD).

3. Ferrohydrodynamic instability problems

Ferrohydrodynamics (FHD) may be looked at from two points
of view. In the first the fluids of concern possess a giant magnetic
response and this gives rise to several striking phenomena with
important applications, see e.g. [33-35]. The first approach treats
the magnetic field as quasi-static whereas the second deals with the
movement of magnetic field lines although both employ a nonlinear
constitutive law linking the magnetic field to the magnetic induction,
see e.g. [21,32,33].

The relevant equations of FHD according to Rosensweig [33], for
the thermo-ferro convection problem are now discussed. ‘

In the first approach to the thermo-ferro convection problem the
free charge and electric displacement are neglected and the field
equations are employed in a quasi-static limit in that Maxwell’s
equations are taken as

(3.1) ' VxH=0, V.B=0,

where H,B denote magnetic field and magnetic induction. The fields
B and H are, in general, related by a constitutive equation of form

(3.2) B = u(H;T, p)H,

where T and p are temperature and density.
The magnetization M is defined by the relation

(3.3) - B=p(H+ M),V

where po(= 47 x 10~7 Henry m~!) is the permeability of free space.
The fluid is taken to be an incompressible Newtonian one and
then with v; denoting the velocity field, the momentum and continuity
equations are:
0v;

; 1
(3.4) 4 57 T omvim = —opit vAv; + fi,
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(3.5) vi; =0,

where p is the pressure, p is the (constant) density, and f is the
total force: (in this case the p dependence in (3.2) may be supressed).
The magnetic field effect is incorporated through the force which is
comprised of a buoyancy force and a contribution from the magnetic
field. The magnetic body force f,, may have several forms and these
are described in Rosensweig [33], pp. 110-119, Landau et al. [17], p.
127. '
For the thermal convection problem, the body force may be
chosen so that the momentum equation may be written
dv 1

(3.6) - = —-;Vﬁ—}—uAv—-g(l — ofT — Tr))k + oMV H,
where the magnetic body force has been included and where the

modified pressure p has form:

" oM
3.7 f):p—p-/ ( ) dH.
( ) 0 0 v o

A further equation is needed for the temperature and this is
provided by the energy balance law which is taken by Finlayson [10],
see also Curtis [8] and Shliomis [38], as:

_ (OM dT
[pCVH o H ( oT ) V,H] dt
oM dH
rr ()

where Cyy and k are heat capacity at constant volume and magnetic
field, and (constant) thermal conductivity. Thus, the complete system
of equations is (3.1)-(3.3) and (3.6)-(3.8). The terms involving the
derivatives of M and H in (3.8) have a pronounced effect on the
convection process and are departures from the classical theory of
heat conduction due to the magnetic field effects: certainly they would
considerably complicate any attempt to procure a nonlinear energy
stability analysis of the above system.

Finlayson [10], Curtis [8] and Shliomis [38] concentrate on linear
instability although Lalas & Carmi [16] do speak of nonlinear energy

(3.8)
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stability. They take the magnetization to have form
(3.9) M = My[1 - 4(T - Tgr)],

and argue that the magnetic terms may be discarded in the energy
balance equation and so this may be reduced to

d
(3.10) pCVH—Eg- = kAT,

a form which is certainly much more tractable from an energy
stability analysis point of view.

Another approach is adopted in Straughan [42], chapter 12,
where a rigorous energy analysis is developed for a material in which
the permeability ;1 depends only on 7. For this case the magnetic
force assumes a form due to Korteweg and Helmholtz, namely

H? (Ou H?

It is worth pointing out that Rosensweig [33] remarks that there has
been some concern in the literature over this representation, but he
pointedly writes, ... the Korteweg-Helmholiz expression stands out for
its ability to explain experimental results in a straightforward way.

Thus, the model studied in Straughan [42] is based on the
equations,

(3.12) VxH=0, V.B =0,

(3.13) B = u(T)H,
the equation for the temperature field being the usual one, namely,

oT

(3.14) Fr v;T; = kAT.
The momentum equation is

| Ov; 1o
(315) v = —wi +vAv —g[L - o(T = Ta) ki = S H?u,
where now

B 1 o (Op
(3.16) | w_p—QH p(ap>T,



466 BRIAN STRAUGHAN
and the continuity equation is
(3.17) vi; = 0.

By introducing a magnetic potential (with perturbation ¢) and
using a Boussinesq approximation, the nonlinear perturbation
equations to the steady conduction solution are reduced in [42] to:

u; ¢ + Ujls,j = —Wyq + Au; + ROk;

' Pr 1 9
(3.18) +6Lk(¢z~ 75) SOLk[ V9]
1 Pr 9
T 05— L8,V
(3.19)  Pr(04 + w0 ;) = —Rw + A,
Pr
3.2 =T
(3.20) | Ap=670,,
(3.21) _ Cuis =0,

where 6,L,R? are a depth parameter, a parameter measuring the
strength of the magnetic field, and the Rayleigh number.

We do not include details of the arguments necessary to produce a
nonlinear energy analysis since these are contained in [42]. However,
we observe that it is necessary to employ elliptic estimates to control
the nonlinearities and the energy functional required has form

(322) &= Il + 5 Priol + 3 Prilo®|,

where ||.||,< . >, denote the L?(V) norm and ih-teg"ral over V, V being
a period-cell of the perturbation.

We might point out that an analysis of thermo- ferro- hydrody-
namic instability in a porous medium is given in the recent paper
of Vaidyanathan et al. [44]. Unfortunately, no practical apphcatlon of
their work is discussed there.

The second model which may be thought of as dealing with
a ferrohydrodynamic material is discussed in Roberts [32] and
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Muzikar & Pethick [21] in connection with the stability of an
equilibrium configuration in a complex magnetic material, such as a
superconductor, and, in particular, to configurations of a neutron star.
The deductions of these papers are based on linear analyses. The
writer in [41] used a fully nonlinear approach to rederive Roberts’
criterion, by using the theory of nonlinear acceleration waves.

~ In this model the material is compressible and so the continuity
equation is

(3.23) _ P+ (pvi)i = 0.

The magnetic induction satisfies the equations

(3.24) Bit +vaBia = iy By — vy m Bi, B;; =0,
and the momentum équation is

(3.25) - P(it + vivi 5) = opik,

where we have absorbed the body force in the pressure and the stress
tensor is

(3.26) oix = —(p+ H, B, )b, + H; By,.

The pressure has form

— A2
- (3.27) p=pgs

¥ being the free energy, and the relation B; = pH; of freespace is
replaced by

¢
8B;’

(3.28) Hi=p

In [41] it is shown that wavespeeds of a nonlinear acceleration
wave satisfy a sixth order equation which may be factorized to yield
Alfven waves with speeds given by

1 9y
2 _ p2
(3.29) U* = B”B@B’
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where B = |B| and B, is the normal component of B to the wave
surface, and fast and slow waves whose wavespeeds satisfy the
equation

0 8%y | 10¢
— 2 ———— —— QENGEUERIREE Y
U U(p"+B(9B+BT{2B88B+B(9B+8BQ}
10y ¢ 2p2 R _
+p, B2 (BaBJr BT>—anBT_o, C(3.30)

where Br is the tangential component of B to the wave surface and
¢,€ are functions of B, p.

By requiring that the wavespeeds be real and positive it is then
shown in [41] that a necessary condition for stability is

9% 0 [ ,0¢ o, 0p\1”
2 e p—tm
(3.31) gl 6/)( 8p) > [Bap(paB)] .
The above analysis is extended by Abdullah & Lindsay [1] who
calculate the evolutionary behaviour of the wave amplitudes. The

Bénard problem according to a viscous analogue of Roberts’ [32]
theory is studied by Abdullah & Lindsay [2,3].

4. Magnetohydrodynamic instability problems

' The magnetohydrodynamic convection problem is very important
due to its connection with the behaviour of planetary and stellar
interiors. This is critically reviewed by Fearn et al. [9]. Chronologically
this topic was developed before those of sections 2 and 3 and should,
in some sense, appear first. However, we here deal with them
alphabetically.

In fact, the dynamo problem has a long history and the use
of integral relations in this field goes back at least as far as
Chandrasekhar [7]. Backus [4] includes a survey of previous work
on this subject, but his paper is very important in that he uses a
variety of “energies” (cf. [42]) to establish exponential decay of various
magnetic quantities. His paper is one of the first which develops
a variational energy stability theory in the context of the dynamo
problem.



INSTABILITY PROBLEMS IN EHD, FHD AND MHD 469

Proctor [22] gives bounds on the temperature difference across a
spherical layer and on the heat supply for a convecting sphere which
he interprets as necessary conditions for dynamo action, [22] p. 139.
Straughan [40] derives a lower bound for T'; defined by

[|curl BJ|?

Fl = inf W,

for V a bounded domain in R3, and applies this bound to the theory
of Proctor [22]. Again, the basic tools are those of integral relations.

In fundamental work, Rionero [23-29] systematically developed
the energy method in magnetohydrodynamics. A very important
contribution of his is the fact that he was the first to establish
the existence of a maximising solution in the energy variational
problem. Rionero [24] shows how a thermal field may be incorporated
into a study of nonlinear energy stability in magnetohydrodynamics,
in [26] he shows how a variety of boundary conditions may be
handled in the thermo-magnetohydrodynamic nonlinear stability
problem, and in [28] he even shows how the Hall effect may be
dealt with in the magnetohydrodynamic Bénard problem for a heat
conducting viscous fluid; the last topic is highly non trivial from a
nonlinear energy stability point of view. Further nonlinear analyses
in magnetohydrodynamics along the lines laid out by Rionero are
those of Galdi [11] and Rionero & Mulone [30]. _ :

The energy balance law in MHD is usually taken to be the
convective heat equation, but there are instances in which other effects
from the energy balance are important. One of these is the Thomson
effect which is discussed at length by Shercliff [37]. Shercliff [37] is
concerned with liquid metal coolants in nuclear reactors or molten
metals in industrial metallurgy and also considers a generalization of
Ohm’s law to include current generation by a temperature gradient.
I am unaware of nonlinear analyses emphasizing the instability
properties of the Shercliff model.

As a final remark we draw attention to the interesting work of
Salan & Guyon [36] on instabilities in nematic liquid crystals under
the influence of magnetic fields even while heated from above.
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