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GROWTH AND DECAY OF SHOCK WAVES
IN TRANSVERSELY ISOTROPIC RODS

MARIA LUISA TONON (Torino)

In this paper we study the propagation of shock waves in linear
hyperelastic rods, transversely isotropic in the reference configuration.

1. Introduction.

In section 2 we briefly recall the basic equations governing the
propagation of weak shock waves in hyperelastic rods and the method
exposed in [1] for the integration of the vector decay equation for
elastic rods with multiple wave speeds.

In section 3 we apply this method to the study of shock waves
in hyperelastic transversely isotropic rods. For untwisted straight
rods, twisted straight rods and untwisted planar-curved rods we -
obtain explicit expressions for wave speeds and wave mode vectors.
In particular we emphasize their dependence on the geometrical
properties of the rod.

An exhaustive treatment of the results exposed in this paper
and further results for twisted spatial rods can be found in [4].
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2. Formulation of the basic equations.

We briefly recall the equations governing the propagation of
shock waves, within the framework of the isothermal linear theory
of hyperelastic rods, according to the notion of a rod as a Cosserat
continuum.

We denote by £ and V the three - dimensional Euclidean
point space and its associated translation space of vectors. We set:
U=VDOVDV.

The Euclidean inner product <, > on V induces a Euclidean

3
inner product {, } on %, defined by {u,v} = Z <w,v; >, Yu,vel,

=1
u= (U.1,112,113'), v = (vli'VZ;VB)o

We denote by r=r(s,t) and d; =d;(s,t),ds =ds(s,t) the position
vector of a curve representing the rod axis and a pair of directors,
respectively; s is a material coordinate and ¢ is time.

If we set p = (r,d;, ds), the generalized position vector p = p(s,t) e U
describes the state of the rod. | ,

We introduce the decomposition p = p-+u, where p is an arbitrary
equilibrium state and « a small deformation superimposed upon it.

The propagation condition and decay-induction equation for
linear shock waves are, respectively

(2.1)  KA-VAD)W] =0

(2.2) (KT A= VD)) + (KA = K7 B + VI)[w'] + 2V [w/] = 0.

~ . In the above formulas V is the wave speed, [ ] the jump of -
a quantity across the point of discontinuity, £ the inertia tensor,
T the unit tensor; moreover we have set: / = —;,7 =V'/. A and B
are defined in terms of the strain energy density W = W(p,p';s) as
follows: A = Wiyt [p=p+ B =W ppt |p=p “(W,pp’)T lp=p -

The squares of the wave speeds are solutions of the characteristic
equation

(2.3) det (K™*A - V?I) =0.
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We introduce a second inner product {, }¢ in U: Yu, v e U,
{u,v}x = {u,Kv}; for each root V2 of (2.3) we denote by U, cu
the eigenspace associate to V2 and by “P, : U —°U, the orthogonal
projection with respect to {, }x. By projecting equation (2.2) on i,
for each V? and setting [u/] = a, we obtain

(2.4) 2VZPs ao’ +5Py(K™1 A = K™ B+ Vo Vo'T)ag = 0

(¢ non summed).

In the case of multiple eigenvalues of (2.3), the decay equation
(2.4) determines both the direction (indetermined by the propagation
condition) and the amplitude of the wave mode vector aqo € “Uy, when
we assigne a,, at s = 0.

In [1] the solution of (2.4) is written in the form

Voo 2 ga
(25) a4 = Da, = a®a£aa0 - cv@ag(—vv_')zazaao;
B . . & VQO % o . . . . B .
«Z is the identity on *U,, A 7 is a dilatation on *U,, *G is an

orthonormal transformation with respect to {, }x. The steps which
lead to the construction of *G are the following:

(i) we denote by wy (I =1,2,... ,9) an orthonormal basis of wave mode
vectors with respect to {, }x. We set

(2.6) wr = F'IJwJ , Wi = Q_JIOwJO;

the coefficients T';Y describe the rod geometry; @’ is an orthonormal
transformation with respect to {, }x. From (2.6); 2, we obtain a
matrix differential equation for Q

(2.7) (@) = QRT/ (initial conditions QI° = §1 at s = 0).

(ii) If we set °G =Clw;®@w! (i,j=1,2 ..., dim (“U)), equation (2.4),
with the use of (2.5), gives the following matrix differential equation
for the components *G’, ‘

o i 1 4 i 1 —1yi
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with initial conditions *G!; = 6, at s = 0.

We set ¢ = ,®°C; for distinct speeds ¢I, = 61, = ¢%? = QIY; for
multiple speeds, since Q =, ®*Q, from (2.6); we have w; = "Qﬂowl‘o =
2G0 = a9 agi..

3. Shock waves in transversely isotropic rods.

We study shock waves in a linear homogeneous hyperelastic
rod, transversely isotropic in the reference configuration. The explicit
form for the appropriate strain energy density W can be found in [2].
For the inertia tensor X we adopt the form

(3.1) KL = p diag(1,1,1, 0,0, 0, a,a, @),

where p = const. is the linear mass density and « = const. denotes
the two equal inertia moments of the section.

In order to emphasize the effects of the rod geometry on wave
speeds and wave modes, following [3] we introduce the skew-symmetric
connection coefficients

A1z =< all)a2 >=7T+ fI,
(3.2)
Ars =< d, ¥ >= —ksin f, Agg =< d), ¥ >= kcos f;

k and r are the principle curvature and torsion, respectively, while f’
is the relative twist.

The characteristic equation leads to single or double speeds; then
we use the method exposed in section 2. We define a basis of wave
mode vectors, orthonormal with respect to {, }«

wr = {O,'7-,0,(&’[,0)_%,0,-”,0}
(3.3)
(ay =1for I=1,2,3;ar =« for I =4,5,---,9);

from (2.6);,(3.2) and (3.3) we have: T/ = ~T;! and
T2=T S =Tf = A, T3 =TF =17 = N3, T2 =TF =T = Ass.

For different choices of T'/, we give the following results:



GROWTH AND DECAY OF SHOCK WAVES 477

the wave speeds and their multiplicity, the reference map @ satisfying
equation (2.7) and the transformation ¢ in (2.8). In the following the
k’s are material constants appearing in the strain energy function W.
For brevity, the explicit expression for some wave speeds is omitted;
for more detailed results we refer to [4].

a) Untwisted straight rods: Ajs = Az = Az =0

( k
shear waves : V2 =V} = —
. dks
extension wave : V7 = —>
p
. k
(3.4) { bending waves : Vi = Vi = i

cross-sectional extensional and shear waves :

k k 2k k
Vg_@+k17 p2 = y2 = ko 17 2 _ 2k12 10+k17

4 —— 5V = T ——

(% T pa 2pa’ pa  2pa pae  pa | 2pa

- 3

(3.5) Q=67 5 ¢h=4]

b) Twisted straight rods: Aj3 = f/,A13 = A3 =0

( shear waves: V2 = V.2 (twist dependent)
4k
extension wave: Vi = —>
(3.6) ¢ 7
bending waves: V{Z =V (twist dependent)
| cross-sectional extensional and shear waves: as in (3.4),
(3.7) Q7 = diag (9,1,0,1,Q,1),

cos/ f(z)de —sin/ f(z)dz
0 0o -

O
{1

sin[ f(z)de cos{ f(z)dz

(3.8) ¢!, = diag (F,1,1,G,1),
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P=( 00 ma)

/cosB(s) 0 0 —sinB(s)
= 0 1 0 0
G= 0 0 1 0 ’
sinB(s) 0 0 cosB(s)
where
’ ks + k15(f"’)2]
A(s) = / ! [1 + dz
( ) A f pV12
and

k1o — dkig — kyw [°
B(s) = =212 4pa11/22 17/ f(z)dz.

0

¢) Untwisted planar-curved rods: A1z = —k, Ay = A2z =0

( k
shear waves: V2=V =2

p
extension wave: V7 (curvature dependent)
(3.9) A bending wave: V¢ (curvature dependent)

bending wave: V? = ki
p

\ cross-sectional extensional and shear waves: as in (3.4)4

- (3.10) = diag (R,R,R) |,
( cos/ k(z)de 0 sin/ k(:c)d:c\
0 0
R= 0 1 0

\—-sin/sk(m)dx 0 cos [sk(x)da:/

0

(3.11) ¢l =67,
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Remarks.

Case a): since the rod is uniform, the wave strengths remain
constant. In agreement with our hypothesis of transverse isotropy,
we have no coupling between shear and bending effects.

Case b): the shearing wave mode vectors are twist dependent
and coupled, while the bending wave mode vectors are uncoupled,
according to the constitutive equations assumed. Moreover, we observe
that the twist affects the mode vectors of cross-sectional extensional
and shear waves, while the corresponding speeds are the same as in
case a). Finally, for a rod with uniform twist (f” = 0) all speeds are
constant and there is not growth or decay.

Case c): the wave speeds and wave mode vectors of cross-sectional
extensional and shear waves are the same as in case a), but in virtue
of (3.10) the components GI? of G are different. Finally, if ¥’ = 0 all
speeds are constant and the wave strengths are also constant.
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