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AN INEQUALITY FOR CONVEX FUNCTIONALS
AND ITS APPLICATION TO A MAXWELLIAN GAS

G. TOSCANI (Ferrara)

We study the trend towards equilibrium of the solution of the
spatially homogeneous Boltzmann equation for a gas of Maxwellian
molecules. The cases of axially symmetric and plane initial densities
are invéstigated. In these situations, the strong L; convergence to
equilibrium follows by a suitable use of some convex and isotropic
functionals, with monotonic behaviour in time along the solution. The
initial density is required to have finite energy and entropy. It is shown
that the functionals satisfy a common convolution inequality. .

1. Introduction.

One of the most interesting problems in the kinetic theory of
rarefied gases is represented by the study of the asymptotic behaviour
of the solution of the Boltzmann equation.

In the spatially homogeneous case, as far as hard intermolecular
potentials are concerned, the problem has been satisfactory solved
by Arkeryd [1] and Gustafsson [5]. In paper [1] Arkeryd proved
exponential convergence to equilibrium together with stability for
arbitrary initial densities with finite entropy and sufficiently many
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moments (higher than two). His proof was based on the spectral
properties of the linearized collision operator.

The paper by Gustafsson studied the L,-behaviour in time
(p > 1) of the solution to the Boltzmann equation, proving global
boundedness in time for the L, moments that initially exist, and
strong convergence in L, to equilibrium. The proof was based on the
translation continuity of the solution.

With regards to the Boltzmann equation for Maxwellian molecules,
the first result about convergence to equilibrium, namely the
exponential convergence of higher moments to the corresponding
moments of the equilibrium density, was obtained by Truesdell
[13]. Some year later, McKean [7] proved the strong convergence to
equilibrium and studied the speed of approach for the Kac’s caricature
of the Maxwellian gas. More recently Tanaka [9] investigated the
trend to equilibrium and the stability properties of the solution to the
Boltzmann equation for a Maxwell gas without any cut-off, in a metric
equivalent to the weak* convergence of measures. Finally, in [11] we
gave a new proof of the weak trend towards equilibrium for a gas
with finite initial energy, and a proof of the strong trend if in addition
the initial entropy is finite, and the model is two-dimensional.

To obtain the result of [11], we used some arguments already
contained in the paper of McKean [7], as well as new ideas we
introduced in [10] to give a new proof of the central limit theorem of
probability theory. The main result was based on the monotonicity
property of the functional
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which, evaluated in correspondance to the solution of the Boltzmann
equation for Maxwellian pseudomolecules with planar velocities has
been discovered to decrease with time [12].

From the previous history of the problem, it appears clearly that
the Boltzmann H-functional is not the unique functional which is
monotonically decreasing in time (at least for a Maxwell gas). In the
present talk, we will outline the importance of finding decreasing
functionals to solve the problem of the trend towards equilibrium.
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2. Generalization of the Boltzmann H-theorem.

When the velocity space has dimension d, a gas of Maxwellian
molecules is constituted by molecules which repel each other with a
force inversely proportional to the (2d — 1)-th power of their distance.
The evolution equation for the distribution function f(v,t), t € R*
reads [2], [14]

‘Ot - RdxSd—1

n
) dwdng () {7v3) (1) - 1) o)
In the above expression, w € R?, n is a unit vector, so that dn
is an element of area of the surface of the unit sphere S9-! in R,
Moreover q = v — w is the relative velocity, whereas (v, w;) represent
the post-collisional velocities, defined by

1
V1=§(V+w+qn)

1
w1:§(v+w—qn)

The function g¢(v), when d = 3, has a singularity of the form
(1—v)~% as v tends to 1 [14]. To eliminate this difficulty, one requires
generally a stronger condition on g, namely the condition that g(v)
should be summable in (-1,1). One time this "cut-off” is introduced,
we say that we are dealing with Maxwellian pseudomolecules.

It is known that equation (2) can by simplified by passing to
Fourier transforms [2]. Denoting by ¢ the characteristic function

(3) dlk,t) = [ dvpv, e
nd
we obtain, instead of equation (2) the simpler equation

A = Lo () {o(F52) 6 (S52) - ee00)

which is considerably easier to handle, thanks to the reduction in the
multeplicity of the integration in the collisional operator. '

Since we are interested in finding the functionals F(f) decreasing
monotonically in time along the solution f (v,t) to the Boltzmann
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equation (2), we will derive sufficient conditions for the correspondlng
functionals F(¢) defined by the formula

F(¢) = F(f)
where ¢ and f are the solutions to (2) and (4) respectively, thus

related by (3).

We assume that the functionals to be considered are the convex
ones, and that they are invariant under the translations and the
rotations in the velocity space R

For the sake of simplicity, we also assume the normalized
conditions

/Rd dvfo(v) = 1; -/Rd dvv»fo(v) =0
(3)
/Rd dvv® fo(v) = d; /Rd dng(nm) = 1

Then, the Boltzmann equation (2) can be written in the simpler form

(® A=yt

where

© frvi= [ dwang () fmson)
and

/ dv i, (v,t) =1
Rd

The discrete in time form of equation (6)

F-7

=fy—7

can be considered as a finite difference scheme for the Boltzmann
equation with time step 0 < 7 < 1, where the functions f and f
approximate the functions f(v,t+ 7) and f(v,t) respectively.

The solution to the above equation on each time step is

F=rfs+(1-1)1f
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For any convex functional F(f),
F(f) < TF(f4) + (1= 1)F(f)
is valid. Hence the inequality

(8) F(fy) < F(f)

is the sufficient condition for the monotonic behaviour in time

F(f) < F(f)
Owing to the Wild’s form of the solution to (2), we can conclude that
condition (8) is a sufficient condition also for the monotonic behaviour
in time for the continuous Boltzmann equation.

To formulate more or less simple (for the verification) sufficient
conditions for the functionals in such a way that inequality (8) be
valid for an arbitrary indicatrix ¢g(v) in equation (2), we remark that
(8) is equivalent to

(9) ' F(¢y) < F(9)

where

(10) oy(k,t) = /Sd_l dng (%) P (k +2kn> 5 (k _an> |

" Let us start with the simple case in which ¢ = ¢(|k|), and g takes
the form of a delta function

lg(v) = é(v — cos 0)2||Sd“1||-1

which satisfies the normalization condition (5). Then

.0 0
¢4 (k) =49 (k sin §) ¢ (Ic cos §>
Thus, the inequality

N [¢ (ksin g) ¢ (k cos g)] < Flg(k)]

for any 0 < § < 7 is a necessary condition for (9) in the case of
isotropic solutions to (4).
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For a convex functional this inequality is also a sufficient
condltlon for (9), since in the isotropic case

(11) b4 (k) = /Owtdﬁg*(cos 6)sin ¢ (k sin g) ¢ (k cos g)

where
g*(v) = HSd"lllg%—z; /_1 dvg*(v) =1

Since (11) represent an averaging with respect to the unit measure
g%, the convexity gives the result.
Let fog denote the convolution operation between f and g.

In [3] we used this argument to obtain the following results

THEOREM 1. Let fy(v) be an axially symmetric function, i.e.
fo = fo(v,sm), where s = ¥ and m is a fixed unit vector. Let also the
inequality for the convex and isotropic functional F(f)

) [y (g )] o [t om- )]} < tom

be valid for any 0 < o« < % and any pair of orthogonal unit
vectors (my,m_) Then the inequality (8) is also valid, and F(f) is
nonincreasing in time for both the discrete and continuous Boltzmann
equation.

THEOREM 2. In the plane case, the tnequality

(13) F{ [Coslzaf(coza,e)} o [sinlz (== 0+ g—)” < Flf(v,0)]

forany 0 < a < Z %, Is the sufﬁczent condition for the convex isotropic
functional F(f) be nonincreasing in time for both the discrete and
continuous Boltzmann equation.

Since we are dealing with convex and isotropic functionals,
the inequalities (12) and (13) are verified if the following general
inequality holds

(14) F { [a"df(a"lv)] o [b"dg(b"lir)]} < a’F(f)+ b2F(g)
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for all a,b > 0 such that a®+5? =1, v ¢ R%, and f and ¢ are normalized
distributions (satisfying the first condition in (5)). In many cases, the
validity of the above inequality for a functional F contains as further
result the fact that the equality sign into (14) is possible if and only
if f and g are Maxwellian distributions. :

We give now some important examples of functionals satisfying
(14), with the aim of presenting in the next section the consequences
of their monotonicity in the study of the trend towards equilibrium.
The first example refers to a functional introduced by Tanaka [81,[9].
Let us denote by G the class of all functions in R4 which satisfy
conditions (5). Given f € G, let us denote with F(f) the family of all
probability distributions F' on R?¢ satisfying, for any Borel set 4

F(A x R% = fA dvf(v); F(R? x A) = /A dvw(v)

where
we(v) = (2W93-% zp _Lz
o(v) ¢ 20

and w = w;.
We define, for £ > 1

B = Bt = {jut, [ = wl (v,
FeF JRaxRd

Then, it can be easily seen that E,(f) satisfies inequality (14).
Moreover Tanaka [9] was able to prove that, given the initial
densities fy,; and fo 3, the solutions f; and f, to equation (2) satisfy

Eo[fi(t), f2(8)] £ Eo[fi(s), fa(s)] ; s <t

The second example we give refers to the J functional introduced
by Linnik [6], defined by equaticn (1). In [3] we proved in a
straightforward way that J satisfies (14). It is interesting to note that
J and the Boltzmann H-functional are related by

(15) B0 - L1ty

where fy = f ows.
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The relation (15) is the starting point to prove that the Boltzmann
H-functional satisfies (14) [3]. _

Thus, at least the three quoted functionals are monotoniéally
decreasing along the solution to equation (2). It would be interesting
to find (if any) other examples of convex and isotropic functionals
with the same property. In [7] McKean introduced , starting from (15)
a sequence of functionals defined as the subsequent derivatives of
H(fq) with respect to the ¢ variable. Unfortunately, these functionals,
which seemed to be good candidates, are not all convex.

3. Trend to equilibrium.

Here we outline the main arguments which are needed to prove
that the solution to equation (2) manifests a strong trend towards
equilibrium.

In what follows, we suppose that the inital density satisfies the
normalization conditions (5).

To start with, we recall the following existence and uniqueness
result for the Cauchy problem [5]

THEOREM 3. Let (1+ v?)f, € LT (R?). Then there exists a unique
global solution to the initial value problem for equation (2). This
solution conserves the first two moments. If further f,log fo € Li(R%),
then the H-functional of the solution is nonincreasing as a function
of time.

An interesting property of a gas of Maxwellian molecules has
been found in [11]. It extends a previous result by Bobylev [2] related
to the equation for the Fourier transform.

THEOREM 4. Let f(t) be the solution of the Cauchy problem
for equation (2), corresponding to the initial density fo satisfying the
hypotheses of Theorem 3. Then fy = fowy is the solution to the Cauchy
problem for equation (2) corresponding to the initial value fo,0 = foouwy

A first consequence of Theorem 4 is that, starting from an initial
density fo 0wy, the sequence {fy(t)},5, of the solutions is relatively
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compact in L;(R¢), and therefore there is a subsequence which
converges strongly in L; to a function f...

A classical argument of Carleman [4], based on the I -theorem,
permits to identify the limit. If the initial density possesses finite
moments up to the order 2+ «, o > 0 the limit is the Maxwellian
function w;44(v). In this case the whole sequence of the H-functions
converges to the minimum (which is attained at w; 4(v)), and this
implies [11] that the sequence { fo(t)};5o converges in L; to w4y,

If only the first two moments are initially finite, we cannot
identify the energy of the limit, concluding that the limit of the
~subsequence {f({,,)} is the Maxwellian function wy(v), v <14 6.
By contradiction, we can easily proof that we arrive to the same
Maxwellian also in this second case. Suppose in fact that v < 1 -+ 9,
so that, for some ¢ > 0 the Tanaka’s functional E, (Wo,wi40) > €

We have
(16)  Er(wy,wi46) < Ey(ws, fo(t)) + Ea(fa(t), £5(£))? + E1(f5(t), wiys)

Considering that the L;-convergence of a sequence { [} with finite
second moments to f implies E,(f,, f) — 0, we choose f{ in such
a way that it possesses finite moments up to the order 4, and in
addition E,(fo, f56) < Le. Moreover, we choose ¢ = ¢, x so large that

Biwur fo(0) + Bu(f5(0),w140) < 5o

and the contradiction arises.
The previous reasoning permits to conclude with the following
[11]

THEOREM 5. Let f(v,t) (fo(v,t), 8 > 0) be the solution to the initial
value problem for equation (2), with initial data fo(v) (fo,e(v)) that
satisfies (5). Then f(v,t) converges weakly * in L, ( fo(v,t) converges
strongly in L) towards the Maxwellian function w(v) as time goes to
infinity.

We remark that no entropy is needed for the weak * convergence.
When the initial entropy is finite, strong convergence for general
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initial values follows if we are able to estimate, for 4 > 0, the difference
|H(fo(t)) — H(f(1))I

This can be easily done in the case of plane velocities and axially
symmetric solutions, due to Theorems 1 and 2. In this case, in fact,
(15) implies

| 1 [?
HU0) = BN = 5 [ Thon®)i

and we have a uniform in time estimation. Thus in these cases we
conclude ’

THEOREM 6. Let f(v,t) be the solution to the Cauchy problem
for equation (2), with initial data that are axially symmetric in R,
or with plane initial data (v € R?). Then, if the initial energy and
entropy are finite, the solution converges strongly in L, towards the
Maxwellian function w(v) as time goes to infinity.
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