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NON-AXISYMMETRIC NECKING
YI-CHAO CHEN (Houston)

Experimental observations have revealed certain non-axisymmetric
deformations at the initial stage of necking. This phenomenon is
studied in this paper by using an energy stability criterion. It is shown
that before the onset of axisymmetric necking, a non-axisymmetric and
piecewice homogeneous deformation may have a lower energy than the
axisymmetric deformations.

1. Introduction.

Necking is a well-known instability phenomenon that has
stimulated many theoretical studies. Antman [1] uses an elastic rod
theory to study tension of bars, and finds solutions that appear to
represent necking deformations. The stability of Antman’s solution is
discussed by Owen [5]. Ericksen [4] studies weak solution (piecewise
C') of the equilibrium equations and shows the existence of a
piecewise homogeneous deformation that represents an idealized neck
and is an absolute minimum of the strain energy in piecewise C!
functions.

In the above works, only axisymmetric deformations are con-
sidered. However, experimental observations have revealed certain
non-axisymmetric deformations at the initial stage of the development
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of necks. For example, Buisson and Ravi-Chandar [3] observe, in a
uniaxial tension experiment with polycarbonate bars, the formation
of a shear band preceding the necking deformation. The shear band
forms a certain angle with the axis of the bar, which increases as
the tension progresses. The shear band eventually evolves into an
axisymmetric neck.

Antman and Carbone [2] have used non-linear elasticicty to
analyze such non-axisymmetric deformations. With a convergent
perturbation process, they show the existence of bifurcation points
on the trivial solution branch, that correspond to shear instability.
As pointed out by them, a formal justification of shear bifurcation
branches is rather difficult.

In this paper, instead of trying to find non-axisymmetric euquilib-
rium solutions, we study a class of non-axisymmetri¢ deformations
that appear to resemble the shear band and nevertheless have
very simple structures. In particular, the total strain energy can be
minimized in this class of deformations by elementary methods. It is
shown that, under certain conditions, one of such deformations has
a lower strain energy than the axisymmetric equilibrium solutions
discussed by Antman [1] and Owen [5].

2. Preliminary.

In this work, we consider a thin elastic bar of unit width, which is
modelled as a two-dimensional body, represented by Q = (0,L) x (0,1)
in a rectangular cartesian coordinate system, with L denoting the
length of the undeformed bar.

The body is deformed under the action of a hard loading device
that specifies the longitudinal displacement of the two ends of the
bar, but imposes no kinematic constraints in the transverse direction.
We shall consider the family of invertible, continuous and piecewise
C! deformations:

A = {z € C°n piecewise C*(Q; R?) : det Vz > 0

(1)
a.e. xl(O,Xg) = 0,$1(L,X2) = L)\}
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where A > 1 is the overall stretch controlled by the loading device.

The body is comprised of a homogeneous isotropic elastic material
that is associated with a smooth strain-energy function W = W(v1, v3),
where v; and v,, the principal stretches, are eigenvalues of the stretch
tensor (VzTVz)!/2. We shall make the following physicall reasonable
assumptions on the strain-energy function:

(2) Wi 2 ki >0, vV = v Wy > ko > 0,
v? — v?

~ where a subscript i of W denotes the derivative with respect to v;.
The total strain energy stored in the deformed body is given by

'Emzéwwn

An energy stability criterion will be employed in this work. By this
criterion, a deformation is stable if it minimizes the total strain
energy F in a subset of A.

3. Homogeneous deformations.

A deformation # is homogeneous if it is of C! and has a constant
gradient in Q. By equilibrium and isotropy,

(3) Vi = (3 A.%)

The value of the strain-energy function associated with this deforma-
tion is given by

(4) W) = W, A~ 7).

Such a homogeneous deformation is an absolute minimum of £ in
the class of all homogeneous deformations.

It has been known(!) that necking phenomenon is related to
certain characteristics of W()) as depicted in Figure 1: W’ is monotone
increasing in A in the ranges of small and large deformations, and

(!) See, for example, Ericksen [4] and Owen [5].
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monotone decreasing in A in the intermediate deformation range.
There exist two values )\; and )., that satisfy

W(As) = W(Ar)

Tl L Tir _
(5) W'(A) =W'(Xy) = Y > 0.
It can be readily shown that
(6) A =2)W (M) S W(A) = W(Ay).

For a given stretch A satisfying A < A; or A > )., the homogeneous
deformation given by (3) is an absolute minimum of E. Such a
deformation may not be a minimum when ) € (A, ;). In the latter
case, if one considers a broader class of deformations than A4, a special
piecewise homogeneous deformation proves to be of great importance
in connection with the necking phenomenon.
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Fig. 1 - Constitutive behavior of strain-energy function.

Let A be the family of deformations z that satisfy all conditions
specified in (1) except that z,, the second component of z, needs
only to be piecewise continuous in Q. That is, a deformation in
A is continuous in the longitudinal direction but may suffer jump
discontinuity in the transverse direction.

For a given X € (A1, A2), we consider a deformation
{le if 0 <X < LAz = A)/(Az = A1),

M ax) = |
F,X+a if L()\z — /\)/(/\ --/\1) < X1 <L
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At 0 Ao 0 ' '
F, = -1 F, = -1 = (- — .
1 (0 /\12>, 2 (0 /\22> a=(—L(Az—),0)

Such a deformation, belonging to A, represents an idealized hald-neck
deformation as shown in Figure 2.
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Fig. 2 - An idealized half-neck deformation.
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THEOREM 1. The total strain energy E attains an absolute
minimum at @ in A.

Proof. For A € (A1,)), let an z € A be given. The ﬁrst argument
z1 of z continuous and piecewise C! in Q with

(8) xl(O,Xz) = 0, xl(L,Xg) =LA,

Let v, and v5 be the principal stretches associated with z, ordered
as v; > v,. Then,

(9) T11 S v1 0N Q,

where a comma followéd by i denotes the derivative with respect to
X;. By using (7), (8), (5), (9) and (6), we find that

E[:f?] = LW()\l) — (L/\1 - /(El,l)W/(Al) S fW(vl) S E[.’B] 0
0 Q

Although discontinuous deformation is physically unrealistic,
the piecewise homogeneous deformation described above gives much
important insight into the necking phenomenon. As suggested by the
works of Antman [1] and Owen [5], a continuous necking deformation,
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after rescaled to a fixed length, will approach one such piecewise
homogeneous deformation as L tends to infinity.

4. A rod theory.

By using a rod theory, Antman [1] has found non-homogeneous
solutions that appear to represent necking deformations for rods of
circular cross sections. Owen [5] shows that for a fixed ), one of the
Antman’s solutions, corresponding to a half neck, is stable in the sense
that it minimizes the total strain energy among all deformations
considered in the rod theory, provided that the initial length L is
sufficiently large. This last condition is crucial. In this section, we
derive a necessary condition for a non-homogeneous deformation to
have ‘a lower strain energy than the homogeneous deformation. In
particular, it provides an upper bound for L in order that the half-neck
solution can be a minimum.

Following Antman [1] and Owen [5], we consider a special class
of deformations

A={z € A:2:1(X1,X2) = 2(X1), 22(X1, X2) = Xay(X1), (2,9) € C°N
piecewise C([0, L]; R?)}.

For this class of deformations, we define a one-dimensional strain
energy function ‘

' 1
(10) W) = [ Wi
. 0
where
1 , ,
(11) vl,2=-2—[\/(w‘+y)2+X22y2ﬂ:\/(r‘—y)2+X§y2 :

By (2) and the mean-value theorem, we have

. . ko
(12) W', y,9") — W(a',y,0) > —62—?;2-
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Minimizing £ in A then leads to the following one-dimensional
variational problem:

L
Minimize / W(e!,y,y)dX1in C = {(z,y) € C°n
0

N piecewise C'([0, L]; R%) : z(0) = 0,2(L) = LA}.

This minimization problem is studied in [1] and [5]. Of particular
interest is the existence of the half-neck solution that is related
to the piecewise homogeneous solution depicted in Figure 2.Indeed,
it consists of two approximately homogeneous sections joined by a
smooth transition. Such a solution is a minimum of £ in A if [
is sufficiently large.  However, for L not sufficiently large, the total
strain energy associated with the half-neck solution may be higher
than that with the homogeneous solution because a certain penalty
must be paid to have the continuous transition between the two
approximately homogeneous sections. '

PROPOSITION 1. For a fixed ), if

LT Ot b I (4 O Rt (LW

(13) SkiL2(Ar — A)(A = Ao) +2k2(AL = X0)? = A= )g
W) =W
A=A

for all Ao and )\, then the homogeneous deformation z given by (3) is
an absolute minimum of E in AN C%(Q; R?).

Proof. Let an z € AnC*Q;R?) be given with #(X) = (2(X)),
Xoy(X1)). By (10), (11) and (12), we find that -

L ~ ~ B
E[z] - E[z] =/ W(at,y,9') = W(a',y,0)
0

Wt y) — W () + W(at) — WX,

L
](,' 1 ]C : o1 7 ¥
> / [_613/ 2 _él_(y —z " T+ W(at) - W(A)] dXi.
0 : '

It follows from a straightforward calculation that the last
expression is non-negative under the hypothesis. O
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5. Non-axisymmetric deformations.

The analyses in the previous sections lead to the following
observation concerning the bar subject to increasing overall stretch
A: When ) is smaller than );, the homogeneous deformation has the
lowest energy. As )\ exceeds )i, a part of the bar tends to shift to a
state that provides a larger stretch so that the remaining bar can
stay at the state of small stretch. The increase in strain energy due
to the shifting is less than that required by deforming the entire bar
homogeneously. The energy reduction depends on the value of A — ;.
When this value is small, the energy. reduction is also small. On the
other hand, the shifting is companied by a rapid change in radial
deformation occuring in the transition section, which incurs a penalty
by increasing the total strain energy. Such an increase is virtually
independent of the value of A — \;, and might well offset the reduction
in the strain energy due to the shifting when A — A; is small.

It then follows, naturally that a deformation consisting of two
homogeneous: streches A, and ), but without transition may have
a lower total strain energy. One such deformation is constructed as
follows.

/N
I Y /S (11 4 ,/// ’
./\QZ/// 1T +
e Ll L
L

Fig. 3 - A non axisymmetric deformation.

Let A € (A,);) be given. We consider a continuous, piecewise
homogeneous deformation & illustrated in Figure 3. The reference
configuration Q is divided into two parts Q; and ., each undergoing
a homogeneous deformation. The principal stretches of Z|n, are X,
and /\"1"%, with the principal axes coinciding with the coordinate axes,
while those of &|a, are A2 and A, %, with the principal axes making
a certain angle with the coordinate axes. In Figure 3, parameters
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a,b,c and d are to be.chosen so that £ has the lowest total strain
energy in this special class of deformations. It then follows from a
straightforward calculation that

IAZ (A=A (14 A7)
AT e — AL+ AAE)
| 1+/\1—é_)\2 _
MOF AT+ MAT)
c=L(A= A1)+ ar;, d=Lb(A = Ay).

(14) b

The non-axisymmetric deformation # appears quite close to the
equilibrium deformation observed in Buisson and Ravi- Chandar’s [3]
experiment. It is then reasonable to expect the strain energy of #
to serve as an adequate upper bound for the strain energy of that
equilibrium deformation. The following proposition gives a condition
under which this upper bound is lower than the strain energy of the
homogeneous deformation, and consequently lower than that of the
half-neck deformation, provided that inequality (13) holds.

PROPOSITION 2. For a given strech X € (A1, 2), the total strain
energy associated with the non-axisymmetric deformation # is not
higher than that with the homogeneous deformation % if and only if

W) - W()‘l) VAz 4+ /A <

A=) \/——+\/:\°3—)“—2‘ l(Al)' (15)

Proof. By (14), (5) and the construction of #, we have

Bla] - Eld] = IO - W) - 22 j_)_(f;j_A L) ). o

Whether or not inequality (15) will hold for some ) is completely
determined by the behavior of W. It is an easy matter to construct
strain-energy fucntions for which (15) does hold for some A. Also,
inequalities (15) and (13) appear to be independent of each other as
the behavior of W is not restricted by the values of k; and k;. One
can construct a strain-energy function that satisfies both (15) and
(13). The corresponding non-axisymmetric deformation then would
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have a total strain energy not higher than those associated with the
homogeneous deformation and the half-neck deformation.
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