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ON THE EXISTENCE OF STEADY MOTIONS
OF A VISCOUS FLOW
WITH NON-HOMOGENEOUS BOUNDARY CONDITIONS

GIOVANNI P. GALDI

Introduction.

Let © be a bounded region of IR" (n = 2, 3), delimited by m+1 closed,
sufficiently smooth and separate surfaces (lines) I';, i =1,...,m+1. In
this paper we shall consider the existence of solutions to the following
Navier-Stokes boundary value problem:

vAv=v -Vv+Vp
in Q
(NS) o V.-v=0

v = a at 90

As is well known, such a problem governs the distribution of velocity
(v) and pressure (p) fields in the steady motions of an incompressible,
viscous fluid (of kinematical viscosity v) moving in the region Q and
subject to a prescribed velocity a (£ 0) at the boundary (}). In view

(1) For simplicity, we are assuming that there are no body forces acting on
the fluld.
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of the solenoidality of v, the field a can not be prescribed arbLtrarLly,
rather, it must satisfy the following compatibility condition:

m+1 m+1
(0.1) /a~n:Z/a-nEZ¢i:O,
80 i=1 T, i=1
that is, the total flux of a through 9Q must vanish.. However, it is
likewise well-established that (NS) is known to have a (generalized)
solution under the assumption that the ﬁuxes ¢; of a along TI'; satisfy
the conditions (?)

(0.2) ¢¢E/a-n::0 1=1,2,...,m+1,
T,

¢/ LERAY (1933), HOPF (1941), LADYZHENSKAYA (1959, 1965),
FINN (1961), FUJITA (1961), VOROVICH & YOUDOVICH (1961),
LIONS (1969). Observe that (0.2) is stronger than the compatibility
condition (0.1) and that, in particular, it does not allow for the
presence of separated sinks and sources of fluids into the region of
flow.

The reason why one imposes (0.2) instead of (0.1) is related to
the basic estimate which one needs in order to obtain a solution
to the non-homogeneous stationary Navier-Stokes equations, cf, e.g.,
FUJITA (1961), LIONS (1969): cf. also GALDI (forthcoming). Let
us briefly recall ‘this point. One constructs a (sufficiently smooth)
solenoidal extension V, say, in Q of the field a. Then, denotmg by
|| “{lq the norm in the Lebesgue space L3(Q) and setting :

D(Q)={ueCP(Q): V. u=0}

existence is easily established provided V satisfies the further crucial

condition (3)
/ u-VV.u

Q

(0.3) < ofVulff ,

(?) Throughout this paper, the infinitesimal volume or surface elements in
the integrals will be generally omitted.

3
(®) As costumary, we set A - VB = Z A;0B/0z;

i=1
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for some a strictly less than the coefficient of kinematical viscosity
v and for all u € D(Q). If we do not want to impose restrictions
from below on v, then Q and a should verify the following Extension
Condition (referred to by the abbreviation EC): for any o > 0 there
exists a solenoidal extension V = V(«) of a satisfying (0.3).

If V were not required to be solenoidal, every (sufficiently
regular) Q@ and a would satisfy FC. Actually for a given ¢ > O we
could choose :

(0.4) V=¢yW

with W an extension of a and . a ”cut-off” function which is one in
a neighbourhood of 6Q of width ¢ and zero outside a neighbourhood
of width 2¢ (c¢f. also Lemma 1. 2) . Thus, integrating by parts and
using Holder inequality together W1th ‘a classical inequality of the
Sobolev type it follows

[evw

Q

- Vu. W‘ < [alla I Valalle Wil < cl|Vall3lls Wls

and since, by the properties of gbg,
1Y Wlls —.0 as ¢ — 0,

we recover (0.3) for any o > O. Nevertheless, following the. ideas
of LERAY (1933, pp.40-41), successively completed and clarified by
HOPF (1941) (cf. also HOPF (1957)), if Q is of class C2 (at least),
instead of (0.4) one can take (4)

(0.5) V=vx (W)

with a suitable choice of the field W. Thus V is solenoidal and, by
arguments slightly more complicated than those employed before,
one can show that (0.3) is satisfied by any o > O. Recalling that the
incompressibility of the fluid requires (0.1), we may conclude that, if
o has only one connected component, the choice (0.5) ensures that
any (sufficiently smooth) 2 and a satisfy EC. However, if 6Q has more
than one connected component I';, with the choice (0.5) we have, as

(*) If n = 2, one takes V = (8(x w) /s, —0(ew)/021) =V x (Yew).
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a consequence of the Stokes theorem, that Q and a satzsfy EC if (0.1)
holds.

At this point we may think of constructing a field V in a form
different from (0.5) so that Q and a may satisfy EC under the sole
condition (0.1). However, in a nice recent paper, TAKESHITA (1991,
. Theorems 1 and 2) has given examples of smooth domains Q for
which EC holds (if and) only if (0.2) is satisfied, whatever the choice
of a may be. A typical domain considered by TAKESHITA is the
spherical shell

(06) ) SR1,R2 = {:L’ € IR" : R < I.’L‘| < Rz}

In the light of these considerations it appears that the LERAY-
HOPF construction of a solution is possible, in general, only if the
data obey the more stringent flux condition (0.2).

A few years ago, KAPITANSKII & PILETSKAS (1984 §4) have
proposed a different method which has the following two advantages:
on the one side, it allows one to show existence to (NS) also when
the quantities |¢;| are not zero, provided, however, they are less
than some positive constant A depending on v (%); on the other side,
this method -unlike LERAY-HOPF’s-requires little smoothness for the
boundary 69 and the simple lipschitz regularity is enough. However,
the explicit value of A can not be furnished.

The aim of the present paper is to prove that for any bounded
lipschitzian domain Q and any (sufficiently smooth) a ascribed on 9
there exists a computable positive constant C = C(n,Q) such that if -

m+1

(0.7) S <o,
. i=1

problem (NS) admits at least one solution. In particular, we can
furnish an explicit bound from below for C when Q is the spherical
shell (0.6) and, for example, for n = 2 and R, = 2R; we find

C > 20/(0.42 - Ry +0.16).

(®) As a matter of fact, KAPITANSKII & PILETSKAS give the proof for
A = 0; nevertheless, their argument goes through also if A is positive and not
too large.
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The method we use is based upon a suitable coupling of the ideas
of LERAY and HOPF with the results of BOGOVSKI] (1980) on the
resolubility of the equation V.v = f in appropriate Sobolev spaces.
It should be emphasized that our method works in any number of
spatial dimensions n > 2.

The paper is organized as follows. In Section 1 we show
some preparatory results concerning the existence of the solenoidal
extension of a field a satisfying (0.2) when Q is a lipschitz domain.
Such existence was known in the literature only for domains of
class C?, ¢f. FOIAS, & TEMAM (1979). Successively, in Section 2,
we establish our main theorem which ensures that condition (0.7)
for a suitable, computable constant C depending only on n and Q is
sufficient for the existence of steady solutions to the Navier-Stokes
problem with non-homogeneous boundary data. Finally, in Section
3, we give a lower bound for the constant ¢ in the case when
the relevant region of flow is the annulus delimited by circles of
radii R and 2R, respectively. Analogous results could be proved for a
three-dimensional spherical shell.

1. On the solenoidal extension of certain vector fields defined
on the boundary of a lipschitz domain.

Let us first recall some notations. 2 denotes a bounded domain
of IR”, n = 2,3, with a lipschitz boundary an 6Q (°). By Li(Q),
1 < ¢ < oo, we indicate the usual Lebesgue space with norm || - g5
while W*9(Q), k a non-negative integer, stands for the Sobolev space
of order (k,g), endowed with the natural norm which we denote by
I - lle,q- In addition, W ¥(Q) is the completion in the norm Il ||z, of
the space C§°(2) of all indefinitely differentiable functions of compact
support in Q. Furthermore, the trace space on 9Q of functions from
WHi(Q), 1 < ¢ < oo, is denoted by W*~1/24(5Q) and by || - lk-1/4,4(0R)
we indicate the corresponding norm. Finally, D(Q) is the subset of
Cg°(Q?) constitued by solenoidal functions and H'(Q) is the completion
of D(Q) in the norm || -||;,. As is known, ¢f BOGOVSKII (1980,

(°) By this we mean that <, in the neighbourhood of any of its points, can
be represented by a Lipschltz function and that  lies only on one side of 6%.
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Theorem 2), it is
HY(Q)={ueW;4Q):V u=0}.

To show our main result we need some preparatory steps. The
first step is to introduce a suitable ”cut-off” function. This function
involves the distance 6(«) of a point ¢ € Q from the boundary 9Q. We
need to differentiate §(z). However, if Q has no or little smoothness,
6(z) is in general not more differentiable than the obvious Lipschitz-
like condition [§(z)—6(y)| < K|z —y|. However, we need more regularity
on é and, to this end, we introduce the so called regularized distance
in the sense of STEIN (1970, p. 171). In this respect, we have the
following lemma for whose proof we refer the reader to STEIN (1970,
Chapter VI, Theorem 2). |

LEMMA 1.1. For z € Q, set
§(z) = dist(z, Q).
Then, there is a function p € C*(Q) such that for all z € Q

() 8(x) < plx) < m16(a);
() V()| < ke,

where k; = k;(n), i = 1,2.

Remark 1.1. A simple estimate for the consfant k1 is given by
STEIN (1970, p. 169 and p. 171) and one has «; = (20/3)(12)*. Of
course, if Q is of class €, we may take x; =k, = 1.

Owing to Lemma 1.1, we can prove the following result, c¢f. also
HOPF (1941).

LEMMA 1.2. Let é§ be as in Lemma 1.1. For any ¢ > 0 set

v(e) = exp(—1/e).
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Then there exists a function . € C*(Q) such that

O W<l fralaen
(12) Ye(2) = 1, if 8(z) < v*/2k1;
(¢4%) Ye(z) =0, if 5(93) > 27(e);

(v) |V (2)| < koe/8(z), forall z€Q;

where k, and k, are the constants given in Lemma 1.1.(7)

Proof. Consider the following function of IR into itself:

1 if t < 72(5)
pe(t) = eln(y(e)/t) if v*(e) <t <y(e)
0 if t > v(¢)

Clearly, choosing n = v%/2, the mollifier (in the sense of Friederichs)
®, = () of ¢: verifies &.(t) =1 for t < v2/2, ®.(t) = 0 for ¢ > 2y and

(1.1) |®L()| < e/t, for all t € IR.
In addition, |®(¢)] < 1. Setting
Ye(z) = @:(p(2)),

where p is the regularized distance of Lemma 1.1, and recalling
statements (1), (ii) of that lemma, we deduce

P (2) =1 if 6(2) < v%/2¢
¢£(:B) =0 if 6(:2) > 27.
Moreover, from (1.1) and from Lemma 1.1 it follows for all z €

Ve (0)] < ma/p(2) < Kze/5(2).

(") Notice that, by Remark 1.1, it is
(%) 7(¢) < 21, for alle > 0.

Of course, whatever is the estimate for x;, we can always choose k1 such that
(*) holds.
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The result is therefore completely proved.

The following lemma provides the desired solenoidal extension
of a boundary field a which satisfies the flux condition (0.1).

LEMMA 1.3. Denote by w;, i = 1,...,m, the (bounded) connected
components of IR" \ Q (%) and set

m
w = Uwi.
i=1

Then, given a € W/22(Q) verifying the condition

(1.2) /a.n:o i=1,2,...,m+1,
| | |

where n is the outer normal to 6Q and
Fiang, forz’:l,2,...,m, m+1 8(QU(U)

there exists w € W2%(Q) if n = 3 [resp. w € W22(Q), if n = 2] such that

a=Vxw/[resp. a=V x w (%] in the trace sense at 0Q0. Moreover, the

following inequality holds

' : 1wll2,2 <cllall/2,2¢50)
(1.3)

[resp. [Iwll2,2 <cllall1/2,2(60)]

where ¢ = e(n, Q).

Proof. Since 6 = U I';, from (1.2) it follows, in particular,
i=1

(1-4) / a-n=20.

an

By a well-known result of GAGLIARDO (1957), we can find a vector
field A € W12(Q) (not necessarily solenoidal) such that a is the trace
of A at 9Q and, furthermore,

(1.5) 1AL,z < llafli/2,2000)-

() Clearly, the number m finite since 9 is compact and, furthermore
infdist (w;,0(QU)) > 0.
(°) That is, a = (Ow/0z, —w/dz).
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By Theorem 1 of BOGOVSKII (1980), we may find a field U such
that ’

V.- U=-V-A
(1.6) Uc W)
1T1l1,2 < c2l|All1,2.

Thus, in view of (1.5), (1.6) we can extend a to a field A + U = vy €
W1L2(Q) with V. vy = 0 and verifying the inequality

(1.7) Ivollr,2 < C”anl‘/zﬂ(aﬂ)-

If n =2, for a fixed zo € 2 we define a function w through the
line integral '

w(m) = / (Uoldmz — 'Uogd:l?l), z €
To

l.e., w is the stream function associated to v,. Since (1.2) holds, w is
single-valued. Furthermore,

ow . Ow ,
0z - ob 8331 T
and so
(1.8) lwli,2 + w2,z < erljvolli,2

Also, we can modify w by an additive constant in such a way that

/w:O,

Q

and so, fron Poincaré inequality, from (1.7) and (1.8) we deduce (1.3),
proving the lemma if n = 2. To prove it for n = 3, we notice that,
proceeding as before, we can extend a at dw;, i = 1,..., m into each w;
to a solenoidal vector field V; € W12(w;) satisfying the estimate

(19) “Vz'Hl,il,w,' S 02”8.”1/2,2(39), t= 1’ cee, I

Moreover, denoting by B an open ball with B D Q, since



512 GIOVANNI P. GALDI

we can extend a at J(QUw) to a solenocidal vector field v, €
WhH2(wimt1), With wiy = B — (QUG), such that

(1.10) Vit il 2,wmes < c2llall)2,2050)-
It is immediately checked that the vecfor field:
{vo(x) ifzeQ

(1.11) vizeEb—

vi(e) fzew, i=1,...,m+1..
verifies the following properties

(1) veWwWhi(B)
(i) V-v=0in B
(iii) v =0 at 9B,

implying, v € H'(B). However, by means of an explicit representation
formula, it can be easily proved that given v € H!(B) there exists
w € W22(B) such that |

v=VXw
(1.12)

lwll2,2 < ei]lvil,2.

Actually, take first v € D(Q) and consider the function

_ 1 v(y)
ale) = 4"’4;3 P

Then v = V x w, where w = V x Z. By Calderén-Zygmund theorem on
singular integrals and Young’s inequality on convolutions it follows

wllz,2 < ellvl]1,2,

where ¢ = ¢(Q). Relations (1.12) are then a consequence of this
ineqauality and of the density of D(Q) into H(Q). (1.9)-(1.12) imply
then (1.3) and so the restriction of w to Q verifies all requirements
stated in the lemma. The proof is therefore completed.
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Remark 1.2. Using the same lines of proof, it is at once recognized
that Lemma 1.3 is valid, more generally, with w € W24(Q), 1 < ¢ < oo,
provided a € W!-1/9(9Q). In particular, w obeys the following estimate -

[Iwll2,q < C||a”1—1/q,q(-an)

Remark 1.3. Lemma 1.3 admits of a suitable, immediate
extension to arbitrary dimension n > 4, which will be appropriate to
our purposes. Actually, if we set W = VZ (i.e., Wy; = 7;/0z;) with Z
fundamental solution of Laplace’ s equation in IR", then it is easily
seen that v =V .W and that W;; satisfies an estimate of the type
(1.3). More generally, if a € W~1/99(9Q), 1 < ¢ < 0o, then for all
i,j=1,...,n we have

[Wiillz,e < ellalli-1/q,q00)-

2. Proof of the main result.

The aim of this section is to show that, if the fluxes ¢; of the
boundary data a obey a restriction of the type (0.7), then there exists
a solenoidal extension V of a such that condition (0.7) is verified
for some o < v. By what we said, this will be sufficient to ensure
existence of a steady solution corresponding to a.

~ Let us introduce some further notation first. We denote by
¢ = ¢(n,?) the constant entering the problem:

V:b=h in
(2.1) ‘ be Wy*(Q)

Ibl1,2 < cl|R]]2.
Moreover, if 9Q has more than one boundary, Ty,... T, 41, -with T;,
i =1,...,m, the "interior” boundaries and T,,,; the "outer” one- we
set

d = min dist(T;, T;)

and

(2.2) Qg = {2 €Q:dist(z,T}) < d/2}.



514 R GIOVANNI P, ‘GALDI

and indicating by w;, ¢ = 1,...,m, the (bounded) connected components

of IR™\ Q, '
oi(z) = —-VE&(z — z;), .a:z- éw,-, i= 1,...,m

(2_3) ) S

Tm+1(2) = —p1(z)

where £(¢) is the fundamental solution of Laplaces equatlon in IR”
Clearly, we have

(2.4) /a,;‘_n..—.l t=1,....m+1,
o T .
where n denotes the outer normal to 6.
The following fundamental extension lemma holds.
LEMMA 2.1. For any a ¢ W1/ 2”2(69)vsd,ti.éfying
(2.5) / a-n=0,
o9

and for any n > 0 there exists a solenoidal vector ﬁeld
V e Wh(Q) with V = a at 0Q

verifying

‘ - . |
Juvval< {a+ z ( 4(""”°nmnm.d +fcnmnm,d) ml} Juf?
b |

for all u € D(Q). Here k, k, are constants depending on n and defined
in (2.14) and Lemma 1.1, respectively, (1°) ¢ = ¢(n, Q) is defined in (2.1),
and

(2.6)

¢i=/a-n, i=1,...,m+1.

T; .
Furthermore, o; and Q; 4 are given in (2.2) and (2.3). Finally,

(2.7) IVIl1,2 < edllalli/z 2o,

| (10) The value of k2 depends on the regularlty of Q. If Q is, for example of
class C* then we may take x5 = 1, cf. Remark 1.1.
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where ¢1 = ¢1(n; ) (*1)..
Proof. We shall first consider the case m > 0. Let
| 6i(m)5dist(az,I‘¢), i=1,...,m+1,

and denote by pi(z) the regularized distance of x from I‘z, 1n the sense
of STEIN (c¢f. Lemma 1.1). Set

1 t<1
¢(t):{2—t 1<t<9
0 t>92
and define | | |
(2.8) zpz(x) ¢(4pi(m)/d) i=loomil

Recalling the propertles of p;(z), we have that ¢z(m) is piecewise
differentiable and that, moreover,

@) =1 if oi(2) < d/d,

Gi(e) =0 if oi(2) > d/2

m@i<t

supp(Vhi) C {z € @+ d/4k; < 0(2) < d/2)

(2.8)

where «; and Ko ére the constants introduced in Lemma 1.1. In view
if (2.4) and (2.8) we recover that the field

m+1 ‘

(2.9 vi(z) = a(z) - §:¢W4@m@)'meaﬂ?“
satisfies the m + 1 conditions

/vl'n:O, r=1,...,m+1 -
T '

(*1) Strictly speaking, the validlty of inequality (2.7) is not necessary to show
existence of solutions. However, it is fundamental to estimate the solutions
(in suitable norm) in terms of the data. -
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By Lemma 1.3 we then have that, if n = 3, there exists w € W22(Q)
[resp. w € W2%(Q), if n = 2] such that vi(z) =V x w(x), z € 6Q [resp.
vi(z) =V x w(z)]. For given ¢ > 0 we set ' RO

V.=V« (¢£w-‘) [resp. V. =V X (¢£w)]
where 1. is the "cut-off” function defined in Lemma 1.1. From the
properties of ¢. and w we easily realize that the field

m+1

U(z) = V. (2) + Z ¢ihi(z)pi(z), =€,

is an extension of a satisfying
(2.10) Tll1,2 < eillallyz,2ea0)-

However, U is not solenoidal and, therefore, in order to obtain
the desired extension of a, we have to modify U appropriately. To this
end, let us consider the field b defined by the following propertles

m+1

V-b==oi(z) V(¢:thi(z)) = h(z)

i=1

(2.11) b EWé’z(Q),

IVbllz < cllh]l..
Since, by (2.5) and (2.8),
| he L(Q), for all ¢ € (1,00)

[r=0
Q

- Theorem 1 of BOGO_VSKIT (1980) ensures the existence of at least
one vector b satisfying (2.11). Furthermore, using (2.8); , we obtain

m+1

Z loillo 161,

The desired extension of a is then given by the field

4cm2

(2.11) Vb2 <

m+1

V(z)=V,.(z éii(z)oi(z) + b(z
(2.19) (2) ()+Z pi(z)oi(z) + ()

= vﬁ(x) +V,(2) +b(@). |
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In fact, V is solenoidal, belongs to W2(Q), its trace at 99 is a and,
moreover, in view of (2.10) and (2.11), V satisfies (2.7). Let us now
estimate the trilinear form:

a(u,V,u)E/u-VV-u, uec H.
Q

In this respect, we recall the inequality:
(2.13) llufls < &[|Vull;

where
10 { 97/43-13/8|Q[1/12 if 5 = 3
. K =
, 1QY4/v/2 if n=2

cf, e.g., LADYZHENSKAYA (1969). By Holder 1nequal1ty, by (2 11)’
(2.13) and (2.14) we obtain

m+1
o 4ck
215)  laub,w] < [ulTbl < 3 (2252 olan, dlq%l) Ivulg.

i=1

Furthermore, by integration by parts we find
la(u, V,,u)| = |Ja(u,u, V)]

and so, again by Holder inequality, by (2.8);, (2.12) and by (2.13) it
follows

m-+1

(2.16)  a(u, Vo,u)l < HU|I4HVUH2!|VaH4 <wlIVully 3 lloillag,.ldil-

i=1

It remains to estimate the term
a(u, Vg, u).

In this regard, we shall follow the argument of LIONS (1969)
From the properties of the function 3; it follows

EK,Z

@17) V()| < e

[w(@)| + |Dw(z)l, if é(z) < 27(¢)
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v‘(fhi'_ljé{ s
e Vv, (z) =0, " if 6(z) > 27(5)
Moreover from the Sobolev embeddmg theorem 1t 1s D
w(@)| <ellwilzs
NVwlls Serlwllz,2
thiéh,‘by*Lemrﬁa 13,1n turvn'“i‘mpl‘ies R
(2.19) IVwlls + [w(z)] < eallvillyz2co0):
Thus, (2.17) along with (2.9) and (2.13) gives ‘for all u € D(Q)
[ Tul [Velllz < es <6HV*H1/z‘,z<amllu5‘1-llz +/ uleWV)
(2.20) | 6(2)<27(e)
< cq (ellvalli/zacomllus™ [la + [|Vullo| [ Vwlls,0)
where Q. = {z € Q: 6(z) < 27(5)} In view of (2.19) we have
C(s) = HVWH3 2. —0 as e—0;

furthermore by a well- known Hardy-type 1‘1equahty, we also have
(cf NECAS (1967)) S . '

s < e[V,
so that (2.20) implies

(2.21) I Ta] [Vs] ]2 S‘CS(-5||-Y1||122,2(59) +¢EIVull2 = ¢(e)]|Vul)
Where
222 @)~ asc—0.

From (2.2]) and from Schwarz inequality we then conclude.
(223). - a(w,Vg,u)| = [a(u,uV.)| < x(e)||Vull3.
Collecting (2.15); (2.16) and (2.23) yields

- LomAl 4cm2
(2.24) la(u, Vu)| < {x(@) + Z (

”0"&'”2,95,d

- .
e [ — a)| + 622 nmnm,d) |¢¢:r}vnwn% .
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which, in view of (2. 22), shows the result if m > 0. If m = 0 the proof
is simpler, since, in such a case, one can take V =V, and proceed as
before to arrive formally at (2.24) with 1dent1cally van1sh1ng ¢>, The,
lemma is therefore completely proved

Remark 2.1. It is simple to generalize Lemma 2.1 to space
dimension n > 4, provided we make some changes in the proof.
Actually, it suffices to use, instead of (2.13), the Sobolev inequality:

lallag/nmgy S FIVUlly, 1< g<n,
to take the field b as solution to the following problem. . .
| v.b=h
b eWA(Q)
{bli,n/2 S cllhllnge2

and, ﬁnally,_tq.chq‘()Se
Vﬁ =V. (1/)£W)
as an extension of the field vy, with W defined in Remark 1.3.
However, in order that V. satisfies the estimate needed in the lemma,:
we should require that a possesses slightly more regularity. -Actually,
in dimension higher than three (2.18) need not hold and we have,
instead,
| | lW(i‘)l < C1HWH2q
(*) SRR S, g>n/2.
Wl < Wl -
On the other hand, taking into account Remark 1.3, the right hand
side of (*) is finite provided ‘ '

() aeWTeen),  gn/2

Therefore, if n > 4, under this additional condition on a the vector field
(2.12) belongs to W'¢(Q) ('?), satisfies (2.23) and obeys the inequality

”V”Lq S ,Cl“"*l-,lll—l/q,q(‘an)-

(1?) Notice that, since h € L’(Q) for all r > 1, we may take b € Wh4(Q),
see BOGOVSKII (1980). :
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One can then show, that the trlhnear form .a(u,V,u) satisfies the
estimate

la(u \% u)] < {X(e)+ 3 (clllaz]]n/g s +c21|aznn Qi) "751 }Hvullé -
. - i=1 . )
with c1 a‘nd‘ Cg suitable cons'tants.A

In view of Lemma 2. 1 and of the cons1derat10ns developed m the
1ntroductlon we then derlve the folIowmg ex1stence result.

THEOREM 2.1. Let Q be a bounded, lipschitz domain of IR",
= 2,3, delimited by m + 1 closed surfaces (lines) I;, and let
ac Wl/ 22(9Q) satisfy condition (0.2). Then, if
[ o

Iy

" m+41

> ( i nmnz s + nnmn;n, )

i=1

< v,

there exists at least one (generalzzed) solutwn to the steady Navier-
Stokes problem (N'S). In (2.25), the constants x = k(n,Q) and ¢ = c(n, Q)
are deﬁned in (2.14), and (2 1) while o; and Q; 4 are gwen in (2.2)

and (2.3), respectively.

Remark 2.2. In view of the considerations developed in Remark
2.1, one can obtain an existence result in space dimension n > 4
provided a satisfies condition (**) of that remark and, in addition,
the ﬁuxes through T; obey the following restrlctlon

[

T

m-1

Z (61”0.2.”71/2,9,;’& + CZHO'z’”n,Q,',d)k
i=1 P

<wv,

Remark 2.3. If m =0, that is, if the connected components
Liy..osTargr of 9Q reduce to one, condition (2. 25) is automatically
satlsﬁed since, by the incompressibility condition, it is

/a-_n_=_/ a-n=0.
Iy an
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3. Application to flow in an annulus.

Condition (2.25) furnishes a computable bound on the fluxes ¢; in
terms of v. It may be of a certain interest to evaluate this bound when
Q is a spherical shell. In fact, as we have noticed in the introductory
section, such domains can not admit an extension field V(a) of a
obeying (0.3) for arbitrary o« > 0, ¢f, TAKESHITA (1992), -and, as
a consequence, the LERAY-HOPF construction of steady solutions
would require identically vanishing ¢;. To fix the ideas, take ©Q to be
the annulus delimited by circles of radii R and 2R, respectively. We
then have : ’

3.1) . Q={zelR*:R< [ <2R}.
Thus, in the notation of Theorem 2.1, it results -

d=2R—R=R, ky=1 (13),

 0u(#) = —oa(2) = ~V(log Jal) /27 = —1/(27]a]),
Qua={e€IR’: R < |o| < 3R/2),

Q2,0 ={z €IR* : 3R/2 < |z] < 2R).

Moreover, we have to give explicit values to the constants « and ¢
defined in (2.11) and (2.14), respectively. Concerning «, from (2.14)

and (3.1) we find at once - -

k= (3m)Y*/RJ2 ~ 1.238VR.

However, a sharper estimate can be obtained on k. Actually, for all
u € D() it is, ¢f. LADYZHENSKAYA (1969),

- lella < 274l %) Ty
and, therefore, se.tting

p= @)= max (39,

(**) Cf. Remark 1.1.
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(Poincaré constant) it follows that we can choose

SR = 2.71/4/11/4.' ‘

Since Q has a particularly simple shape, one can calculate (numerically)
the value of x4 from the foi'mula

4

R/\i=m—1/(167) + 163/(30727%) — 93029/(4915207r5) +.
cf McLACHLAN (1961 §1.62, eq.(4)) to recover p ~ 0 102 - R2 Hence
(3.2)‘_ o o | ano_.47\/—,,_’ __

To evaluate the constant ¢, we observe that since the products a
o; Vi, i = 1,2 depend only on r = |¢|, the function 4 in (2.11) depends
only on r too. Therefore, a solution b to (2.11) with Q given in (3.1)
can be chosen of the form: |

b(z) = :—Q/R.é"h(ﬁ)d&s . TE Q-‘

Since ' o
o - Oby _ by

by a direct computation we show

lbhz = ||V bllz [I~ll2;

and we conclude ¢ = 1. Collecting all these data and setting
= —¢1 = o, condition (2.25) becomes

(33) U Hl|gl<w,
where | |
o ok -
H = “[4s(A+ B)+(C+ D),
v 3/R2 _ 1/2 o 2R ‘1/2
A= |27 £ 1d€> , B= (QW | E'ldﬁ) )
( '/R S\ [R/Q ’

3/R2 /4 . 2R 1/4
(2#/ ~3dz§> D= (2«/ 5‘%}5) .
R

3R/2
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and « is given in (3.2). Evaluation of H furnishes
H~042-R+0,16

and the flux condition (8.3) becomes

6] < v/(042- R+0,16).
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