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ON HILBERT FUNCTION UNDER LIAISON

UWE NAGEL (Paderborn) (*)

A relation between Hilbert functions of linked ideals is established
and discussed by various examples. Then it is applied to compute the
degree of the intersection of two projective subschemes in a special
situation.

We consider the following problem. Let a,b,c C R := K[x,,...,z,]
be homogeneous ideals of pure dimension d such that R/c is a
~ graded Gorenstein K-Algebra and c:a=b,c:b=a. Then a and b are
said to be linked by c. Our question is: What can be said on the
Hilbert function of b in terms of the Hilbert function of a and e.
This problem has already been studied in [1] in the case that R/a is
Cohen-Macaulay. The theorem below is our answer. It also extends
results of [5] and [6]. Our approach is quite different from that of
[1]. We use duality theory as a main tool.

Moreover, we will discuss our theorem by several examples and
give an application to intersection theory.

(*) Entrato in Redazione il 6 febbraio 1591,
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1. Notations and preliminary results.

Let K be an infinite field. By a graded K-algebra we always
mean a Noetherian graded ring A = (H A, with 4 = K and which

telN
is generated by A;. The irrelevant ideal @At is denoted by my, or
t>0
simply by m.
Let M = @Mt be a graded A-module. The K-vector spaces

teZ
M, are also denoted by [M],. If M is Noetherian or Artinian

rankg[M}; < co. In that case we denote by h(t) :=rankg[M]; the
Hilbert function of M. It is well known that h(t) equals the Hilbert
polynomial py(t) for t > 0 if M is Noetherian and for ¢t « 0 if M is
Artinian.

Let M be a Noetherian graded A-module of Krull dimension
d > 0. Then p,,(¢t) has the form

t t
PM(t)=h0(M)<d_ 1) +h1(M)<d_2> +...+hqg 1 (M)

where the integers ho(M) > 0, hi(M),..., hg_1(M) are the so-called
Hilbert coefficients of M. We define the index of regularity of M to
be

r(M) :=min{t € Z : hy(i) = pp (i) for all i > t}.

For j € Z we denote by M(j) the graded module given by
[M()} = [M);,;. All homomorphisms between graded moduls are
considered to be graded of degree zero. Thus for graded modules
M, N we have f € Hom,(M,N) if f is a homomorphism such
that f([M};) C [N]; for all t € Z. We define the graded A-module
Hom,(M,N) by [Hom,(M,N)l; = Hom,(M,N(@¢)) for all t € Z. As
usual Ezty(M,N) G € IN) denotes the i-th right derived functor of
Hom,(M,N) and Hj(M) = lim Ezt',(A/m", M) the i-th local cohomology

module of M. If M is Noetherian Hi,(M) is an Artinian graded
A-module for all i € IN. The local cohomology modules can be used
to describe the difference between Hilbert function and Hilbert

polynomial [9].

LEMMA 1. If M is a Noetherian graded A-module we have for
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allteZ
| ha®) = pu(®) = Y (= )irankg [Hin (M)}

i>0

The dual of a graded A-module M is defined by MV := (D Homg([M]-.,
teZ
K). If rankg[M]; < oo for all ¢t € Z there is a canonical isomorphism

M = MY. The graded K-Algebra AV is the injective hull of
KY = K = A/m in the category of graded A-modules.

The graded K-algebra is said to be Gorenstein if it has a finite
injective resolution. Now we can state the duality theorem (cf. [13],
Theorem 0.4.14 and [11], Theorem (3.4)).

DUALITY THEOREM Let S be a Gorenstein ring of dimension d
and let A be a factor of S. Then we have
(i) (graded case) If S is a graded K-algebra and M a graded
A-module there are for all i € Z natural isomorphisms

Hin (M) ¥ Ezt§™ (M, S)(r(S) — 1),

(ii) (local case) If S is a regular local ring with maximal ideal m and
M an A-module there are for all i € Z natural isomorphisms

D(Hip(M)) = Extd™(M, S)

where D(_) = H oms(_;E) and E denotes the injective hull of
k=S/m (as an S-module).

Let now a,b,c C R = K[z, ..., z.] be homogeneous ideals such that
c Canb and R/c is Gorenstein. Then a and b are said to be linked

by ¢ (cf. [10], [7]) if

(i) R/a and R/b are of pure dimension dim R/c

(ii) c;a=band c:b=a.

If in addition a and b have no primary components in common
we have ¢ =anb. In that case it is said that a and b are linked
geometrically by ¢ in the sense of [10] and [7].
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Note that in condition (ii) each relation is equivalent to the
other because a and ¢ : a are linked by ¢ if c%a, R/a is of pure
dimension dim R/c and R/c is Gorenstein [10], Proposition 2.2. If a
and b are linked by ¢ then R/a is Cohen-Macaulay, Buchsbaum or
locally Cohen-Macaulay, respectively iff R/b has the corresponding
property [10] (cf. also [7], [13])).

A homogeneous ideal ¢ ¢ R or R/c is said to be a complete
intersection of type (di,...,d,) if ¢ is generated by an R-sequence
{F1,...,F,} of homogeneous forms of degree dj,...,d,. In that case we
have r(R/¢)=dy+...+d, —r.

For unexplained facts and notations we refer to the monography
[13].

2. Main result.

The purpose of this note is to prove and to discuss the following
theorem on Hilbert function under liaison.

THEOREM Let S := R/c be a graded Gorenstein K-algebra of
Krull dimension d > 0 and let a,b C R be homogeneous ideals linked
by c. Then

(i) ho(R/b) = ho(R/c) — ho(R/a) and if d > 1
hi(R/b) = (r(S) — d + Dho(R/a) + hi(R/a) + h1(R/c).
(ii) If R/a is locally Cohen-Macaulay for all t € Z we obtain
Pr/b(t) = ps(t) + (= 1)’pp/a(r(S) — 1 - 1).
(iti) If R/a is Cohen-Macaulay for all t € Z we get
hgp®) = hs@) + (= 1)**' [hp/a(r(S) = 1 — t) — pr/a(r(S) — 1 — 1)].
(tv) If R/a is Gorenstein for all t € Z we have

hr/p@) = hs(t) — hpja(r(R/a) — v(S) +1).
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Remarks (1) Since the situation in (i), (i), (iii) is symmetric we
may interchange a and b in these formulas. Using (i) we thus obtain

hi(R/c) = —%(r(s> — d+ Dho(R/c).

(2) Let ¢, G, C IP> be smooth curves of genus p; and p,
respectively linked by a complete intersection of type (d;,d;). Then

Theorem (i) provides

Pl —p2 = <dl ;dZ —_— 2> (deg(C'l) - deg(CZ))y

a relation which is well known (cf., for example, [7]) but usually the
fact that C;,C; have codimension 2 is essentially used in the proofs.

(3) For a function f:Z — Z we define A’f = f and A f(t) =
A f(t) — A ft —1) 1 > 0,t € Z). Then we obtain from Theorem (iii) if
R/a is Cohen-Macaulay

Ahgp(®) = Aths(®) — Athpa(r(s) +d — 1 1)

This is the content of Theorem 3 of [1].
(4) For a further discussion of the Theorem we refer to the next
section.

In order to state the starting point for the proof of our Theorem we
define the canonical module K of R/atobe Kq = M}{'l‘d(R /a, R}(—r—1)

LEMMA 2. We have the following exact sequence

O — Ka(-r(8S)+1) > S - R/b— 0.

- Proof. Since S§ = R/c is Gorenstein the duality theorem
shows Ka(l —(S)) ¥ (Hh(R/a)V( — r(S)) ¥ (HEs(R/a)V(A — ~(S)) ¥
Homg(R/a,S) = Homp(R/a,R/c) ¥ c:a/e=b/c. QE.D.

Let X, V, W C IP" be the subschemes defined by ¢, a and b.
Applying the "sheafification" functor we get from Lemma 2 the exact

sequence
0—-wy(l1-(X)) »0x -0y —0
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where wy is the dualizing sheaf of V and r(X) := 7(S).
Using the duality theorem we obtain from Lemma 2.

COROLLARY 3. If a,b C R are linked by ¢ we get for all t € Z:
hgp®) = hs(t) < rank g [H&(R/a)l (s)-1-.

Since we have with the above notations K°(IP", Jx(t)) = T:t> —

[H% hp/e(t), the corresponding relation for W and [HE,(R/a)), = [H&!
@)l ¥ HYIP", Jy(t)) we can rewrite Corollary 3 if d < r:

ROUP™, T () = h4(IPT, Ty (r(X) — 1 — t)) + h°(IPT, Tx (t))

This is the main result of [5] and proved there if V, W are
locally Cohen-Macaulay.

Corollary 3 shows that it suffices to compute rankg[HE (R/a)l;
in order to prove the Theorem. We need the following result. In the

proof we use ideas of [12].

LEMMA 4. Let A= R/a be a graded K-algebra of pure dimension

d >0 then
<i ifl<i<d

d ifi=d
Moreover, we have for all t < 0

dim Hi,(A)Y = {

rankg[H& (AL = (=D pa@) + o(t*2).
where we set ot~!) :=0.

Proof. Since a has grade r+1— d we find an R-regular sequence
Fo,...Fr_q € a and put S := R/(F,.., F,_g)R. From the duality
theorem we obtain Hih(A)Y & Hin (S/aS)Y ¥ Exty(S/aS,S)r(S) — 1).
Therefore the assertion is proved for 1 < i < d if we can show
dim Ezt$7(S/a8,8) < i (1 < i < d).

Assume dim Egt4(S/aS,S) > i for some i (1 < i < d). Let
p € SuppEzt:*(S/aS,S) with dimS/p > i. Then the duality theorem
yields

dimS'p—-d

0# Exty(S/aS, S ¥ Extly (Sp/aSp, Sp) = D(Hpg, " (Sp/aSp)).
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Since dimSp —d+i=dimS —dimS/p—d+i=i—-dimS/p < 0 we get
dimS/p =i and 0¢H85p(5p/85p), i.e. p € AssS/aS. But this contradicts
the assumption that R/aR ~ S/aS is of pure dimension d > 1.

It remains to show the assertion for i = 4. We have proved for

i < d that rankg[Hi,(A4)); is either zero for all t < 0 or a polynomial
of degree < i —2. Thus Lemma 1 completes the proof. Q.E.D.

Now we are in a position to prove the theorem.

Proof of the theorem: (i) Combining Corollary 3 and the second
assertion of Lemma 4 a routine computation shows (i).

(ii) If R/a is locally Cohen-Macaulay Hi,(R/a) is of finite length
for all 1 < d. Thus Lemma 1 gives for t < 0

—pa(t) = (=Drankg [H&(R/a)];.

Now (ii) follows from corollary 3.

(iii) Since Hi,(R/a) =0 for all i < 4 iff R/a is Cohen-Macaulay
(iii) is again a consequence of corollary 3. |

(iv) We have the isomorphism (R/a)V ¥ HE(R/a)(r(R/a) — 1)) if
R/a is Gorenstein (cf. for example [13], page 58). Q.E.D.

3. Examples and miscellaneous results.

We want to show that we can not weaken the assumptions on
R/a in Theorem (ii), (ii1), (iv) even if we consider geometrical linkage.

EXAMPLE 5. We consider the following homogeneous ideals
c,p,q C R = Klxo,..., z4]:

— 2,3
¢ =(T1T4 — T2T3, ToT3T4 — ToTy + T3)
— 2, .2
p =(T1T4 — T273, ToT1T2 — ToT3 + T)T3, TT2T3 — ToT2T4+
+ :1:1:)3%, ToT3T4 — .’I:().'Ei + :I:g)

2 2
q =(z134 — 7273, T3, T374, TY)

Note that q is a (z3, z4)-primary ideal of length 2 ([13], Theorem
111.3.2) and p defines a surface in IP* given parametrically by
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{u?, v?v, wow, vw(w — u), wiw — u)} ([8], page 234) which was first
studied by R. Hartshorne. Furthermore ¢ has primary decomposition
¢=pNgq. Thus p and q are linked geometrically by c¢. Moreover, R/p
is locally Buchsbaum but not locally Cohen-Macaulay [13], Example
V.5.2. For the Hilbert polynomials we obtain:

Pr/q(t) = 2(;) +4t +1

Pr/p(t) = 4(;) +5t ([8], page 234) and

Pr/c(t) = 6(2) +3t+2 and r(R/c)=1.

Since pp/q(t)#pr/c(t) — pr/p(—t) this example shows that the
assumption in Theorem (ii) is not superfluous.

EXAMPLE 6. Now we want to show that we cannot replace the
assumption in Theorem (iii) by the weaker assumption that R/a is
Buchsbaum. We consider the following primary decomposition

¢ = (ZoZ3 — T1%2, T0T5 — T223) = PN (To, 71) N (22, 73) C R = Ko, ..., 73]

where p = (2023 — 122, 2023 — 3313, 2372 — 23, 7,723 — 23) is the defining
prime ideal of the twisted quartic curve in IP* given parametrically
by {s* s, st3t*}. We put a = (z0,71) N (22,23). R/a and thus also
R/p are known to be Buchsbaum [13], Lemma 1.2.14 and page 15.
The above primary decomposition shows that p and a are linked
geometrically by c¢. Moreover we have pr/a(t) =2t +2 and r(R/c) = 2.
Thus we obtain

hg/p(1) =4#4 — [1 — 2] = hp/e(1) — [hg/a(0) — pr/al0)],
i.e., the assertion of Theorem (iii) is not true for ¢t = 1.

On the other hand we wish to point out that there are
Buchsbaum K-algebras R/a such that the assertion of Theorem (iii)
is true. A careful study of the method of Evans and Griffith [2] (cf.
also [13]) to construct rings with prescribed local cohomology shows
that we can find graded Buchsbaum K-algebras R/a of dimension
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d > 3 with

| K ift=0
[Hm(R/®)): ¥ [Ha(R/a)), = {

0 otherwise,

Hin(R/a)=0 for 2<i<d.

and a is of pure codimension 2. Thus we get by Lemma 1 for allt € Z
that hg/a(t) — pr/a(t) = (~1)?rank[H{,(R/a)l; and a contains a complete
intersection ¢ of codimension 2. Put b=c¢: a. Then a and b are linked
by ¢ ([10], Proposition 2.2) and we obtain in view of Corollary 3

heb@® = hre® + (=D [hg/a(r(R/e) — 1 — t) — pga(r(R/c) — 1 — 1)].

Thus the assumption in Theorem (iii) on R/a is not necessary.

The next example shows _that the assumption in Theorem (iv)
can not be weakened but is also not necessary.

EXAMPLE 7. Let R/a be a graded Cohen-Macaulay K-algebra.
Compairing Theorem (iii) and (iv) we see that the assertion of (iv)
is true iff for all t € Z

(%) hrja(t) = (=1)*[hp/a(r(R/a) — 1 — t) — pr/a(r(R/a) — 1 — 1)].

This is a condition on (the symmetry of) the Hilbert functlon of
R/a. It is satisfied if R/a is Gorenstein.

Let now X C IP'(r > 2) be a finite set of (simple) points spanning
IP” and let a ¢ R be the defining ideal of X. Moreover we take
b,c C R from a as above. Then R/a is a Cohen-Macaulay K-algebra
of dimension 1. If, for example, X consists of r +3 points then (*)
cannot be satisfied and therefore R/a is not Gorenstein and the
assertion of Theorem (iv) is not true. However this assertion and (*)
are true if X has r +2 points. But in this case R/a is Gorenstein iff
any r+ 1 points of X span IP" [1], Theorem 5 or [4], Theorem C.

We will conclude with an application of our Theorem to
intersection theory. Let V, W, be pure-dimensional projective
subschemes of IP". Since Bezout has stated his famous theorem a lot
of work has been spent to understand the degree of V N, especially
to understand the situations where degV - deg W#deg(V N W) (cf. for
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example [3]). In the special situation of geometrical linkage we can
often compute deg(V N W). Note that a subscheme X is said to be
Gorenstein if its coordinate ring R/I(X) is Gorenstein and for any
subscheme deg X = ho(R/I(X)). Moreover we set h,(X) = hi(R/I(X))
and r(X) = r(R/I(X)).

As preparation we first note a consequence of Theorem (i) and
Remark (1).

COROLLARY 8. Let a,b,c C R be as in the Theorem and
additionally ho(R/a)%ho(R/b). Then

hi(R/a) — hi(R/b)
ho(R/a) — ho(R/b)

hi(R/c) = - (ho(R/a) + ho(R/b)).

PROPOSITION 9. Let V, W be projective subschemes of WP of
pure dimension n > 1 with no primary components in common and
different degree such that V UW is Gorenstein of dimension n. Then

o= 2/“»o(V) - hi (W) — hy(V) - ho(W) >0
ho(V') — ho(W) -

and a > 0 iff VNW has dimension n— 1. In that case deg(V NW) = a.

Proof. Let R = K[zo,...,z,]. By the assumptions R/I(VUW) is
Gorenstein and I(V), I(W) are linked geometrically by I(Vv nWw). The
exact sequence

0— R/I(VUW) — R/I(V)® R/I(W) — R/I(VAW) = 0

gives us with py(t) := pp/;o(¢) for all ¢ and analogous notations for
the other subschemes

pvaw(t) = pv(t) + pw () — pyuw(t).

Applying Theorem (i) we see that pynw(?) is a polynomial of the
form :

t t
pvaw(t) = o +a oty
n—1 n—2

with integers ap > 0, a,..., 0,1 Where ag = hi(V) + hi(W) — hi(V UW).
Thus Corollary 8 yields ap = a > 0. This proves the proposition
because the degree of pyy(t) equals the dimension of V Nnw. Q.E.D.
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In Corollary 8 (and Proposition 9) we excluded the case
ho(R/a) = ho(R/b) since then hi(R/c) is not uniquely determined by
ho(R/a), ho(R/b), hi(R/a) and h,(R/b) as we demonstrate now.

EXAMPLE 10. We consider the following ideals in R = K[z, ... z3]:
a = (2971, T223),
¢ = (2021, 2203),

¢ = (o2}, 2223),

b=c:a b=c:a.

As complete intersections R/c and R/c¢' are Gorenstein. Thus a
and b are linked by ¢ and a and b’ are linked by ¢’ according to [10],
Proposition 2.2. Moreover we have ho(R/c) = ho(R/¢') = 2ho(R/a) = 12
and therefore ho(R/b) = ho(R/b') = 6. Since ho(R/a) = ho(R/b') = ho(R/b')
we get from Theorem (i) hi(R/a) = hi(R/b) = hi(R/b') but —42 =
hi(R/c)#hi(R/¢) = —36.

Note that in Example 10 we did not consider geometrical
linkage. Thus it remains open whether h¢(R/c) can be computed in
terms of ho(R/a) and hi(R/a) if ho(R/a) = ho(R/b). In that case we have
h1(R/a) = hi(R/b) by Theorem (i) and Remark (1).
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