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'CONTRACTIBILITY OF CURVES
JANUSZ J. CHARATONIK (Wroclaw) (*)

Results concerning contractibility of curves (equivalently: of
dendroids) are collected and discussed in the paper. Interrelations
between various conditions which are either sufficient or necessary
for a curve to be contractible are studied. A full discussion is provided
of numerous possibilities, and consequently several new implications
are proved and examples are constructed giving a wide spectrum of
both results and open questions concerning the subject.

0. Introduction.

During the last two decades contractibility of curves, i.e., of
one-dimensional continua was studied by a number of authors (see
References). Various conditions were considered which either imply
or are implied by contractibility of a curve. They were formulated
using various techniques, were expressed in different ways, so
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sometimes it is not easy to compare them. In the present paper
some interrelations between these conditions are investigated.

All spaces considered in the paper are metric continua, and all
mappings are assumed to be continuous. A property of a continuum
X 1is said to be hereditary provided each subcontinuum of X has this
property. A continuum is said to be hereditarily unicoherent if the
intersection of each two its subcontinua is connected. A hereditarily
unicoherent and arcwise connected continuum is called a dendroid.
If a dendroid is locally connected, it is called a dendride. The unique
arc joining points a and b in a dendroid is denoted by o b. A point of
a dendroid X is called an end point of X if it is an end point of each
arc contained in X and containing it. By a ramification point of a
dendroid X we understand a point which is the centre of a simple
triod contained in X , i.e., a point p € X such that there are three
arcs pa, pb and pc in X, the intersection of each two of them being
just the singleton {p}. A dendroid having exactly one ramification
point v is called a fan, and v is then called its top. If a fan has
countably many end points, it is said to be countable.

We use the symbols Li, Ls and Lim to denote the lower limit,
the upper limit and the topological limit of a sequence of sets as
they are defined in the Kuratowski monograph [38], §29, I, III and
VI, pp. 335, 337 and 339; and the symbol lim denotes the limit of
a sequence of points of a space. If two points p and ¢ of either the
plane or Euclidean 3-space are given, then pg denotes the straight
line segment with ends p and ¢q. As usual, IN denotes the set of all
positive integers.

Recall that a continuum X is said to be uniformly arcwise
connected provided it is arcwise connected and for every positive
number ¢ there is a number & € IN such that every arc contained in
X can be divided into at most k subarcs whose diameters do not
exceed ¢ (see [5], p. 193; compare also [37]).

A continuum X is said to be contractible provided there exists
a mapping H : X x [0,1] —» X (called a homotopy) such that for each
point z in X we have H(z,0) =z and H(z,1) = p for some point p € X.
It is known (see [8], Proposition 1, p. 73) that
(0.1) if a continuum is one-dimensional and contractible, then it is a

dendroid,
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and moreover, ([3], Proposition 4, p. 73; cf. [15], Theorem 3, p. 94)
(0.2) each contractible dendroid is uniformly arcwise connected.

Furthermore, as an immediate consequence of the definitions
we see that

(0.3) a locally connected curve is contractible if and only if it is a
dendrite.

1. Homotopically fixed sets.

Some general conditions which imply noncontractibility of
dendroids are considered e.g. in [16]. We recall them here for the
reader’s convenience.

A homotopy H : X x [0,1] — X for which the condition H(z,0) =z
holds for each point z of X is called a deformation. The following
proposition is known (see [16], Proposition 1, p. 230).

PROPOSITION 1.1. (Charatonik, Grabowski). If a space X
contains some two subsets A and B such that

(1.2) 0#A C B#X,

and
(1.3) for every deformation H : X x [0,1] — X we have H(Ax [0,1]) C B,

then X is not contractible.

It is of some interest to know if a 'converse is true to the above
proposition in the following sense.

Question 1.4. Does every noncontractible dendroid X contain
some two subsets A and B satisfying (1.2) and (1.3)?

Recall that a nonempty subset A" of a space X is said to be
homotopically fixed provided condition (1.3) holds with B = A (see
[16], p. 230). As a particular case of 1.4 above we have

Question 1.5. Does every noncontractible dendroid X contain a
homotopically fixed proper subset?
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Another cause of noncontractibility of dendroids, which resem-
bles the one given in 1.1 is the following.

- PROPOSITION 1.6. If a nondegenerate. space X contains a
nonempty subset A such that

(1.7) for every deformation H:X x [0,1] - X and for every t € [0,1]
we have A C H(X x {t}),
then X is not contractible.

Proof. Since A C H(X x {1}), if A is nondegenerate, then the set
H(X x {1}) cannot be a singleton. If 4 is degenerate, say A = {a},
take b € X\{a} and suppose that X is contractible, i.e., there is
a deformation Hy : X x [0,1] —» X with' Ho(X x {1}) = {a}. Then X
is arcwise connected ([39], §54, VI, Theorem 1, p. 374), and if
h : [0,1] — ab is a homeomorphism with h(0) = a and A(l) = b, we
define H : X x [0,1] » X by H(z,t) = Ho(z,2t) for ¢ € [0,1/2], and
H(z,t)=h2t-1) for t € [1/2,1]. Then H(X x {1}) = {b}, so (1.7) is not
satisfied.

Question 1.8. Does every noncontractible dendroid X contain a
nonempty subset A satisfying (1.7)?

2. Three conditions.

Now we recall some special concepts which are closely related
to contractibility of dendroids (especially of fans).

A dendroid X is said to be of type N (between points p and g)
provided there exist in X two sequences of arcs pnp, and gnq,, and
points p; € ¢ng,;\{4,9,} and g € p,p,\{p,p,}, such that the following
conditions are satisfied:

2.1) pg= Lim pnp; = Lim an;;
2.2) p=limp, = limp; = limpz;

(2.3) ¢ =limg, =limg’ = limg".
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The above concept is due to L. G. Oversteegen ([47], p. 837) and
is related to the following condition of B. G. Graham (see [33], p.
78). A dendroid X is said to contain a zigzag provided there exist in
X: an arc pqg, a sequence of arcs p,g, and two sequences of points p!
and ¢, situated in these arcs in such a manner that p, < ¢, < p, < ¢,
(where < denotes the natural order on p,qg, from p, to g,), for which
the following conditions hold:

(2.4 pg = Limppgy;
(2.5) p = limp, =limp,;
2.6) g =limg, = limg..

It is evident that if a dendroid contains a zigzag, then it is of
type N ([49], p. 393) but not conversely, even for fans, as it can be
seen from an example below.

EXAMPLE 2.7. There is a countable plane fan of type N which
contains no zigzag.

Proof. Let v be the pole (i.e. the origin) of a polar coordinate
system in the Euclidean plane. For each n € N put in the polar

coordinates (p, ¢):

a=(1,0), a, =(1,2'"™), p, =(1/3,(3/4) - 2!,

gn = (2/3,3/4) - 21", r, = (2/3,2'™).

Let

X =val U{_vazn_l Utz 1P2n-1.UP2n"1¢2n-1 1 M E IN}
U U{U?”zn UT2nP2s : n € IN}

Then X is a fan with the top v. (see Fig. 1). Putting
p =limp, = (1/3,0) and ¢ =limg, = (2/3,0), we see that X is of type N
between p and ¢, while it contains no zigzag.
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Fig. 1

A point p of a dendroid X is called a Q-point of X provided
there exists a sequence of points p, of X converging to p such
that Ls pp,#{p} and, if for each n € IN the arc p,q, is irreducible
between p, and the continuum Ls pp,, then the sequence of points g,
converges also to p. This concept is due to R. B. Bennett [3] and it
was intensively exploited in investigations of contractibility of fans,
e.g. in [33] and [49].

The third concept we recall here is pairwise smoothness; it was
formulated by B. G. Graham in [33], p. 78, and was shown to be an
important tool in studies of contractibility of fans in [33] and [49].
Let two sequences of points r! and r2 of a dendroid X be given,
both converging to a common limit point . We say that the former
sequence dominates the latter one provided that whenever there is
a point s in X and a sequence of points s! of X converging to s with
the property that the arcs rls! converge to the arc rs, then it follows
that there also exists a sequence of points s2 of X converging to s
such that the arcs r2s2 converge to rs.

Remark 2.8. If, for each point s of a dendroid X and for each

sequence s, tending to s the limit of the sequence of arcs rls! is

not an arc, then the sequence r} dominates all the sequences r?
whatsoever.

A dendroid X is said to be pairwise smooth provided that
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whenever a pair of sequences converge to a common limit point,
then one of the pair dominates the other.

The following internal characterization of contractibility of fans
is due to L. G. Oversteegen (see [49], Theorem 3.4. p. 393; compare
also Theorem 3.4 below).

THEOREM 2.9. (Oversteegen). For every fan X the following
conditions are equivalent: ‘

(2.10) X is contractible;

(2.11) X is not of type N, contains no Q-point and is pairwise
smooth,

(2.12) X contains no zigzag, contains no Q-point and is pairwise
smooth.

The above characterization describes three possible reasons for
the noncontractibility of a fan:

(2.13) being of type N (in particular containing a zigzag),
(2.14) containing a @Q-point, and

(2.15) being not pairwise smooth.

Let us note that no one of the above three conditions (2.13),
(2.14) and (2.15) implies any of the other two. Namely a fan of
type N without any Q-point and being pairwise smooth is shown in
[33], Fig. 5 (also Fig. 6), p. 92. A fan which is not pairwise smooth
but contains no Q-point and is not of type N is pictured in [33],
Fig. 3 (also Fig. 4), p. 91. And finally the third needed example is
constructed below. . |

EXAMPLE 2.16. There is a countable plane fan which contains
a @Q-point, is not of type N and is pairwise smooth.

Proof. In the Cartesian rectangular coordinates in the plane
consider the segment 4 = {(z,0): 0 < z < 1} and at each of its points
of the form (m/2",0), where nec IN and m € {1,3,5,...,2"!} erect
a segment {(m/2",y):0 < y < 1/2"}. Denote by D the union of A
and of all erected segments. Then D is a dendrite for which 4 is
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the closure of the set of all its ramification points (see Fig. 6 of
[39], §49, VI, Remark, p. 247). Let p and ¢ denote the end points
of A. Take, in the upper half plane {(z,y) : y > 0}, a sequence of
arcs pp, such that: (1) ¢ = limp,. (2) for each distinct m, ne N we
have pp, N ppm = {p} = pp. N D, and (3) the arcs pp, approximate D
without folding back so that: D =Limpp,. Next consider the union
DU J{ppn : n € IN} (see Fig. 2), and shrink the arc A C D to the point
p. The resulting space X (pictured here in Fig. 3) is a fan with its
top p being a Q-point. It follows from the definition that X is not of
type N. The argument showing that X is pairwise smooth is based
on 2.8.

Another sufficient condition of noncontractibility of dendroids
which is related in some way to (2.13) has been defined in [29], p.
121. It runs as follows.

Let a surjective mapping g : X — Y from a continuum X onto
Y be given. We say that the triad (X,g,Y) has property (*) provided
that

(2.17) the continuum X is of type N between some points p and ¢,
(2.18) the continuum Y is hereditarily unicoherent,

(2.19) g(p)#g(9),

(2.20) g(pug, )ﬂg(qiip;) {9(am}
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Fig. 3

(2.21) g(gnp}) Ng(phay) = {g(®M)},

where the notation in (2.20) and (2.21) agrees with the definition of
a continuum of type N (see conditions (2.1)-(2.3)). Then the following
result holds (see [29], Theorem, p. 121).

THEOREM 2.22. (Czuba). If a continuum Y is a continuous
image of a continuum X under a mapping g such that the triad
(X,9,Y) has property (*), then Y noncontractible.

Remark 2.23. Let us recall that there exist fans having a
surprising property that is much stronger than (2.13), namely those
which are of type N between each pair of their points (see [48], (3),
p. 386). An uncountable collection of such fans has been used in [48]
to answer the question P 788 of [15], p. 97, viz. to show that there
is no countable family of fans with the property that a (semismooth)
fan is noncontractible if and only if it contains a member of this
family ([48], Theorem 2.3, p. 388).

Now let us come back to the other two conditions each of which
suffices for noncontractibility of a fan, i.e. to (2.14) and (2.15) and
try to examine if these conditions also suffice when applied to some
wider classes of dendroids.

Concerning (2.14) it is known that each fan containing a Q-point
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is not contractible ([49], Theorem 3.2, p. 393; [33], Theorem 2.3, p.
81), but it is conjectured that the implication holds for all dendroids.

Question 2.24. Let a dendroid X contain a Q-point. Is it true
that X is not contractible?

Condition (2.15) seems to be the weakest one among the three,
because (2.15) implies noncontractibility for fans ([33], Theorem 2.4,
p. 82; [49], Theorem 3.3., p. 393), while not for arbitrary dendroids.
This last statement can be seen by the following example.

EXAMPLE 2.25. There exists a contractible plane dendroid
which is not pairwise smooth and has two ramification points only.

Proof. Again in the Cartesian rectangular coordinates in the
plane put a =(-1,0), 6=(0,1), ¢c=(0,0), d =(1,0) and, for each nec IN,
let a, =(~1/n,1/m), b, =(0,1+ 1/m), ¢, =(1/n,1/n), d, = (1,1/n). Define

(2.26) B=EUEUU{E§UananbncnUcndn :n € IN}

(see Fig. 4; compare [25], Fig. 4, p. 78). Next put r = ¢ =(0,0) and,
for each ne N, let 7} =a, and 72 =¢,. Then the sequence r! does not
dominate the sequence r2 because taking s =s! =a for each ne IN
we see that the sequence rls] has the segment 75 as its limit, while
there is no sequence of points s2 converging to s such that the
sequence of arcs r2s2 converges to 7¥3. On the other hand, putting
s=d and s2 =d, we see that the points s2 tend to s, the segments
252 tend to 73, while there is no sequence of points s! converging to
s such that the arcs r,s) converge to rs. Thus r2 does not dominate r!
either, and therefore B is not pairwise smooth. It is easy to observe

that B is contractible.

Remark 2.27. Recall the dendroid 4 described in the Appendix
of [33], Fig. 1, p. 89. Namely, in the Cartesian coordinates in the
plane IR’ put o = (0,-1), b=(0,1), ¢ =(1,0), d = (0,0) and, for each
n-€ IN define the following points, where ¢, = (1/n— 1/(n+ 1))/2:

b = (=1/n,1), by =(0,1+1/m), b = (1/n, 1),

en=(1/n,1/m), ch =(L,1/n—¢y), fu=/n—g,,1/n—g,),
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Fig. 4

b,=(1/n—e,1) and g,=(0,1+1/n—&,).

Further, let B, denote the broken line in IR?> of consecutive
vertices a, b, b, b}, €n, cn, fn, b, @and g,, and put (see Fig. 5)

A=abUcdU| J{B,:ne N}.

Note that 4 contains a copy of the dendroid B above (see (2.26)),
and it also has all the properties mentioned in the conclusion of 2.25.
In particular taking the point d as r in the definition of pairwise
smoothness one can verify that A is not pairwise smooth.

Remark 2.28. To see that there exists a nonplanable contractible
dendroid which is not pairwise smooth take the contractible dendroid
D constructed in [43], p. 321 (compare also [34], Section 4, p. 70 for
another description of the same dendroid). We recall its definition
here, for the reader’s convenience. In the Cartesian coordinates in
the 3-space put a =(0,1,0), b =(0,0,0), c =(0,1/2,0), and, for each
n€ IN, let

ay = (1/n,1,0), b} =(1/n,0,0), ¢} =(1/n,1/2,0),

a, =(—=1/n,1,0), b, =(~1/n,0,0), c; = (—.l/n’ 1/2,0)
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Fig. 5

Denote by C the cone with the vertex (0,1/2,1) over the set
{c}U{c, :neIN}U{c;,_; : n€ IN}. Let pgr stand for the broken line
pg Ugr. Then the dendroid D is defined as

D= -(EU O U U{a‘;n—l b;n—l C;n U bZ_n—l a’gn—-l b2-n S N}
Now taking r = ¢ and putting for each ne IN
ra = 3, and 72 = (—(4n— 1)/[4n2n— 1)],1/2,0)

(i.e., r2 is the mid point of the segment joining az,_, With b5 ) we
see that the sequence ! does not dominate the sequence r2 because
if s = s, =(0,1/2,1), then the sequence rls! has the segment 75 as
its limit, while there is no sequence of points 82 converging to s
such that the sequence of arcs r2s2 converges to 73. On the other
hand, putting s =a and s2 = a5, _, we see that the points s2 tend
to s, the segments r2s2 tend to s, while there is no sequence of
points s, converging to s such that the arcs rls! converge to 7.
Thus r2 does not dominate r! either, and therefore D is not pairwise

smooth. It is known that D is not planable (i.e., that it cannot
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be embedded into the plane): see [11], Observation 4, p. 28 for a
detailed argumentation.
In connection with 2.25, 2.27 and 2.28 we have a problem.

PROBLEM 2.29. Give an internal (i.e. structural) characterization
of all dendroids which are contractible and not pairwise smooth.

We close this section recalling an interesting connection
between contractibility and planability of fans, which is due to L. G.
Oversteegen (see [50] and [51]). Let us recall that the first example
of a nonplanable fan has been constructed by K. Borsuk in [4].

Remark 2.30. A fan X is said to have property P provided that
for each sequence of points {p,} in X converging to the top p of X we
have Ls pp, = {p} (see [50], p. 498). It is evident from the definitions
that if a fan has property p, then its top is not a Q-point. It is known
that having property P is equivalent to local connectivity of the fan
at its top ([50], Theorem 3.1, p. 498), which in turn implies that the
fan can be embedded in the plane ([50], Theorem 5.2, p. 502). This
result gives a solution to a problem raised by the author and Z.
Rudy ([18], Problem 1015, p. 216). On the other hand, Theorem 6.1
of [51], p. 394 says that every contractible fan is locally connected at
its top. Combining these two results we get the following important
result which is due to L. G. Oversteegen [51], and which gives a
solution to Problem 788 raised by the author and C. A. Eberhart in

[15], p. 97. )

THEOREM 2.31. (Oversteegen). Every contractible fan is embed-
dable in the plane.

An example below shows that the above result cannot be
extended to arbitrary dendroids.

EXAMPLE 2.32. There is a nonplanable contractible dendroid
having only two ramification points.

Proof. In fact, consider again the dendroid 4 of the Appendix
of [33], p. 89 (recalled here in Remark 2.27) and note that it is
contractible, it is located in the plane, and its point b is strongly
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inaccessible from its complement in the plane (see [18], p. 206
for the definition). Thus if b4’ means the straight line segment in
3-space which is perpendicular to the plane containing the dendroid
A, then the union 4 Ubd is the needed dendroid. In particular, it is
not embeddable into the plane by Proposition 2 of [18], p. 206.

In connection with Thedrem 2.31 and Example 2.32 we have
the following question.

Question 2.33. For which dendroids does contractibility imply
planability?

3. Bend intersection property.

The following concept has been introduced in [42], p. 548. Let a
continuum X and its subcontinuum A be given. A continuum B c A
is called a bend set of A provided there are two sequences {A.} and
{A;} of subcontinua of X satisfying the following conditions:

3.D A, N AL #0 for each n e IN;
(3.2) A =LimA, =LimA/;
(3.3) B =Lim(4, N A.).

_ We say that a continuum X has the bend intersection property

provided for each continuum A4 ¢ X the intersection of all bend sets
of A is nonempty. In [40] some relations between the two concepts
introduced above and the concepts of a Q-point and of type N are
studied for dendroids. In particular it is shown in Statements 1
and 2 of [40] that if a dendroid X contains a Q-point p, then there
is a subcontinuum of X such that it has {p} as its bend set, and
that no dendroid having the bend intersection property is of type
N. The main result of [40] says that if a fan contains no Q-point
and is not of type N, then it has the bend intersection property.
Thus by Theorem 2.9 one gets that every contractible fan has the
bend intersection property. Moreover, the following characterization
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of contractible fans is an analog of Oversteegen’s one of Theorem
2.9.

THEOREM 3.4. A fan is contractible if and only if it contains no
Q-point, has the bend intersection property and is pairwise smooth.

Proof. Indeed, if a fan X is contractible, then it contains no
Q-point and is pairwise smooth by Theorem 2.9, and it has the bend
intersection property by Theorem 2 of [40]. Conversely, if a fan X
has the property, then it is not of type N by Statement 2 of [40],
and so its contractibility follows from Theorem 2.9.

Another result which is related to the discussed property has
been obtained in [41]. It is proved that a dendroid X is not of type
N if and only if for each arc A contained in X the intersection
of all bend sets of A is nonempty. In particular, this condition is
satisfied for all contractible dendroids (see [41], Corollary). However,
we would like to attain a stronger result.

Question 3.5. (Lee). Does every contractible dendroid have the
bend intersection property?

4. The set function 7.

Some other conditions implying noncontractibility of dendroids
are known which are expressed in terms of the set function 7. They
were discussed e.g. in [1], [3] and [9]. To formulate them, recall
the needed definition. Given a compact space X and a set A C X,
we define T'(A) as the set of all points z of X such that every
subcontinuum of X which contains z in its interior must intersect
A (see [32]. p. 113). It is known (see [2], Corollary 1, p. 373) that
if X is a continuum and A is a subcontinuum of X, then T(4) is a
subcontinuum of X. '

One of the conditions mentioned above can be formulated in

the following way:

(4.1) the continuum X contains two closed subsets 4 and B such
that ANT(B)=0=BNT(A4) and T(A) N T(B)#).
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Then we have the following result (see Corollary 1 in [1], p. 48
and in [9]. p. 273).

PROPOSITION 4.2. (Bellamy, Charatonik). If a continuum X
satisfies condition (4.1), then T(A)NT(B) is a homotopically fixed
proper subset of X, and thus'X is not contractible.

For dendroids condition (4.1) is equivalent (see [23], Lemma 5,
p. 304) to the following one, which has been discussed e.g. in [1], p.
47, [3] and [9], p. 271:

(4.3) the dendroid X contains two points o and b having the property
that
a € X\T(}), b € X\T(a) and T(a) N T(b)#0.

Moreover, if A and B are subsets of X as in (4.1), then, according
to the above quoted result, the points ¢ and b of (4.3) can be chosen
so that a € 4 and b € B.

Note that the converse implication to that of 4.2 does not hold
even for fans, as can easily be observed by various examples, e.g. by
our Example 2.7. Furthermore, a stronger result can be shown: there
is a fan having all three attributes of noncontractibility considered
in Oversteegen’s characterization 2.9, and still without (4.1). This
can be seen by an example below.

EXAMPLE 4.4. There is a countable plane fan X which is of
type N, contains a Q-point, is not pairwise smooth, and which does
not satisfy condition (4.1).

Proof. Put (in the Cartesian coordinates in the plane) o = 0,0),
b=(0,-1), and, for each ne IN, let

an =(=1/n,0), b, = (—1/n,~1), ¢, =(1/n,-1).
Consider a semicircle
cnby = {(z,4) : > + (y+ 1)* = 1/n* and y < 0}
and put (see Fig. 6; compare [15], p. 95)

X1=0abU| {acs U cubs Ubnay, : ne IN}.
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Fig. 6

Thus X, is a fan of type N whose top o is a Q-point. Further,
put d =(0,2) and, for nc IN,

ds = (2/n,2), €, = (2n+1)/[2n(n+ D], 1), fo = (=1/n, 1).

Define

X2=EEUU{ad,,UdnenUafn:n€ IN}

(see Fig. 7; compare also [10], Proposition 4, p. 111 and Fig. 2, p.
112). Thus X; is a not pairwise smooth fan with the top . Note that
X1NXz2 = {a}. Thus the fan X, U X, meets all the required conditions.

On the other hand, we have the following observation.

Remark 4.5. If a fan X is noncontractible because of condition
(4.1), then it must satisfy at least one of (2.12), (2.13) and (2.14),
according to Theorem 2.9. The example below shows that X may
satisfy all three conditions.

EXAMPLE 4.6. There exists a countable plane fan which satisfies
(4.1), is of type N, contains a Q-point, and is not pairwise smooth.

Proof. In fact, let again X, have the same meaning as in the
proof of 4.4, and let us take as X the one-point union of two copies
of X, such that the fans under consideration have the common top
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Fig. 7

as the only point of their intersection. Then X has all the needed
properties.

Remark 4.7. Examples 4.4 and 4.6 show that all three conditions
(2.13), (2.14) and (2.15) together imply neither condition (4.1) nor
its negation. '

In connection with the above discussion we have the following
question on possible relations between (4.1) and the three conditions.

Question 4.8. Do there exist six (countable, plane) fans each of
which satisfies condition (4.1) and either exactly one or exactly two
of the three: (2.13), (2.14) and (2.15)?

The assumption demanding that the continuum X considered
in Remark 4.5 is just a fan is necessary in the statement of 4.5 by
an example below.

EXAMPLE 4.9. There exists a plane dendroid which satisfies
(4.1), is not of type N, has no Q-point and is pairwise smooth.

Proof. Consider again the dendroid DU J{pp, : n € IN} defined in
the proof of Example 2.16 and drawn in Fig. 2. For each n € IN pick up
a point c, € pp, so that for any point 2 € pc,\{c,} its first coordinate
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is less than 2/3 and that lim ¢, = (2/3,0). Let X; = DUJ{pc, : n € IN}
and denote by X, the image of X; under the central symmetry with
centre (1/2,0). Finally put X = X; U X,. Now taking in (4.1) A = {p}
and B = {¢} we see that T(4) = DN {(z,y) : = < 2/3)} and that 7(B)
is the image of T(4) under the central symmetry above considered.
Thus T(A)NT(B) = {(z,0): 1/3 < 2 < 2/3} and so (4.1) is satisfied. It
is evident that X is not of type N and contains no Q-point. Finally,
its pairwise smoothness is a consequence of Remark 2.8.

Given a compact space X and a set A C X, we define K(4) as
the set of all points z of X such that every subcontinuum of X which
contains A in its interior must contain z (see [35], p. 404). It is known
(see e.g. [62], Lemma 1, p. 374) that if X is a hereditarily unicoherent
continuum and if 4 is connected, then K(A4) is a continuum. Further
([27], Lemma 6, p. 197), for any subcontinuum A of the continuum
X we have K(A)={z € X : T(z) N A=D}.

Consider the following condition that a dendroid X may satisfy:

(4.10) there is a point p in X with {p}#K(p) C T(p).

Question 4.11. Does noncontractibility of a dendroid X follow
from condition (4.10)? For a partial result related to this question
see Remark 6.9 below. -

5. R-continua.

Another set of conditions that imply noncontractibility of
dendroids is formed by ones considered in [16], [22], [23], [25]
and [30]. Namely generalizing the concept of an R-arc and of an
R-point defined in [16], p. 230 and 231 and exploited in [10], S. T.
Czuba has introduced in [22], Definitién 1, p. 300 the concept of an
R-continuum, renamed later in [25] an R!-continuum, and two other
similar notions of B>~ and R3-continua. Following [25], Definitions
1.1, 1.2 and 1.3, p. 75, a nonempty proper subcontinuum K of a
dendroid X is called an R'-continuum (where i =1,2, or 3) if there
exist an open set U containing K and two sequences {C]} and {C?}
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of components of U such that

LsCl N LsC? fori=1,
K =4 LimC}! NLim¢? for i =2,
Lic, for i =3.

Theorem 9 of [25], p. 78 (see also [22], Theorem 3, p. 300) says
that

(5.1) if a subcontinuum K of a dendroid X is an R'-continuum (where
i =1,2 or 3), then K is homotopically fixed, and so X is not
contractible.

A relation between (5.1) and (4.1) is known from [23], Theorem
7, p. 305 (see also [25], Proposition 12, p. 79 and the paragraph
following it). It runs as follows.

(56.2) If subcontinua A and B of a dendroid X satisfy the condition
formulated in (4.1), then T(A)NT(B) is an R!-continuum, while
it can be neither an R*-continuum nor an R3-continuum.

Remark 5.3. The converse implication to that of (5.2) does not
hold: the fan X, defined in the proof of Example 4.4 contains an
R'-continuum (being a singleton {(0, 1)}) for which condition (4.1) is
not satisfied.

Some interrelations between the concept of an R-arc and those
of Ri-continua are studied in [25]). Namely it is proved (see [25],
Proposition 2 and Examples 3 and 4, p. 75 and 76) that

(5.4) a) each R-arc is an R'-, an R?- and an R3-continuum;

b) there exist dendroids containing R'-continua (where i =1,2
and 3) which are either arcs or points but not R-arcs.

Further, it is known ([25], Proposition 5 and the paragraph
following it, p. 77; and Proposition 10 and Corollary 11, p. 78) that

(5.5) a) each R*-continuum is both an R!- and an R3-continuum;
b) each R!-continuum contains an R*-continuum;

¢) each R'-continuum contains an R3-continuum, and if the
R!-continuum is a singleton, then it is also both an R* and an
R3-continuum;
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d) there is an R'-continuum which is not an R3-continuum;
e) there is an R3-continuum which is not an R'-continuum;

f) there is a continuum which is both an R'- and an R*-continuum,
while it is not an R*-continuum.

Remark 5.6. Example 6 of [25], p. 77 which shows assertion d)
of (5.5) is invalid. Namely consider again the dendroid B defined by
(2.26) (and pictured in Fig. 4), put B, = Bn{(z,y) € R*: z < 1/2},
and denote by B, the image of B; under the central symmetry with
- center ¢ =(0,0). Finally put Y = B, U B,. It is said in [25], Example
6, p. 77 that the segment

K={0eclR:-1/2<z<1/2}

is an R'-continuum but is not an R3-continuum. However, taking
U=YN{(,y) € IR*—3/4 < z < 3/4} and considering the sequence of
all components C, of U we see that X =LiC,, so K is an R3-continuum.
A proper example, which is due to K. Omiljanowski, is presented

below.

EXAMPLE 5.7. (Omiljanowski). There exists a plane dendroid
having three ramification points and containing an arc which is an
R!- but not an R3-continuum.

Proof. Put in the Cartesian coordinates in the plane:
a=(-2,0), b=1(0,2), c=(2,0), d=(0,0)

and, for each n€ IN, let a, = (=1/n,1/m), cn = (1/n,1/m), en = (=2, ~1/n),
pn =(=1,1/n), g, =(1,1/n), and define

XzﬁéugaUU{E;UananEUcnanEe_n:nE IN}

(see Fig. 8). Then X is a plane dendroid with b, ¢ and 4 as the
only ramification points. Put p=(-—1,0) and ¢ = (1,0). To see that the
segment 77 is an R'-continuum consider as U the common part of X
and of the square with vertices (+5/4, +£5/4). Putting for each n ¢ IN:

Chat =UNbpy, Cy, =UNbg,, and C2 =U Nze,
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Fig. 8

we see that pg =LsC!NLsC?.

To show that pg is not an R3-continuum suppose the contrary.
Thus there exist an open set U containing pg and a sequence of
components C, of U with

(5.8) 57 = LiC,.

Let
X*={(z,p) € X :y 20} =acUbdU|_J{Pntn : n € N},

and
X~ ={,p) € X :y <0} =aeU|_J{ze : ne N}.

We claim that infinitely many components C, intersect X*.
Indeed, if not, almost all of them intersect X~\@, and since for
each component of U its closure meets the boundary FrU of U ([39],
§47, III, Theorem 2, p. 172), we conclude that FrUnLi C,#0, i.e.,
FrU Nnpg#d by (5.8), contrary to pg C U.

By the claim we have p;a; C Cy;) and ¢;b; C Cy;) for sufficiently
large indices i and j, where n(i) and n(j) tend to infinity if i and
Jj do. Since Limp;a; = pd and Limg;b; = dg, we conclude from (5.8)
that b € U, and hence for sufficiently large i the arcs p;g; are all
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in the same fixed component C,,. So there is an index iy such that
U{Big : ¢ > i0} C Cn. Since pg and bd are in the closure of the above
union and since the closure of a connected set is connected, we have

pg U bd C Cp,, and so
pqUbdU| J{Bidi 1 § > 0} C Cr.

Denote by I the interior of the considered union and note
that I = bd\{d} U U{pigi : i > i0}. Since I ¢ Int C, C C, and since
components are pairwise disjoint, there is no subsequence C, of the
sequence C, with Cy, N X*#), contrary to the claim. Therefore the
proof is complete.

Combining Theorem 2.9 and (5.1) we see that if a fan X contains
an R'-continuum, where ;= 1,2 or 3, then at least one of the three
conditions (2.13), (2.14) and (2.15) holds. It would be interesting to
know if the existence of some particular Ri-continuum in X implies
some special one of the three, and which one; and whether the
implication is true for a wider class of dendroids.

Observe that the fan X, defined in the proof of Example 4.4
(see again Fig. 7; compare Remark 5.3) contains a singleton (viz.
{(0,1)}) which is an R'-, R?- and R3-continuum, so that X, is not
contractible, while it neither contains any Q-point nor is of type N.
On the other hand, Example 2.25 (compare also Remarks 2.27 and
2.28) shows that the property of not being pairwise smooth does not
imply the existence of an Ri-continuum for dendroids in general.
Similarly, both the existence of a Q-point and being of type N do
not imply containing any R‘-continuum, as it can be seen by the
example of the fan X; discussed here in the beginning of the proof
“of Example 4.4 (and pictured in Fig. 6).

Remark 5.9. An example is shown (see [17], Example 5.5) of a
plane dendroid X containing a dendrite ¥ with the property that for
each point r € Y there is a sequence of.points r, € X\Y converging to
r such that for each point s € X\{r} and for each sequence of points
sn of X converging to s, the limit Lim r,s, never equals the arc rs.
Thus in the light of Remark 2.8 the dendroid X is pairwise smooth.
Furthermore, X contains a singleton that is an Ri-continuum for
each i € {1,2,3}. Thus the presence of an Ri-continuum in a dendroid
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does not imply that the dendroid is not pairwise smooth. Some
additional structural conditions under which the existence of an
Ri-continuum in a dendroid X implies the property that X is not
pairwise smooth are presented in Chapter 6 of [17].

Remark 5.10. The concept of an R’-continuum, originally defined
for dendroids only, can be extended into all continua without any
change, so that its main property, (5.1), remains true (see [20],
Theorem 2, p. 209). However some relations between various R'-
continua known for dendroids are not true for arbitrary continua.
Such are e.g. the inclusions considered in b) and c¢) of (5.5), as it is
stated in Theorem 1 of [30]. So in Proposition 1 of [20], p. 208, it
should additionally be assumed, according to Theorem 2 of [30], that
the continuum X under consideration is hereditarily unicoherent.

Remark 5.11. The concepts of R!-continua, extended as indicated
in 5.10, have been shown to be good tools in the study of contractibility
of hyperspaces 2X of all nonempty closed subsets or C(X) of all
subcontinua of a given continuum X (see [20]; for some other results
in this topic see also [19]).

6. Hereditary contractibility.

A dendroid is said to be hereditarily contractible provided each
of its subdendroids is contractible. The first example of a dendroid
(even ‘a fan) that is contractible but not hereditarily contractible
has been constructed by F.B. Jones in [36] as a counterexample to
a false result, viz. Theorem 1 of [15], p. 89. Namely the so called
harmonic hooked fan is contractible (see [7], p. 31; compare also
[16], Example 7, p. 232) and it contains a copy of a noncontractible
fan of Proposition 4 and Fig. 2 of [10], p. 111 and 112. For a similar
example see [45], Example (1.66), p. 116. Since then, the following
problem remains open ([16], Question 13, p. 235).

PROBLEM 6.1. Give an internal characterization of hereditarily
contractible dendroids.

It seems to me that S. T. Czuba and Z. Karno are very close to
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solving this problem (see their forthcoming paper [31]).

Another example of a contractible but not hereditarily contracti-
ble dendroid has been described by B. G. Graham in [33], Appendix,
Fig. 1, p. 89. This dendroid A (recalled here in Remark 2.27) has a
much stronger and surprising property: no matter which choice of a
contraction is made, there must be a time at which the image is a
noncontractible dendroid. More precisely,

(6.2) for every homotopy H : 4 x [0,1] — A satisfying H(z,0) = z and
H(z,1) =p for each z and some p in A, there exists ¢t € [0, 1] such
that H(A x {t}) is not contractible.

Note that the dendroid A above is not a fan: it has two
ramification points. So, one can ask the following question.

"Question 6.3. Is it true that condition (6.2) holds for no fan A4?

PROBLEM 6.4. Give an internal characterization of dendroids A
satisfying condition (6.2).

Recall that a dendroid X is said to be smooth ([14], p. 298)
provided that there is a point p in X (called an initial point of X)
such that for every point ¢ € X and for every convergent sequence
of points a, of X the condition lim a, = o implies that the sequence
of arcs pa, is convergent, and Lim pa, = pa. It is known that every
smooth dendroid is contractible ([14], Corollary 12, p. 311). Since
smoothness is a hereditary property ([14], Corollary 6, p. 299), we
conclude (see [16], Proposition 14, p. 235) that

(6.5) every smooth dendroid is hereditarily contractible,

but not conversely ([16], p. 237). Recall that the converse implication
is true for fans ([16], Theorem 16, p; 236; compare Theorem 6.8
below).

As a modification of smoothness, S.T. Czuba has introduced the
following concept ([24], p. 169). A dendroid X is said to be pointwise
smooth provided that for each point o € X there is a point p(s) € X
(called an initial point for a in X) such that for every convergent
sequence of points s, of X the condition lim 4, = a implies that
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the sequence of arcs p(a)a, is convergent, and Lim p(a)a, = p(a)a. It
has been shown (see e.g. [19], [24], [26] and [28]) that this new
concept plays an important role in study of hereditary contractibility
of dendroids. Namely it is known ([24], Proposition 2, p. 170; [26],
Corollary 3.10, p. 202) that

(6.6) if a dendroid is hereditzirily contractible, then it is pointwise
smooth.

We do not know whether the converse implication to (6.6) is
true (compare [24], p. 170 and [26], (3.11), p. 202).

Question 6.7. (Czuba). Does pointwise smoothness of dendroids
imply their hereditary contractibility?

The answer to 6.7 is known to be affirmative in the case when
the dendroid is a fan ([8], Proposition 7, p. 74; [16], Corollary 17, p.
237; [24], Theorem 1 and Corollary 1, p. 170; [26], Proposition 2.4
and Corollary 2.5, p. 198). Namely the following result holds.

THEOREM 6.8. For every fan smoothness, pointwise smoothness
and hereditary contractibility are equivalent.

Moreover, the above result has been extended in [28], Corollaries
4 and 9, and Theorem 5, p. 29 and 30) to a class of dendroids
satisfying a condition (CS) expressed in terms of clumps of continua
([21], p. 91). In connection with question 6.7 it is not known whether
this extension is proper or not (compare [28], Question 6, p. 29).

Remark 6.9. Recall that a dendroid is said to have property [T]
provided for each two its distinct points z and y we have either
zy N T(z)#{z}, or zyN T'(y)#{y}, or else T(z) NT(y) = § (see [26], §3, p.
198). A similar condition has been used in [14], Theorem 6, p. 302
to characterize smooth dendroids. Theorem 3.1 of [26]. p. 193 says
that property [T] characterizes pointwise smooth dendroids. Some
other characterizations of pointwise smooth dendroids, in particular
ones employing the set functions 7" and K, are discussed in §3 of
[26], p. 198-199, in Theorem 2 of [24], p. 171 and in [27], p. 197-199.

Remark 6.10. In connection with Question 4.11 let us note that
condition (4.10) implies that the dendroid X is not pointwise smooth
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by Theorem 11 (iii) of [27], p. 198, and hence it is not hereditary
contractible according to (6.6).

Remark 6.11. We say that a dendroid X has property [R] provided
there exist two subcontinua 4 and Y of X such that Ac Y c X
and A is an R3-continuum in Y. It is shown in Theorems 3.7 and
3.8 of [26], p. 201 that the negation of this property is intermediate
between hereditary contractibllity and pointwise smoothness. Some
other relations between R*-continua, hereditary contractibility and
pointwise smoothness are considered in Proposition 3.6 of [26], p.
201 and in Theorem 16 of [27], p. 199.

Let two spaces X and Y be given with X ¢ Y. Then X is
said to be contractible in Y provided that there is a mapping
H:X x[0,1] -» Y satisfying H(z,0)=z and H(z,1)=p for each z € X
and for some p € Y. Then contractibility means contractibility in
itself. A dendroid X is said to be strongly noncontractible provided it
is contractible in no other dendroid. Observe the following statement.

Statement 6.12. If a dendroid is strongly noncontractible, then
it cannot be embedded into any contractible dendroid.

Indeed, suppose on the contrary that there are a strongly
noncontractible dendroid X, a contractible dendroid ¥ and an
embedding e: X — e(X)CY, and let H : Y x [0,1] € Y be a homotopy.
Then the partial mapping

Hle(X)x [0,1]:e(X) x [0,1] - ¥

is obviously again a homotopy, i.e., e(X) is contractible in the
dendroid Y.

Question 6.13. For what dendroids is the converse to 6.12 true?

For example dendroids which are not uniformly arcwise
connected are strongly noncontractible. To see this use Theorem 3
of [15], p. 94, saying that every contractible dendroid is uniformly
arcwise connected and note that uniform arcwise connectivity is
a hereditary property (cf. [8], Proposition 8, p. 74). On the other
hand, the opposite class of noncontractible dendroids, i.e., of those
which are embeddable into contractible ones, also is nonempty, as
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can easily be observed by any example of a dendroid which is not
hereditary contractible. Thus the following problem seems to be
natural.

PROBLEM 6.14. Give a structural characterization of strongly
noncontractible dendroids.

A similar problem for fans is related to Oversteegen’s characte-
rization (Theorem 2.9). Namely let us observe that if a dendroid X
of type N is a subset of a dendroid Y, then Y is also of type N. And
similarly, if X contains a Q-point, then so does Y. But if X is not
pairwise smooth, then Y can be pairwise smooth, as can easily be
seen from the Jones’ example of a harmonic hooked (contractible)
fan that contains a noncontractible fan being not pairwise smooth,
not of type N and without any Q-point (see the beginning of the
present section). Hence we have the following result and question.

PROPOSITION 6.15. If a noncontractible fan X can be embedded
into a contractible fan Y, then X neither is of type N nor contains
any Q-point.

Question 6.16. For what fans X is the converse to 6.15 true?

7. Selections.

Given a continuum X, we denote by C(X) the hyperspace of all
nonempty subcontinua of X equipped with the Vietoris topology, or
equivalently with the Hausdorff metric. A continuous selection on
C(X) means a mapping o : C(X) — X such that o(4) € A for each
A € C(X). If C(X) admits a continuous selection, then X is said to
be selectible. It is known (see [46], Lemma 3, p. 370) that

7.1) each selectible continuum is a dendroid,

and moreover (see [10], Proposition 2, p. 110) that

(7.2) each selectible dendroid is a continuous image of the Cantor
fan, and thus it is uniformly arcwise connected.
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As an easy consequence of (7.1) and of the definitions we see
(cf. [46], Corollary, p. 371) that

(7.3) a locally connected continuum is selectible if and only if it is a
dendrite.

It can easily be observed that contractible curves and selectible
continua have some common properties: the reader is requested to
compare (0.1), (0.2) and (0.3) with (7.1), (7.2) and (7.3). Moreover,
condition (2.13), i.e. being of type N, implies both noncontractibility of
dendroids ([47], Theorem 2.1, p. 838) as well as their nonselectibility
([42], p. 548). Further, it is conjectured that the bend intersection
property is another common link between the class of contractible
and the class of selectible dendroids. Namely selectible dendroids
enjoy this property ([42], Corollary, p. 548), as well as contractible
fans (see [40]), and for contractible dendroids we have a partial
result saying that for each arc contained in such a dendroid the
intersection of all its bend sets is nonempty (see [41] and recall
Question 3.5). '

On the other hand, Propositions 3 and 4 of [10], p. 110 and
111 contain examples of noncontractible and selectible dendroids
(even with some extra properties). S. B. Nadler, Jr., asked in [44] if
every contractible dendroid is selectible. The question, repeated in
his book ([45], (5.11), p. 259) has been solved in the negative by T.
Mackowiak ([43], Example, p. 321) who constructed a contractible
and nonselectible dendroid D (recalled here in Remark 2.28) by
combining properties of some two examples, viz. his own Example
1 of [42], p. 548 and Graham’s example A of the Appendix in [33],
p. 89 (compare Remark 2.27). See [11] for a discussion concerning
~ some further properties of dendroid D and problems related to this
topic. Nevertheless, the question is still open if we require that the
dendroid has some additional properties, e.g. is a fan. And though
we know an internal characterization :of contractible fans (see [49],
Theorem 3.4, p. 393; cf. [33], Theorems 2.1, 2.3, 2.4 and 3.10, p. 81,
82 and 88; here Theorem 2.9), interrelations between contractibility
and selectibility for these continua are not clear enough, and results
in this topic seem to be rather far from being final ones. Thus, the
following question is open ([11], Problem 7. p. 28).
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Question 7.4. Does there exist a contractible and nonselectible
fan?

To see other differences between contractibility and selectibility
for dendroids recall that selectibility is a hereditary property (see
[10], p. 113). In contrast to this, contractibility is not a hereditary
property, even for countable plane fans, as it was recalled above, in
the beginning of the previous section.

Hereditary contractibility of dendroids is strongly related to
their selectibility. Namely L. E. Ward, Jr., has defined in [53] a
special selection, called rigid, and has shown that a dendroid X
admits a rigid continuous selection on C(X) if and only if X is
smooth ([53], Theorem 2, p. 1043). According to (6.5) each such
dendroid is hereditarily contractible. The converse implication, i.e.
from hereditary contractibility to the existence of a rigid selection,
is not true in general because there is a hereditarily contractible
and not smooth dendroid ([16], p. 237). However this implication is
true for fans by Theorem 6.8 above and the quoted result of Ward:

(7.5) a fan X is hereditarily contractible if and only if it admits a
rigid selection on C(X).

In connection with (7.5) and with Mackowiak’s example of a
contractible and nonselectible dendroid the question of Nadler can
be modified as follows (compare [11], Problem 9, p. 29).

Question 7.6. Does hereditary contractibility of dendroids imply
their selectibility?

8. Final remarks.

Some areas of continua theory which are related to contractibility
problems were not discussed in -this paper. One of them is
contractibility of hyperspaces. For a large information on this topic
the reader is referred to Chapter 16 of Nadler’s book [45]. Some
relations between the concept of an R’-continuum and hyperspace
contractibility can be found in [20]. See also Remark 5.11 above.

Another set of problems which was not even touched here
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concerns contractibility and mappings. To be more clear, let us
formulate the following problem, which is rather a program of a
future research than a particular question.

PROBLEM 8.1. What are all mappings that preserve contracti-
bility of dendroids?

In connection with this recall that the property of being a
dendroid is preserved under confluent mappings (and therefore
under monotone or open ones, see [6], Corollaries 1 and 2, p. 219).
But even monotone mappings do not preserve contractibility.

Examples are known showing that. contractibility of dendroids
is not preserved under the inverse limit operation even if all spaces
of the inverse sequence are dendrites with finitely many end points
only and all bonding mappings are either monotone relative to some
points (see Example 2 of [13], p. 147, and a discussion following
it, p. 148) or are retractions ([12], Example, p. 10). The following
problem remains open.

PROBLEM 8.2. Find some (necessary and / or sufficient) conditions
under which the inverse limit of contractible continua (dendroids) is

contractible.
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