REMARKS ON FORCED LAGRANGIAN SYSTEMS WITH PERIODIC POTENTIAL (*)

ELVIRA MIRENGHI (Bari) ADDOLORATA SALVATORE (Potenza)

0. Introduction.

Let us consider the Lagrangian function

$$\mathcal{L}(t,q,\xi) = \frac{1}{2} \sum_{i,j=1}^{N} A_{ij}(t,q) \xi_i \xi_j - V(t,q) \quad q, \xi \in \mathbb{R}^N$$

where A_{ij} (i, j = 1, ..., N) and V are C^1 real functions defined in \mathbb{R}^{N+1} .

In this paper we look for periodic solutions q=q(t) of the following forced Lagrangian system

(0.1)
$$\frac{d}{dt}\frac{\partial \mathcal{L}}{\partial \xi}(t,q,\dot{q}) - \frac{\partial \mathcal{L}}{\partial q}(t,q,\dot{q}) = h(t)$$

where h is a T-periodic forcing term and \mathcal{L} is the Lagrangian function periodic in the variables t and q.

Sponsored by (Fondi 60% problemi diff. non lineari e teoria dei M.U.R.S.T. punti critici; fondi 40% eq.ni diff. e calcolo delle variazioni).

^(*) Entrato in Redazione l'8 maggio 1991.

When h is a zero mean value function, the existence of multiple solutions of problem (0.1) has been already established (see [2], [3], [4], [5], [9]).

In the case when the mean value of h is not zero, it is reasonable to conjecture that $\left|\frac{1}{T}\int_0^T h(t)dt\right|$ must be small enough in order that (0.1) admits periodic solutions. Indeed it is possible to show that problem (0.1) may have no solutions if no assumptions on h are stated (see [10]).

In [10] it has been proved that problem (0.1) admits solutions if only one of the components of h has non-zero mean value (see also [11]).

The following sections are devoted to the study of problem (0.1) when more than one of the components of h have non-zero mean value.

In Theorem 1.2 it will be proved that, under suitable conditions, problem (0.1) has at least two T-periodic solutions.

Moreover some further information on the set of the forcing term h whose corresponding Lagrangian system (0.1) admits solutions will be given if $\frac{\partial \mathcal{L}}{\partial t} = 0$.

We introduce now some notations which will be used in the following sections.

- $-\mid\cdot\mid$ denotes the Euclidean norm of \mathbb{R}^N and $(\cdot|\cdot)$ its usual inner product;
- if $1 \le p < \infty$ the space

$$L^p = L^p([0,T], \mathbb{IR}^N) = \{q : \mathbb{IR} \to \mathbb{IR}^N | q \ T - \mathbf{periodic}, \ \int_0^T |q(t)|^p dt \}$$

is meant to be endowed with the usual L^p -norm here denoted by $|\cdot|_p$;

- $-|\cdot|_{\infty}$ and $|\cdot|_{C^p}$ denote the standard norms of $C(\mathsf{IR},\mathsf{IR}^N)$ and $C^p(\mathsf{IR},\mathsf{IR}^N)$ respectively;
- $-H = H^1([0,T], \mathbb{R}^N)$ represents the Sobolev space obtained by the closure of the C^{∞} T-periodic \mathbb{R}^N -valued functions q = q(t)

endowed with the norm

$$||q|| = \left[\int_0^T (|\dot{q}|^2 + |q|^2) dt\right]^{1/2};$$

$$- \tilde{H} = \{ q \in H | \int_0^T q(t)dt = 0 \}.$$

1. The main result.

In this section we state the existence of periodic solutions of the periodic forced Lagrangian system (0.1) when the forcing term h has non-zero mean value.

In this case system (0.1) becomes

$$(1.1)_c \qquad \frac{d}{dt} \frac{\partial \mathcal{L}}{\partial \xi}(t, q, \dot{q}) - \frac{\partial \mathcal{L}}{\partial q}(t, q, \dot{q}) = f(t) + c$$

where f has zero mean value and $c = (c_1, c_2, ..., c_N) \in \mathbb{R}^N$.

From now on the following hypotheses on A and V are assumed: There exist T, T_1 , T_2 , ..., T_N real positive constants such that

- (A) $A(t,q) = \{A_{ij}(t,q)\}$ is a C^1 symmetric positive defined $N \times N$ matrix and $A(t+kT,q+(k_1T_1,\ldots,k_NT_N)) = A(t,q)$ for any $(t,q) \in \mathbb{R} \times \mathbb{R}^N$, $k, k_0 \in \mathbb{Z}, s = 1,\ldots,N$;
- (V) $V(t,q) \in C^1$ and $V(t + kT, q + (k_1T_1, ..., k_NT_N)) = V(t,q)$ for any $(t,q) \in \mathbb{R} \times \mathbb{R}^N$ and $k, k_s \in \mathbb{Z}, s = 1, ..., N$.

As A(t,q) and V(t,q) are periodic in the variable q, if q=q(t) is a T-periodic solution of $(1.1)_c$, for any $k_s \in \mathbb{Z}$, s=1,...,N, $q(t)+(k_1T_1,...,k_NT_N)$ is a solution too.

Thus, we need the following definition:

DEFINITION 1.1. The solutions $q_1 = q_1(t)$ and $q_2 = q_2(t)$ are called distinct if there exist $t \in [0,T]$ such that $q_1(t) - q_2(t) \neq (k_1T_1, ..., k_NT_N)$ for any $k_s \in \mathbb{Z}$, s = 1, ..., N.

The following theorem holds:

THEOREM 1.2. Let A = A(t,q) and V = V(t,q) satisfy (A) and (V) and $f = (f_1, ..., f_N)$ be a T-periodic continuous function with zero mean value.

Then there exist 2N real constants $d_i \leq 0 \leq D_i$, i = 1, ..., N such that

- i) if $d_i < D_i$ for any i = 1, ..., N, problem $(1.1)_c$ admits at least two distinct solutions for any $c = (c_1, ..., c_N) \in \mathbb{R}^N$ such that $d_i < c_i < D_i$ for any i = 1, ..., N;
- ii) if there exists $I \subset \{1,...,N\}$, $I \neq \emptyset$ such that $d_i = D_i$ for any $i \in I$ and $d_i < D_i$ elsewhere, then problem $(1.1)_c$ admits infinitely many solutions for any $c = (c_1,...,c_N) \in \mathbb{R}^N$ such that $c_i = 0$ for any $i \in I$ and $d_i < c_i < D_i$ for any $i \notin I$.

*Remark.*1.3. In [10] (Theorem 1) an analogous result has been stated when $c = (0, ., 0, c_i, 0, ., 0)$ and assumptions (V) and (A) hold.

Moreover Theorem 2 of [10] gives suitable additional conditions on V which estimate d_i and D_i , and assure $d_i \neq D_i$.

In particular that occurs in the case of the double pendulum.

2. Proof of Theorem 1.2.

The research of the T-periodic solutions of problem $(1.1)_c$ can be reduced to the research of the critical points of the following action functional

(2.1)
$$F_{c}(q) = \frac{1}{2} \int_{0}^{T} (A(t,q)\dot{q}|\dot{q})dt - \int_{0}^{T} V(t,q)dt + \int_{0}^{T} (f|q)dt - \sum_{i=1}^{N} c_{i} \int_{0}^{T} q_{i}dt = F_{o}(q) - \sum_{i=1}^{N} c_{i} \int_{0}^{T} q_{i}dt,$$

where $q = (q_1, \ldots, q_N) \in H$.

As V is bounded, in general nothing can be said about F_c satisfying the classical Palais-Smale condition. In fact a priori estimates on critical levels cannot be established.

In order to overcome this difficulty, a method introduced in [10] will be generalized.

We will prove theorem 1.2 by induction on the number n of the non zero components of the vector c.

We recall that if $c = (0, ..., c_i, ... 0)$ it has been proved that there exist two constants $\bar{d}_i \leq 0 \leq \bar{D}_i$, such that:

- i) if $\bar{d}_i = 0 = \bar{D}_i$, for any $\xi \in \mathbb{R}$ problem $(1.1)_o$ admits a T-periodic solution $q = (q_1, \dots, q_N)$ with $\frac{1}{T} \int_0^T q_i dt = \xi$;
- ii) if $\bar{d}_i < \bar{D}_i$, problem $(1.1)_c$ admits at least two distinct solutions for any $c = (0, \ldots, c_i, \ldots, 0)$, such that $\bar{d}_i < c_i < \bar{D}_i$.

Moreover the first solution is obtained minimizing the functional F_c on the set

$$\Lambda_{\left[\xi_{1},\xi_{2}\right]} = \left\{ q \in H \middle| \xi_{1} \leq \frac{1}{T} \int_{0}^{T} q_{i} dt \leq \xi_{2} \right\}$$

where ξ_1 , ξ_2 are suitable real numbers, and proving that

$$\inf_{\Lambda_{[\xi_1,\xi_2]}} F_c(q)$$

is achieved at an interior point of $\Lambda_{[\xi_1,\xi_2]}$.

It follows that if $\bar{d}_i = 0 = \bar{D}_i$ for any $i \in \{1, ..., N\}$ the existence of solutions is assured only for problem $(1.1)_o$.

In order to prove theorem 1.2 let us suppose now that there exist $i \in \{1, ..., N\}$ such that $\bar{d}_i < \bar{D}_i$; without loss of generality assume i = 1 (see [10]).

Denote $d_1 = \bar{d}_1$ and $D_1 = \bar{D}_1$.

For sake of brevity, the proof by induction will be given when the vector c has only two non-vanishing components, for istance $c = (c_1, c_2, 0, \dots 0)$.

In this case the action functional becomes

$$\begin{split} F_c(q) &= \frac{1}{2} \int_0^T (A(t,q)\dot{q}|\dot{q})dt - \int_0^T V(t,q)dt + \int_0^T (f|q)dt - \\ &- c_1 \int_0^T q_1 dt - c_2 \int_0^T q_2 dt. \end{split}$$

In the following we will assume $d_1 < c_1 < D_1$ and denote

$$F_{c_o}(q) = F_o(q) - c_1 \int_0^T q_1 dt$$

where $c_o = (c_1, 0, ... 0)$.

If $\eta \in \mathbb{R}$, as F_{c_o} is bounded from below in $\Lambda_{[\xi_1,\xi_2]}$, then F_c is bounded from below in

$$\Lambda_{[\xi_1,\xi_2],\eta} = \left\{ q \in H | \xi_1 \le \frac{1}{T} \int_0^T q_1 dt \le \xi_2, \ \frac{1}{T} \int_0^T q_2 dt = \eta \right\}$$

The following lemma holds:

LEMMA 2.1. For any $\eta \in \mathbb{R}$ the functional F_c reaches its minimum in $\Lambda_{[\xi_1,\xi_2],\eta}$.

Proof. As $\Lambda_{[\xi_1,\xi_2],\eta}$ is a closed subset of the following manifold of codimension one

$$\Lambda_{\eta} = \left\{ q \in H \middle| \frac{1}{T} \int_{0}^{T} q_{2} dt = \eta \right\}$$

the thesis will be reached proving that the functional F_c satisfies a Palais-Smale - type condition.

Let $\{q_k\}$ be a sequence in $\Lambda_{[\xi_1,\xi_2],\eta}$ such that

(2.2)
$$\{F_c(q_k)\}\$$
 is bounded

and

$$\{(F_{c|\Lambda_n})'(q_k)\} \to 0 \text{ as } k \to \infty$$

As $\frac{1}{T}\int_0^T q_{1,k}dt \in [\xi_1,\xi_2]$, $\frac{1}{T}\int_0^T q_{2,k}dt = \eta$ and because of the periodicity of F_c in q_i , i=3,...,N,

$$0 \leq \frac{1}{T} \int_0^T q_{i,k} dt \leq T_i \quad i = 3, \dots, N,$$

it follows that $\{q_k^0\}$, $q_k^0 = \frac{1}{T} \int_0^T q_k dt$, is bounded.

Then, by (2.2),

$$\frac{1}{T} \int_0^T (A(t, q_k) \dot{q}_k | \dot{q}_k) dt + \int_0^T (f | q_k) dt$$

is bounded and hence $\{|\dot{q}_k|_2\}$ is bounded too.

Then $\{||q_k||\}$ is bounded and therefore it has a weakly convergent subsequence in H, still denoted $\{q_k\}$.

Using standard arguments (see [2]), it can be shown that $\{q_k\}$ strongly converges to an element of $\Lambda_{[\xi_1,\xi_2],\eta}$.

From now on $q_{\xi,\eta}$ will denote an element of H such that

$$\xi = \frac{1}{T} \int_0^T q_{1;\xi,\eta} dt, \quad \eta = \frac{1}{T} \int_0^T q_{2;\xi,\eta} dt.$$

In particular $q_{\xi(\eta),\eta}$ will denote an element of $\Lambda_{[\xi_1,\xi_2],\eta}$ such that

$$(2.4) F_c(q_{\xi(\eta)}, \eta) = \min_{\Lambda_{\{\xi_1, \xi_2\}, \eta}} F_c(q)$$

and $\bar{q}_{\xi,\bar{\eta}}$ a minimum point of F_{c_o} in $\Lambda_{[\xi_1,\xi_2]}$.

Let us denote now L the Lipschitz constant of V and $\lambda_o \in \mathbb{R}_+$ such that

$$(A(t,q)\xi|\xi) \ge \lambda_0|\xi|^2$$
 for any $t \in \mathbb{R}, q, \xi \in \mathbb{R}^N$.

Moreover, set

$$\Gamma_{[\xi_1,\xi_2],\eta} = \{ q \in \Lambda_{[\xi_1,\xi_2],\eta} \, | F_{c_o}(q) = \inf_{\Lambda_{[\xi_1,\xi_2],\eta}} F_{c_o} \}$$

LEMMA 2.2. If $q_{\xi(\eta),\eta} \in \Lambda_{[\xi_1,\xi_2],\eta}$ satisfies (2.4), then

$$|\dot{q}_{\xi(\eta),\eta}|_2 \le T/(\pi\lambda_0) (|f|_2 + \sqrt{T}L)$$

Proof. See lemma 1.3 of [10].

LEMMA 2.3. For every $c = (c_1, c_2, 0, ..., 0) \in \mathbb{R}^N$, there exists $L_c > 0$ such that

$$|F_c(q_{\xi(\eta_1),\eta_1} + \sigma_1) - F_c(q_{\xi(\eta_2),\eta_2} + \sigma_2)| \le L_c(||q_{\xi(\eta_1),\eta_1} - q_{\xi(\eta_2),\eta_2}|| + |\sigma_1 - \sigma_2|)$$

For all $\sigma_i \in \mathbb{R}^N$, $\eta_i \in \mathbb{R}$, $q_{\xi(\eta_i),\eta_i} \in \Gamma_{[\xi_1,\xi_2],\eta_i}$, i = 1, 2. *Proof.* See lemma 1.4 of [10].

LEMMA 2.4. There exists a neighbourhood $I(\bar{n})$ of $\bar{\eta}$ such that

$$\xi(\eta) \in]\xi_1, \xi_2[$$
 for any $\eta \in I(\bar{\eta})$

Proof. As $\bar{q}_{\bar{\xi},\bar{\eta}}$ is a minimum point for F_{c_o} in $\Lambda_{[\xi_1,\xi_2],\eta}$ and $\bar{\xi} \in]\xi_1,\xi_2[$, then, for any $\eta \in \mathbb{R}$,

$$F_{c_o}(\bar{q}_{\bar{\xi},\bar{\eta}}) < F_{c_o}(q_{\xi_1,\eta}), \quad F_{c_o}(\bar{q}_{\bar{\xi},\bar{\eta}}) < F_{c_o}(q_{\xi_2,\eta})$$

The functional F_{c_o} achieves its minimum in Λ_{ξ_1} and Λ_{ξ_2} (see lemma 1.2 of [10]), where

$$\Lambda_{\xi_i} = \left\{ q \in H \middle| \frac{1}{T} \int_0^T q_i dt = \xi_i \right\}$$

Then, if

$$\alpha = \min_{\Lambda_{\xi_1} \cup \Lambda_{\xi_2}} F_{c_o}(q)$$

it results that

$$F_{c_o}(\bar{q}_{\bar{\xi},\bar{\eta}}) < \alpha \le F_{c_o}(q_{\xi_1,\eta}), \quad F_{c_o}(\bar{q}_{\bar{\xi},\bar{\eta}}) < \alpha \le F_{c_o}(q_{\xi_2,\eta})$$

for any $\eta \in \mathbb{R}$.

Let $\varepsilon > 0$ be such that

$$\alpha > F_{c_o}(\bar{q}_{\bar{\xi},\bar{\eta}}) + \varepsilon.$$

Set

$$\bar{q}_{\bar{\xi},\bar{\eta}} = q^0_{\bar{\xi},\bar{\eta}} + \tilde{q}_{\bar{\xi},\bar{\eta}}$$

where $ilde{q}_{ ilde{\xi}, ilde{\eta}}\in ilde{H}$ and

$$q_{\bar{\xi},\bar{\eta}}^0 = (\bar{\xi},\bar{\eta},\bar{\sigma}_3,\bar{\sigma}_4,\ldots,\bar{\sigma}_N) \in \mathbb{R}^N.$$

As F_{c_o} is continuous, then there exists $\delta > 0$ such that

$$F_{c_o}((\xi, \eta, \bar{\sigma}_3, \dots, \bar{\sigma}_N) + \tilde{q}_{\bar{\xi}, \bar{\eta}}) < F_{c_o}(\tilde{q}_{\bar{\xi}, \bar{\eta}}) + \varepsilon < \alpha$$

for any $(\xi, \eta) \in]\bar{\xi} - \delta, \bar{\xi} + \delta[\times]\bar{\eta} - \delta, \bar{\eta} + \delta[.]$

It follows that, for any $(\xi, n) \in]\bar{\xi} - \delta, \bar{\xi} + \delta[\times]\bar{\eta} - \delta, \bar{\eta} + \delta[, \sigma_i \in \mathbb{R}, i = 3, ..., N, \tilde{q} \in \tilde{H},$

$$F_{c_o}((\xi, \eta, \bar{\sigma}_3, \dots, \bar{\sigma}_N) + \tilde{q}_{\bar{\xi}, \bar{\eta}}) < F_{c_o}((\xi_1, \eta, \sigma_3, \dots, \sigma_N) + \tilde{q})$$

and

$$F_{c_o}((\xi, \eta, \bar{\sigma}_3, \dots, \bar{\sigma}_N) + \tilde{q}_{\bar{\xi}, \bar{\eta}}) < F_{c_o}((\xi_2, \eta, \sigma_3, \dots, \sigma_N) + \tilde{q})$$

Then for any $\eta \in I(\bar{\eta}) =]\bar{\eta} - \delta, \bar{\eta} + \delta[$ the minimum of F_{c_o} in $\Lambda_{[\xi_1,\xi_2],\eta}$ is achieved at a point $q_{\xi(\eta),\eta}$ with $\xi(\eta) \in]\xi_1,\xi_2[$.

Proof of the Theorem Given $q \in H$, define

$$\psi_2(q) = -\frac{1}{T}F_o'(q)(0,1,0,\ldots,0) = -\frac{1}{T}\left[\frac{1}{2}\int_0^T (\frac{\partial A}{\partial q_2}(t,q)\dot{q}|\dot{q})dt - \int_0^T \frac{\partial V}{\partial q_2}(t,q)dt\right].$$

Denote

$$d_2 = \inf_{\eta \in I(\bar{\eta})} \inf_{\Gamma_{[\xi_1, \xi_2], \eta}} \psi_2(q_{\xi(\eta), \eta})$$

$$D_2 = \sup_{\eta \in I(\bar{\eta})} \sup_{\Gamma_{[\xi_1, \xi_2], \eta}} \psi_2(q_{\xi(\eta), \eta})$$

By lemma 2.2 it follows that $-\infty \le d_2 \le D_2 \le +\infty$.

Moreover, as $\bar{q}_{\bar{\xi},\bar{\eta}}$ is a minimum point of F_{c_o} in $\Lambda_{[\xi_1,\xi_2]}$, then $\psi_2(\bar{q}_{\bar{\xi},\bar{\eta}})=0$ and therefore $d_2\leq 0\leq D_2$.

Remark that for any $\eta \in I(\bar{\eta})$ and $q_{\xi(\eta),\eta} \in \Gamma_{[\xi_1,\xi_2]}$ it results:

$$(2.5) F_c'(q_{\xi(\eta),\eta}) = -T(0,\psi_2(q_{\xi(\eta),\eta}),0,\ldots,0) \in \mathbb{R}^N.$$

Then if $d_2 = D_2 = 0$, $\psi_2(q_{\xi(\eta),\eta}) = 0$ for any $\eta \in I(\bar{\eta})$ and for any $q_{\xi(\eta),\eta} \in \Gamma_{[\xi_1,\xi_2],\eta}$ and, by (2.5) $q_{\xi(\eta),\eta}$ is a critical point for F_{c_o} .

Hence, if $d_2 = D_2 = 0$ for any $c_1 \in]d_1, D_1[$ and for any $\eta \in I(\bar{\eta})$, problem $(1\ 1)_{c_0}$ admits a T-periodic solution $q_{\xi(\eta),\eta}$ such that

$$\eta = \frac{1}{T} \int_0^T q_{2;\xi(\eta),\eta} dt.$$

Suppose now $d_2 < D_2$ and $c_2 \in]d_2, D_2[$

Then there exist η_1 , $\eta_2 \in I(\bar{\eta})$ such that

$$\psi_2(q_{\xi(\eta_1),\eta_1}) < c_2 < \psi_2(q_{\xi(\eta_1),\eta_1})$$

As $\bar{q}_{\bar{\xi},\bar{\eta}}$ is a minimum point for F_c , we can assume that $0 < \eta_2 - \eta_1 < T_2$.

Let us consider now

$$\begin{split} \Lambda_{[\xi_1,\xi_2],[\eta_1,\eta_2]} &= \{q \in H | \xi_1 \leq \frac{1}{T} \int_0^T q_1 dt \leq \xi_2, \\ \eta_1 &\leq \frac{1}{T} \int_0^T q_2 dt \leq \eta_2 \}. \end{split}$$

The functional F_c is bounded from below in $\Lambda_{[\xi_1,\xi_2],[\eta_1,\eta_2]}$, then denote

$$m=\inf_{\Lambda_{[\xi_1,\xi_2],[\eta_1,\eta_2]}}F_c(q)$$

Let us prove that F_c achieves m at an interior point of $\Lambda_{[\xi_1,\xi_2],[\eta_1,\eta_2]}$. Let us consider $q_k=(q_{1,k},\ldots,q_{N,k})\in\Lambda_{[\xi_1,\xi_2],[\eta_1,\eta_2]}$ such that

$$\lim_{k} F_c(q_k) = m.$$

If $n_k = \frac{1}{T} \int_0^T q_{2,k} dt \in [\eta_1, \eta_2]$, without loss of generality we can assume

$$q_k = q_{\xi(\eta_k),\eta_k} \in \Gamma_{[\xi_1,\xi_2],\eta_k}$$

 $\lim_{k} \eta_k = \eta_o \text{ with } \eta_1 \leq \eta_o \leq \eta_2 \text{ and } \lim_{k} \xi(\eta_k) = \xi_0, \text{ with } \xi_1 \leq \xi_0 \leq \xi_2.$ By lemma (2.3) it follows that

$$m \leq F_c(q_{\xi(\eta_b),\eta_b}) \leq F_c(q_{\xi(\eta_k),\eta_k} + (\xi_o - \xi(\eta_k), \eta_o - \eta_k, 0, \dots, 0)) -$$

$$-F_c(q_{\xi(\eta_k),\eta_k}) + F_c(q_{\xi(\eta_k),\eta_k}) \leq L_c(|\xi_0 - \xi(\eta_k)| + |\eta_0 - \eta_k|) +$$

$$+F_c(q_{\xi(\eta_k),\eta_k}) \to m \text{ as } k \to +\infty.$$

Then

$$F_c(q_{\xi(\eta_0),\eta_0})=m.$$

By lemma 2.4 it follows that

$$\xi_1 < \xi(\eta_o) < \xi_2$$
.

Moreover it can be shown that $\eta_1 < \eta_0 < \eta_2$. Indeed, denote

$$S_2(s) = F_c(q_{\xi(\eta_1),\eta_1} + s(0,1,0,\ldots,0)).$$

Then

$$S_2'(0) = -T(\psi_2(q_{\xi(\eta_1),\eta_1}) - c_2) < 0$$

If $\varepsilon > 0$ is small enough, then

$$F_c(q_{\xi(\eta_0),\eta_0}) \le F_c(q_{\xi(\eta_1),\eta_1)} + (0,\varepsilon,\ldots,0)) < F_c(q_{\xi(\eta_1),\eta_1}) \le F_c(q_{\xi(\eta_0),\eta_1})$$

and therefore $\eta_1 < \eta_0$.

Arguing similarly it can be shown that $\eta_0 < \eta_2$.

Finally $q_{\xi(\eta_0),\eta_0}$ is an interior local minimum point for F_c in $\Lambda_{[\xi_1,\xi_2],[\eta_1,\eta_2]}$ and thus there exists a solution of problem $(1.1)_c$ in the case $c=(c_1,c_2,0,...,0)$.

Arguing by induction, it is possible to find 2N real constants d_i , D_i such that if $d_i < D_i$ for any i = 1, ..., N, then F_c admits a local minimum point q_0 when c is small enough.

Thus problem $(1.1)_c$ admits at least one T-periodic solution.

In order to find a second distinct solution of problem $(1.1)_c$, a generalized version of the mountain-pass theorem due to Guo-Sun-Qi will be used (see [7] and [10]).

Indeed, let $j \in \{1, ..., N\}$ such that $T_j = \min\{T_1, ..., T_N\}$ then there exists $q^* \in H$,

$$q^* = q_0 + (0, ..., T_j, ..., 0)$$
 if $c_j \le 0$

$$(q^* = q_0 - (0, ..., T_j, ..., 0)$$
 if $c_j > 0$

satisfying

$$F_c(q^*) \leq F_c(q_0)$$

Moreover, as q_0 is a local minimum point, there exists $\rho > 0$, $\rho < T_j \sqrt{T}$, such that

$$F_c(q) \ge F_c(q_0)$$
 for any $q \in H$, $||q - q_0|| = \rho$

Although the functional F_c doesn't satisfy the (P.S) condition, a deformation lemma still holds (see theorem 1.10 of [9], properties $1^{\circ} - 3^{\circ} - 4^{\circ}$) because F'_c is periodic.

Then applying theorem 1 of [7], there exists a solution of $(1.1)_c$, different from $q_0 + (k_1T_1, \ldots, k_NT_n)$ for any $(k_1, \ldots, k_N) \in \mathbb{Z}^N$.

3. Further results in the autonomous case.

In this section we want now to give further information about the forcing terms f with zero mean value whose corresponding problems $(1.1)_c$ c=0 admit at least one solution.

Let us denote

$$E = \{ f \in C(\mathsf{IR}, \mathsf{IR}^N) | f \ T - \mathsf{periodic}, \ \int_0^T f(t)dt = 0 \}$$

and

$$R(f) = \{c \in \mathbb{R}^N | (1.1)_c \text{ has at least a } T\text{-periodic solution} \}$$

Remark that $0 \in R(f)$ for any $f \in E$ (see [2]), thus we can consider the set

$$S = \{ f \in E | R(f) \neq \{0\} \}$$

Suppose that the case ii) of theorem 1.2 holds; then S contains a small C-ball centered in 0.

The following theorem deals with the structure of the set S; analogous results have been established in [6] and [8].

THEOREM 3.1. Suppose the assumptions of theorem 1.2 hold, case ii); if $\frac{\partial \mathcal{L}}{\partial t}(t,q) = 0$ and the zeros of $\frac{\partial \mathcal{L}}{\partial q}$ are isolated, then the set S is dense in E.

Proof. We shall argue here as in section 5 of [8].

Arguing by contradiction, suppose S is not dense in E. Then there exist $f \in E$, $f \neq 0$ and r > 0 such that

(3.1)
$$R(g) = \{0\}$$
 for any $g \in E$, $|f - g|_{\infty} < r$

As $0 \in R(f)$, problem $(1.1)_0$ admits at least one *T*-periodic solution that is there exists $q_0 \in C^2([0,T], \mathbb{R}^N)$ satisfying

(3.2)
$$\frac{d}{dt}\frac{\partial \mathcal{L}}{\partial \xi}(q_0, \dot{q}_0) - \frac{\partial \mathcal{L}}{\partial q}(q_0, \dot{q}_0) = f(t)$$

Let R > 0 be such that

$$(3.3) \quad \left\{ \begin{vmatrix} \frac{d}{dt} \frac{\partial \mathcal{L}}{\partial \xi}(q,\dot{q}) - \frac{\partial \mathcal{L}}{\partial q}(q,\dot{q}) - f \Big|_{\infty} < \frac{r}{2\sqrt{N}} \\ \text{for any } q \in C^2(\mathsf{IR},\mathsf{IR}^N) \text{ T-periodic such that } |q - q_0|_{C^2} \leq R \end{aligned} \right.$$

Denote

$$B = \{ q \in C^2(\mathsf{IR}, \mathsf{IR}^N) | |q - q_0|_{C^2} \le R \}$$

and $\Phi: B \to \mathbb{R}^N$ such that

$$\Phi(q) = \frac{1}{T} \int_0^T \left[\frac{d}{dt} \frac{\partial \mathcal{L}}{\partial \xi}(q, \dot{q}) - \frac{\partial \mathcal{L}}{\partial q}(q, \dot{q}) \right] dt.$$

We want to show that

$$\Phi(q) = 0$$
 for any $q \in B$

We argue by contradiction and suppose that there exist $a \in \mathbb{R}^N$ and $q \in B$ such that

$$\Phi(q) = a \neq 0.$$

Denote

$$g(t) = \frac{d}{dt} \frac{\partial \mathcal{L}}{\partial \xi}(q, \dot{q}) - \frac{\partial \mathcal{L}}{\partial q}(q, \dot{q}) - \Phi(q)$$

then, for any j = 1, ..., N,

(3.5)
$$\left[\frac{d}{dt}\frac{\partial \mathcal{L}}{\partial \xi}(q,\dot{q}) - \frac{\partial \mathcal{L}}{\partial q}(q,\dot{q})\right]_{j} = a_{j} + g_{j}(t)$$

By (3.3) and (3.5) it follows that

$$|a_j + g_j(t) - f_j(t)| < \frac{r}{2\sqrt{N}}$$

and then, as $g - f \in E$,

$$|a_j| < \frac{r}{2\sqrt{N}}$$
 for each $j = 1, \dots, N$

that is |a| < r/2.

That implies that

$$|f(t) - g(t)| \le |f(t) - g(t) - a| + |a| < r$$

then

$$|f - g|_{\infty} < r$$

and therefore $R(g) = \{0\}$ which contradicts (3.4).

Let us consider now $q \in C^2$ and $s \in \mathbb{R}$ small enough such that

$$0 = \Phi(q_0 + sq) = -\frac{1}{T} \int_0^T \frac{\partial \mathcal{L}}{\partial q} (q_0 + sq, \dot{q}_0 + s\dot{q}) dt.$$

Then, as for any j = 1, ..., N and for any $q \in \mathbb{C}^2$,

$$\left[\frac{d}{ds}\int_0^T \frac{\partial \mathcal{L}}{\partial q_j}(q_0 + sq, \dot{q}_0 + s\dot{q})dt\right]_{s=0} = 0$$

it follows that

$$\frac{\partial^2 \mathcal{L}}{\partial q_i \partial q_j}(q_0, \dot{q}_0) = 0 \qquad \text{for any } i, j = 1, \dots, N$$

and therefore $\frac{\partial \mathcal{L}}{\partial q_j}$ (q_0, \dot{q}_0) is constant for any j = 1, ..., N.

Moreover, by (3.2)

$$\frac{\partial \mathcal{L}}{\partial q_j}(q_0, \dot{q}_0) = 0$$

As the zeros of $\frac{\partial \mathcal{L}}{\partial q_j}$ are isolated, then q_0 is constant, which contradicts (3.2).

Hence the claim follows.

REFERENCES

- [1] Ambrosetti A., Rabinowitz P.H., Dual variational methods in critical points theory, J. Funct. Anal., 14, (1973), 349-381.
- [2] Capozzi A., Fortunato D., Salvatore A., Periodic solutions of Lagrangian systems with bounded potential, J. Math. Anal. Appl., 124, (1987), 482-494.
- [3] Chang K.C., Long Y., Zehnder E., Forced oscillations for the triple pendulum, ETH Zürich Report, August 1988.
- [4] Felmar P.L., Multiple solutions for Lagrangian systems in Tⁿ, Nonlinear Anal., T.M.A., 15, (1990), 815-831.
- [5] Fournier G., Willem M., Multiple solutions of the forced double pendulum equations, Ann. Inst. Poincaré, Anal. non linéaire, 6, (1989) 259-281.
- [6] Greco C., Existence of forced oscillations for some singular dynamical systems, Diff. Integral Eq., 3, (1990), 93-101.
- [7] Guo D., Sun J., Qi G., Some extensions of the mountain-pass lemma, Diff. Integral Eq., 1, (1988), 351-358.
- [8] Mawhin J., Willem M., Multiple solutions of the periodic boundary value problem for some forced pendulum-type equations, J. Diff. Eq., 52, (1984), 264-287.
- [9] Rabinowitz P.H., On a class of functionals invariant under a Zⁿ action, Trans. A.M.S., **310**, (1988), 303-311.
- [10] Tarantello G., Remarks on forced equations of the double pendulum, Trans. A.M.S., 326, (1991), 441-452.
- [11] Tarantello G., Multiple forced oscillations for the N-pendulum equations, preprint.

Elvira Mirenghi Dipartimento di Matematica Universita' di Bari Via E. Orabona, 4 70125 Bari ITALY

Addolorata Salvatore Dipartimento di Matematica Universita' della Basilicata Via Nazario Sauro, 85 85100 Potenza ITALY