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0. Introduction.

Let us consider the Lagrangian function -

1 & |
£¢,0,0=5 3 Ayt 0 ~ V() 0,6 € IRV
1,/=1 .
where 4;; (5,7 =1,..,N) and V are C! real functions defined in IRV*',

In this paper we look for periodic solutions ¢ = g(t) of the
following forced Lagrangian system ’

d oC . OC o _

where h is a T-periodic forcing term and £ is the Lagrangian
function periodic in the variables ¢t and 4.

Sponsored by (Fondi 60% problemi diff. non lineari e teoria dei M.U.R.S.T.
punti critici; fondi 40% eq.ni diff. e calcolo delle variazioni).
(*) Entrato in Redazione I'8 maggio 1991.
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When 4 is a zero mean value function, the existence of multiple
solutions of problem (0.1) has been already established (see [2], [3],
[4], [5], [9D.

In the case when the mean value of 4 is not zero, it is reasonable
T

to conjecture that l% h(t)di. must be small enough in order that

(0.1) admits periodic solutions. Indeed it is possible to show that
problem (0.1) may have no solutions if no assumptions on ~ are
stated (see [10]).

In [10] it has been proved that problem (0.1) admits solutions if
only one of the components of 1 has non-zero mean value (see also
[11]). :

The following sections are devoted to the study of problem (0.1)
when more than one of the components of 1 have non-zero mean
value. -

In Theorem 1.2 it will be proved that, under suitable conditions,
problem (0.1) has at least two T-periodic solutions.

Moreover some further information on the set of the forcing term
h whose corresponding Lagrangian system (0.1) admits solutions

will be given if %ﬁ - 0.
We introduce now some notations which will be used in the

following sections.

— | -| denotes the Euclidean norm of IRY and (.| its usual inner
product;

— if 1 < p < oo the space
T
L7 = I7(10,T1, R") = {g : R — IR"|¢ T — periodic, [ qOlPdt)

is meant to be endowed with the usual LP-norm here denoted
by |- o

— |-l and |-|c» denote the standard norms of C(R,IRY) and
c”(IR, IRY) respectively;

- H = H'({0,T1,IRY) represents the Sobolev space obtained by
the closure of the ¢> T-periodic IRY-valued functions ¢ = ¢(t)
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endowed with the norm

T 1/2
llall = u (|q'|2+|qI2)dtJ ;

T
- H={q¢€ HI[ g(t)dt = 0}.

1. The main result.

In this section we state the existence of periodic solutions of
the periodic forced Lagrangian system (0.1) when the forcing term
h has non-zero mean value.

In this case system (0.1) becomes

dac, . 9L, .. _
(1.1), | Ey(t,q,q) - —a-q—(t,q,q) =f(®)+c

where f has zero mean value and ¢ = (¢j, 3, ...,cn) € IRV,
From now on the following hypotheses on A and V are assumed:
There esist T, T, T3, ..., Ty real positive constants such that

(A) A(t,q) = {4y;(t,q)} is a C! symmetric positive defined N x N matrix
k,kaEZ,S':l,...,N;- .

(V) V(t,q) € C' and V(t+kT,q +(k1T1,...,kNTN)) = V(t,q) for any
‘ ¢, RxIRY and &k, k,€Z, s=1,...,N. ' ,

As A(t,q) and V(t,q) are periodic in the variable ¢, if ¢ = ¢(t)
is a T-periodic solution of (1.1), for any k, € Z, s=1,.. N,
q@® + (k1 Ty, ..., knTy) is a solution too.

Thus, we need the following definition:

DEFINITION 1.1. The solutions ¢, = qi(t) and g, = 2(t) are called
distinct if there exist t € {0,T] such that ¢:(t) — ¢2()%(k1Th, ..., knTy) for
any k,€eZ, s=1,...,N.

The following theorem holds:
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THEOREM 1.2. Let A = A(t,q) and V = V(t,q) satisfy (A) and
(V) and f=(f1,..., fy) be a T-periodic continuous function with zero

mean value.
Then there exist 2N real constants d; <0< D;, i=1,... N such
that ,_

i) if d; < D; for any i=1,..,N, problem (1.1), admits at least
two distinct solutions for any c = (ci,...,cy) € RY such that
di<ci<D;forany i=1,... N;

it) if there exists I C {1,...,N}, I#@ such that d; = D; for any i€ I
and d; < D; elsewhere, then problem (1.1), admits infinitely
many solutions for any c = (ci,...,cy) € IRY such that ¢; =0 for
any i€ I and d; < c; < D; for any i ¢ I.

Remark.1.3. In [10] (Theorem 1) an analogous result has been
stated when ¢ = (0, .,0,¢;,0,.,0) and assumptions (V) and (A) hold.

Moreover Theorem 2 of [10] gives suitable additional conditions
on V which estimate ¢; and D;, and assure di#D;.

In particular that occurs in the case of the double pendulum.

2. Proof of Theorem 1.2. |

The research of the T-periodic solutions of problem (1.1), can be
reduced to the research of the critical points of the following action
functional
T

T T
1
R =3 [ Aol - [ Ve [ -

N T N T
— Z Ci[ gidt = Fo(q) — E Ci[ g:dt,
i=1 i=1

where ¢ =(q1,...,qn) € H.

As V is bounded, in general nothing can be said about F.
satisfying the classical Palais-Smale condition. In fact a priori
estimates on critical levels cannot be established.

In order to overcome this difficulty, a method introduced in [10]
will be generalized.

2.1
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We will prove theorem 1.2 by induction on the number n of the
non zero components of the vector c. .

We recall that if c=(0,...,c;,...0) it has been proved that there
exist two constants d; < 0 < D;, such that:

i) if d; =0 = D;, for any ¢ € IR problem (1.1), admits a T-periodic
T
solution ¢ =(qi,...,qy) with %[ gidt = &;

ii) if d; < D;, problem (1.1), admits at least two distinct solutions
for any c=(0,...,c;,...,0), such that d; < ¢; < D;.

Moreover the first solution is obtained minimizing the functional
F, on the set

T
. 1
A g = {(J € Hl& < f[ gidt < 52}

where ¢, & are suitable real numbers, and proving that

A[lel;lle Fe(q)
is achieved at an interior point of A, 61

It follows that if d; =0=D; for any i € {1, ..., N} the existence of
solutions is assured only for problem (1.1),.

In order to prove theorem 1.2 let us suppose now that there
exist i € {1, .., N} such that d; < D;; without loss of generality assume
i =1 (see [10]).

Denote d;, =d, and D, = D;.

For sake of brevity, the proof by induction will be given when
the vector ¢ has only two non-vanishing components, for istance
c=(c,c,0,...0). '

In this case the action functional becomes

1 T T T
F@) = [ (At, dld)dt ~ [ Vit q)dt + [ (fla)di—

T T

—c1[ qldt—'cz[ g2dt.
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In the following we will assume d; < ¢; < D; and denote

T
Fo(@) = Fo(g) — a1 [ qudt

where ¢, = (¢1,0,...0).
If n € IR, as F,, is bounded from below in Ay ¢,;, then F, is
bounded from below in

17 17
Al = {q € H|& < f[ qidt < &2, 5:[ q2dt =n}

The following lemma holds:

LEMMA 2.1. For any n € IR the functional F, reaches its
minimum in A[flyfﬂ,ﬂ‘

Proof. As Ay, ¢, is a closed subset of the following manifold of

codimension one )
T
1
A, = H|— dt =
1 {q € lT —[ q2 77}

the thesis will be reached proving that the functional F. satisfies a
Palais-Smale - type condition.
Let {¢:} be a sequence in Ay, ¢, , such that

22 {Fe(qx)} is bounded
and
2.3 . {(FclA,,)l(Qk)} —0 ask — ¢
1 7 1 /"
As f[ q1edt € [€1,62]), f[ g24dt = n and because of the
periodicity of F, in ¢;, i=3,.., N,
L T
0< '1:[ gGixkdt <T; i=3,...,N,
T

it follows that {0}, ¢ = 1 [ aedt, is bounded.
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Then, by (2.2),

1 T T )
- [ (A(t, gr)delde)dt + [ (Flaw)dt

is bounded and hence {|g«|.} is bounded too.

Then {||g||; is bounded and therefore it has a weakly convergent
subsequence in H, still denoted {¢}.

Using standard arguments (see [2]), it can be shown that {g;}
strongly converges to an element of Ay, ¢,,5-

From now on ¢¢, will denote an element of A such that

T T

1 1
£= f[ Qugqdt, n= f[ q2;¢,ndt.

In particular g, will denote an element of Ay, ¢, such that

(2.4) Fc(QE(n) ; 77) = A{min FC(Q)

€1 £21n

and ¢z ; a minimum point of F, in Ag, ¢.
Let us denote now L the Lipschitz constant of V and ), € IR,
such that

(A, E[6) > Xolé]> for anyt e IR,q,¢ € IRY.
Moreover, set

F[El ,62]777 = {q E A[fl,&],"l IFco(q) = inf Fco}

GEAR)
LEMMA 2.2. If deepm € A[EI»EZLTI satisﬁes (24), then

ldetmn |2 < T/(ho) (|f]2 + VTL)

Proof. See lemma 1.3 of [10].

LEMMA 2.3. For every c =(c1,c2,0,...,0) € IRY, there exists L, > 0
such that

| Fe(getmm + 1) — Fel@eomm + 92| < Le(llgeemm — deemm || + 101 — 02))
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For all g; € IRN, N € |R, Qe¢nm € F[&,&],m ,1=1,2,
Proof. See lemma 1.4 of [10].

LEMMA 2.4. There exists a neighbourhood I(%) of 7 such that

£(n) €161, &l for any 1 € I(7)

Proof. As §; ; is a minimum point for F in Ay, ¢,), and € €]¢1, &,
then, for any g € IR,

Fco(q_f-,ﬁ) < Fco(qfl ,77)’ Fco(dg,ﬁ) < Fco(quﬂ)

The functional F, achieves its minimum in Ag, and A, (see
lemma 1.2 of [10]), where

‘ o
Ag ={q EHIE[ Qidt=€.}

a= min F(q)
1 2

Then, if

it results that
Fe,(@s ) < a < F (g6 4), Fco(dg,,-,) <a< F,(q,)

for any n € IR.
Let £ > 0 be such that

o> Fo (e +e.

Set

where §;; € A and
0, =(,7,63,64,...,5m) € R".
As F, is continuous, then there exists § > 0 such that

Fco((fa'fl,é'% . ‘,5-N)+§E-,ﬁ) < Fco(qf,ﬁ)'*'s < o
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for any (¢,7) €)€ — 6, +6[x17 — 8,7 + 6.
It follows that, for any (¢,n) €]¢ — 6,6 +8[x17 — 6,7 +6[, o; € IR,
i=3...,N,§e H,

Fca((f;n153y""5-N)+§€_,ﬁ) < Fco((fl,"?,cii;---,UN)'*‘@

and

Fe,(€,n,63,...,08) + G 5) < Fe,((€2,m,03,...,08) + @)

Then for any n € I(7}) =]7 - 6,7 +4[ the minimum of F, in Ay, ¢,
is achieved at a point g, with &(n) €]¢;, &L

Proof of the Theorem  Given ¢ € H, define

T

T
1 _ 1184 oV
¢z(q)—f-i,:Fo(q)(O,l,O,---,O)——T [2[ (aqz(t,q)qlq)dt—[ aqz(t,q)dtJ

Denote

dz = inf _inf (g )
2 nel() Tie, ey1n Emm

Dy = sup sup ¥2(gemyn)
el g, &1

By lemma 2.2 it follows that —oco < d; < D, < +00.

Moreover, as g¢; is a minimum point of F, in Ag,¢,, then
¥2(J¢ ;) =0 and therefore d, <0< D,.

Remark that for any 77 € I(7) and gemn € Tg, ¢ it results:

(25) Fé(Q€(n),ﬂ) = _T(O) ¢2(q£(ﬂ),7)), O: e 10) S IRN

Then if d» = D; =0, ¥a2(geepn) =0 for any n € I(7) and for any
G € Tie e, and, by (2.5) ¢, is a critical point for F .

Hence, if d; = D, =0 for any ¢, €]d;, Di[ and for any n € I(7),
problem (1 1), admits a T-periodic solution g¢¢,,, such that

1 T
=7 [ Qe at.

Suppose now d; < D, and c; €]dy, Dy
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Then there exist n;, n; € I(%) such that

V2(Gemm) < c2 < V2(geemym)

As §;; is a minimum point for F,, we can assume that
O<m—-m<Ts
Let us consider now

) T
1 ,
A[El,fz],[m,nz] = {q € Hlfl ST[ qidt < &2,

T

1
m Sf[ q2dt < m}.

The functional F. is bounded from below in Ag, g1im.m1» then
denote

m= inf F.(g)

Atgy £l Iny m)

Let us prove that F, achieves m at an interior point of Ay, ¢} in,.m1-
Let us consider gk = (QIJH ces ;QN,k) € A[fhle,[ﬂl ] such that

h/in Fe(ge) =m.

T
If ng = % [ g2kdt € [m,n2], without loss of generality we can

assume

k= Gmom € Lier & |
limng = 1, With i < no < m2 and lim{(me) = o, With &1 < 6o < &.
By lemma (2.3) it follows that

m < Fc(Qf(no),no) < Fc(Qf(m),m + (& — MKy Mo — M, 0,...,00)—
- Fc(qf(ﬂk),m )+ Fc(Qf(nk),ﬂk) < Lc(lfﬂ - E(le)l + I"TO - ﬂkl)"'
+ Fe(geenym ) — m as k — +oo.

Then

Fe(etmym) = m.
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By lemma 2.4 it follows that
§1 < €(mo) < &a.

Moreover it can be shown that n < 5y < .
Indeed, denote

52(3) = Fc(q€(m)’m + 8(0, 1, 0, N ,O)).

Then
S20) = ~T($2(genym ) — c2) < O

If £ > 0 is small enough, then
Fc(Qé(m),m)) < Fc(Qf(m),m) +(0,¢,... ,0)) < Fc(qf(m),m)) < Fc(qf(no),m)

and therefore 7; < 7.

Arguing similarly it can be shown that 7 < n,.

Finally ¢¢()n 18 an interior local minimum point for F, in
Ay, £10mm) @nd thus there exists a solution of problem (1.1), in the
case c =(c,2,0,..,0).

Arguing by induction, it is possible to find 2N real constants
d;, D; such that if d; < D; for any i=1,..., N, then F. admits a local
minimum point gy when ¢ is small enough.

Thus problem (1.1), admits at least one T-periodic solution.

In order to find a second distinct solution of problem (1.1),, a
generalized version of the mountain-pass theorem due to Guo-Sun-Qi
will be used (see [7] and [10]).

Indeed, let j € {1,..., N} such that T; = min{T1, ..., Ty} then there

exists ¢* € H, |
" =20+0,..,T,,0) i <O

@ =0~-0,.,T,.,0) ifc >0

satisfying
Fulg™) < Fe(go)

Moreover, as ¢y is a local minimum point, there exists p > 0,
p < T;\/T, such that

Fe(g) > Fe(go) for any g € H, ||g — qol| = p
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Although the functional F, doesn’t satisfy the (P.S) condition, a
deformation lemma still holds (see theorem 1.10 of [9], properties
1° — 3° — 4°) because F is periodic.

Then applying theorem 1 of [7], there exists a solution of (1.1),,
different from go + (k,T, ..., kyT,) for any (k... ky) € ZV.

3. Further results in the autonomous case.

In this section we want now to give further information about
the forcing terms f with zero mean value whose corresponding
problems (1.1), ¢ =0 admit at least one solution.

Let us denote
T
E={f € C(R,IRY)|# T — periodic, [ f)dt = 0}

and

R(f) = {c € IRY|(1.1), has at least a T-periodic solution}

Remark that 0 € R(f) for any f € E (see [2]), thus we can
consider the set

S = {f € E|R(f)*{0}}

Suppose that the case ii) of theorem 1.2 holds; then S contains
a small C-ball centered in 0.

The following theorem deals with the structure of the set S;
analogous results have been established in [6] and [8].

THEOREM 3.1. Suppose the assumptions of theorem 1.2 hold,
case ii); if %—f(t,q) =0 and the zeros of oL are isolated, then the set

dq
S is dense in E.

Proof. We shall argue here as in section 5 of [8].

Arguing by contradiction, suppose S is not dense in E. Then
there exist f € E, f#0 and r > 0 such that

(3.1) R(@={0} foranygekFE, |f—-glo<T
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As 0 € R(f), problem (1.1), admits at least one 7T-periodic
solution that is there exists gy € C2([0,T], IR") satisfying

d oC

oL
3 5 —(go, do) — —q(QO,do)=f(t)

(3.2)

Let R > 0 be such that

d oL r
(3.3) T —(g,4) — (q d) — foo < N

for any ¢ € CZ(IR, IRY) T-periodic such that |g — go|c: < R

Denote
B ={g € C*(R,IR")||g — golc» < R}

and @ : B — IR such that

1 rdac oc .
D(g) = 5:[ [dt 5% (q,9) — 3 (q,q)] dt

We want to show that

D=0 . for anyq e B

We argue by contradiction and suppose that there exist o« € IRV
and ¢ € B such that

3.4 D(g) =a#0.

Denote
d oL

gt) = & (q,9) — (q q) — ®(g)

then, for any j =1,...,N,

[daﬂ %)

i o (g,9) — q(q,q')J =a; +g;(t)

J

(3.5)

By (3.3) and (8.5) it follows that

T

laj +g;(8) — f;(D)] < i
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and then, as g - f € E,

|a,-!<—r—— for eachj=1,...,N

2VN

that is |o| < r/2.
That implies that

[f@) — g®)] < |f@) —g@) —a| +]a| < T

then
If —4g loo <r
and therefore R(g) = {0} which contradicts (3.4).

Let us consider now ¢ € C? and s € IR small enough such that

T
1 oL ' ) .
0=2®(go +sg) = —5[ -a-q—(cJo+sq,qo+sq)dt.

Then, as for any j = 1,.., N and for any ¢q € C?,

T

d oc )

— | Z—(go+sqg,do+sd)dt|] =0
ds 3q, s=0

it follows that

_82_5_((10’40):0 for anyi,j=1,... N

0gi0g;

and therefore STC (go, do) is constant for any j =1,..., N.
J ,

Moreover, by (3.2)

oL
— , 3 = O
20, (go, do)

As the zeros of oL are isolated, then ¢, is constant, which

an
contradicts (3.2).
Hence the claim follows.
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