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SEMICONTINUOUS SET VALUED MAPPINGS
AND CONNECTED SETS (*)
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MARGHERITA DI IORIO (Napoli)

In this paper is studied a condition, called P-continuity, which
can be viewed as mimimal in order that a set valued mapping be
connected. Moreover for families of functions are considered notions of
convergence which preserve P-semicontinuity. Other results connected
with the notion of semiconnected multifunction are obtained.

1. Introduction.

Recently several authors have considered connected multifunc-
tions, that is set-valued functions which preserve connected sets
(see Valadier [24], Correa, Hiriart-Urruty and Penot [2], Ewert
and Lipinski [5]). In particular Hiriart-Urruty [6], after recalling
the classical result on this topic (ensuring that every upper or
lower semicontinuous connected valued multifunction is connected),
gathers several examples of various areas where the above mentioned
properties are involved, as the mean value theorem in Nonsmooth
Analysis, existence theorems in problems of Calculus of Variations

(*) Entrato in Redazione 1’8 maggio 1991.
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and others. On the other hand Correa, Hiriart-Urruty and Penot try
to weaken the assumptions of semicontinuity while preserving the
connectedness property. For this purpose they introduce two new
notions of continuity for set valued mappings, inf-d-continuity and
semicontinuity (P-semicontinuity in our terminology) and prove that
these conditions can be viewed as "minimal” in order that set valued
mappings be connected.

Our aim in this paper is to study P-semicontinuity property
and some related problems. More precisely at first (see section
3) we exhibit sufficient conditions for a set valued mapping to
be P-semicontinuous and relations between P-semicontinuity and
upper or lower semicontinuity. Next in section 4 we introduce
two notions of convergence on the space of multifunctions, the
first of which preserves connected set valued functions, the second
P-—semicontinuous ones. The section 5 is devoted to upper and
lower semiconnected multifunctions [21]; we prove that these are
topological continuity properties, in the sense that each of them can -
be reduced to continuity by a suitable change of the topology on the
range. The last two sections are concerned with an unifying approach
to connected preserving functions which allows us to obtain results
contained in [16], [17]. We deduce sufficient conditions, weaker
than Penot’s, in order that the multifunction image of a connected
topological space X be connected.

2. Terminology and notations.

In this section we recall some results and definitions that we
shall use throughout the paper.

Let Y be a non empty set and let A(Y) be the family of all
nonempty subsets of Y. A mapping F from a set X to A(Y) will
be called a multifunction and denoted by F: X - V. If AC X

and B CY, we put F(4) = | | F(x), F~(B) = {z € X : F(z) N B0},
€A . :
F*(B)={z € X : F(z) C B). )

If X and Y are topological spaces, N(z) and N(y) will denote
respectively the neighborhood filters of z in X and of y in Y. A
multifunction F : X — Y is upper semicontinuous (usc) at z € X if
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for every open set G C Y, G D F(z) there exists a neighborhood
U € N(z) such that F(U) C G. F is usc if it is usc at each z in X
or, equivalently if F~(B) is a closed subset of X for every closed set
B C Y. The multifunction F is lower semicontinuous (Isc) at z € X if
for every open set G CY,G N F(z)#p there is a neighborhood U € N(z)
such that F(¢t) N B#) for each ¢t in U. F is lsc if it is Isc at each z in
X or, equivalently if F~(V) is an open subset of X for each open set
V C Y. A multifunction F is continuous if it is both lsc and usc.

The family {4 € AY): ANW#,W C Y and open } is a subbase
for the lower Vietoris topology V- on A(Y), while the family
{A€ AY): ACW,W CY and open } is a base for the upper Vietoris
topology V* on A(Y). The supremum topology V = V-V V* is the
Vietoris topology on A(Y). These topologies were studied in detail by
Michael [14]. It is clear that a multifunction F: X — Y is lsc (resp.
usc, continuous) at z € X if, and only if, the function F: X — A(Y)
is continuous at z € X with respect to the topology V- (resp. V*, V)
on AY).

A multifunction F: A - Y defined on a dense subset 4 of X
is subcontinuous at z € X if for every net (z;) C 4 convergent to z,
every net (y;) C Y, with y; € F(z;) for each 4, has a convergent subnet.

Let (4;)ic; be a family of subsets of ¥ and let G be a filter on J.
The lower and upper limits of (4;);c; on G are defined as follows:

lim’ A; = ﬂ UA,— and lim” 4;= ) UA,-

EecG# icE HeG ieE

where G# is the grill of G, defined by

G#={ECI:EnH#{ for every H € G}.
If (A)icr is a net of subsets of ¥ and G is the filter generated
by the family {{j € I:j > i}i € I} then
lim' Ai={yeY:VVeN() J'cI:Vj >i ANV}
lim " A,’ = ﬂ UA;
1€l j>i

If (An)nen is a sequence of subsets of ¥ lim’'4, and lim" A, are
the usual Kuratowski limits (see [10]).
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Let F: X — Y be a multifunction. Consider the family (F(z)).ex
and the filter N (z¢) where z, is a point of X. The corresponding
lower and upper limits will be denoted by lim ' F(z) and lim "F (z).

T—To T—TQ

A net (4;)ic; of non empty subsets of Y is V~-convergent (resp
V*-convergent, V-convergent);to a subset A ¢ A(Y) of Y if it is
convergent to A in the topological space (A(Y),V-) (resp (A(Y),V*),
(A), V). Accordingly a net (A;)ic; is V-convergent to A € AY) if
and only if, for every open subset G of Y which intersects A, there
is ¢ € I such that 4; N G=#0 for i > 1. It is well known that (A4;)ic; is
V~-convergent to A if and only if A C lim' A; [11].

We assume for the rest of this paper that X and Y are
topological spaces. |

A Hausdorff space Y is completely normal [4] if every pair of
sets A, B, satisfying ANB = AN B =0 (where A is the closure of A in
the topological space) can be separated (that is there exist 4’ and
B’ open and disjoint such that 4’ D A and B' D B).

3. P-semicontinuous multifunctions.

Let X and Y be topological spaces and F a multifunction from
X toY.

DEFINITION 3.1. [2] F is said to be P-semicontinuous at o € X
if for every open subset V of Y containing F(zo) there exists a
neighborhood U of zy such that F(z) N V#D for every z € U. F is said
to be P-semicontinuous in X if it is P-semicontinuous at z for every

Tz € X.

Obviously F is P-semicontinuous whenever F is Isc or usc,
but there exist P-semicontinuous multifunctions which are neither
upper nor lower semicontinuous. To see this consider, for instance,
the multifunction F from R to R defined as

(=100 ifz=0
1 10,1/]z]] if z20.

DEFINITION 3.2. [2] If (Y,d) is a metric space, F is said to be
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inf-d-continuous at o € X if

Lim d(F(z), F(z0))=0

where d(A, B) = inf{d(a,b), a € A,b € B}.

Correa, Hiriart-Urruty and Penot [2] prove that P-semiconti-
nuous multifunctions are inf-d-continuous. They also prove that
connected sets are preserved both by P-semicontinuous connected
valued multifunctions and by inf-d-continuous connected compact
valued ones.

The following lemma summarizes some basic results about
P-semicontinuity:

LEMMA 3.1.
a) If F is compact valued, F is inf-d-continuous iff F is P-
semicontinuous.

b) If F is P-semicontinuous then FUG LS P-semicontinuous for
each multifunction G from X to Y.

¢) If F(zo) is closed and lim ' F(z)#0 then F is P-semicontinuous

Z—To

at Zo.

Let us observe that the above result c¢) can fail if F(z) is
not closed. To illustrate such a situation it suffices to consider the
multifunction from R to R defined by

{]o, 1[ ifz=0
F(z) =
11,2[ if z#0

One may wonder whether under the assumption of P-
semicontinuity for F the graph multifunction, that is I,b:z €
X — {z} x F(z), is P-semicontinuous too. The answer is the following
statement which extends the analogous result for usc and lsc
multifunctions.

THEOREM 3.2. If F is P-semicontinuous and compact valued,
then T, is P-semicontinuous.

Let us observe that if F is not compact valued the above result
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can fail, see for example the multifunction

F(a:.)= { {1/|z|} if z#0
R ifz=0

Let us introduce the followmg definition similar to one due to
Whyburn [25]:

DEFINITION 3.3. If F is a set valued function from X to Y, Y is
said peripherally F normal if for every point image F(z) and every
closed subset C satisfying F(z)NC =0 there exist two disjoint open
sets A and B such that A D F(z), B D C and for a neighborhood U of
z it results F(U)C AN B.

We prove the following result:

THEOREM 3.3. Let F be a multifunction from X to Y and let
Y be peripherally F normal. If F is P-semicontinuous and connected
“valued, then F is usc.

Proof. Let V be an open set V D F(z); if A and B are open sets
satisfying A D F(z), BD -V, F(U) C An B for a neighborhood U of
z, there exists a neighborhood U’ of z for which F(z) N A#p for every
zeU'. If ze UNU', since F(z) is connected, it results F(z) C V.

Now we look at P-semicontinuity of the upper limit of a
multifunction. Let us recall that, if F is a set valued function defined
on a dense subset A of X, the upper and lower limits of F at zp € X
are defined in [11] by

lim " F(z) = {y EY VW e N(y) VU € N(zo)3t € ANU : F(t) N W#{}

TT0

lim ' Fiz)={yeY: VW e N() 3U € N@@o)Vt € ANU : F(t) N W#p}

T—To

It is well known that:

a) for each zy € A, F(zo) C lim " F(z) and equality holds if and
r—o
only if F is graph-closed at z,.

b) lim ' F(z) C hm " F(z) for each 5 € X.

T~—To

¢) lim ' F(z) C F(zo) for every zp € A and llm ' F(z) = F(zo) if and

T—To

only if F is lsc at 7o and F(zp) is closed
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THEOREM 3.4. If 7o € X and F is a multifunction from X to Y
for which lim ' F(z)#0, then the multifunction F" : 2z ¢ X — lim" F(z)
T2

TT0
Is P-semicontinuous at z.

Proof. 1t suffices to observe that for an 6pen set V containing
lim " F(z) there exists a neighborhood U of z, such that F(z) N V0

T—To

for every z € U. Now we only need to recall property a).
The following results are similar to those obtained in [11] and
related to upper semicontinuous extensions.

THEOREM 3.5. Let Y be a regular and locally compact topological
space, A a dense subset of X and F : A — Y P-semicontinuous and
compact valued. Then the multifunction

F(z) ifzeA
hE”Fm ifog A

~

F:zeX —

Is P-semicontinuous in A.

Proof. Let o be an element of 4 and V an open set containing
F(a). There exists an open set W with compact closure for which
F(a) C W C W C V. By P-semicontinuity of F there is a neighborhood
U of a such that F(t)nW#p for every t e UNA. If t € U — A, for every
net (t,)ic; t; € ANU convergent to ¢, and y; € F(t;), clearly there exists
Yy eWNF@®). Thus Ft)n V).

With a similar technique we prove an extension theorem for
P-semicontinuous multifunctions satisfying the condition

() gl_r’r;’ F(@)#0

THEOREM 3.6. Let F: A —»Y be P-semicontinuous in a dense
subset A of X, subcontinuous in X — A. If Y is normal and }im " F(t)#0
—z

for every € X — A, then F is P-semicontinuous in X — A.

Proof. If z € X — A and V D F(z) is open, there exists an open
subset W of ¥ for which F(z) C W C W C V. Since }im’ F@)#0 there

is a neighborhood U of z such that F(t)n W#0 for every t c Un A. If
t € U — A since F is subcontinuous the proof is the same as in 3.5.
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Hrycay proves the following theorem:

THEOREM 3.7. [7] Let X be locally connected and Y normal.
If F: X - Y is connected and subcontinuous, then }im "F@) is a
—z

connected set for every z in X.

_ By using it we obtain an extension theorem for P-semicontinuous
and connected valued multifunctions satisfying condition («).

THEOREM 3.8. Let X be locally connected, Y normal and A a
dense subset of X. If F is connected valued, P-semicontinuous in A,
subcontinuous in X — A and satisfies (o), then the extension F of F
s P-semicontinuous and connected valued.

4. Topologies and convergences on connected multifunction
spaces.

Let C (resp. P(S)) be the space of all connected (resp. P-
semicontinuous) multifunctions from X to v. Obviously C D P(S) if
the multifunctions are connected valued. Our aim in this section
is to introduce a convergence on C (resp. on P(S)) which preserves
connected (resp. P-semicontinuous ) multifunctions.

Before proceeding it may be worth while mentioning the
following results about nets in A(Y). '

LEMMA 4.1. If Y is completely normal and (4;)c; is a net of
closed and connected sets A; € A(Y) which is V-convergent to A, then
A is connected.

Proof. We only need to observe that if 4 were not connected
then there would be an open cover of A consisting of two disjoint
subsets each of them meeting A4.

LEMMA 4.2. If Yisa compact Hausdorff space and (A))ic; is a
net of closed connected sets in A(Y') which is V-convergent to a closed
subset A, then A is connected.

LEMMA 4.3. [15] If Y is a connected compact metric space,
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(ADier s a net of connected compact sets in A(Y) and lim' A#0, then
lim" A; is connected.

DEFINITION 4.1. Let F be the space of all multifunctions from
X to Y, and (F))ic; a net with F, € F. The net (Fi)ier is said to
be C-convergent to F ¢ F if F, converges V-uniformly to F on the
connected subsets of X (i.e. for each connected set K C X and for
each open set V C Y if K C F*(V) (K C F~(V)) there exists i ¢ I such
that K C FX(V) (K C F; (V) for every i > i).

This convergence is topological and the associated topology
is generated by the family {F € F : F(K) C (U, V)} where K is
a connected subset of X, U, V are open subsets of v, and
(UV)={ECY:ECUUV, EnV#8, ENU#p}, which is open in the
Vietoris topology V on A(Y).

We shall call it the connected open topology with respect to Vv,
in analogy with that studied for the space of connected functions
from X to Y in [8].

It easy to prove that:

THEOREM 4.4. If Y is completely normal and (F,)i; is a net of
connected multifunctions C-convergent to F, then F is connected.

Proof. 1t suffices to observe that for every connected set ¥ the
net (F;(K)),e; V-converges to F(K) and to recall the lemma 4.1,

A classical topology on the space F is the compact open topology
(with respect to V*) [23] generated by the family {FEF:FK)CV}
where K C X is compact and V C Y is open.

The links between the connected open and the compact open
topologies are given by:

THEOREM 4.5. If X is locally connected then the compact open
topology with respect to V* is smaller than the connected open
topology with respect to V* (generated by {F € F : F(K) C V} where
K C X is connected and V C Y is open) on the space of upper
semicontinuous multifunctions.

It should be remarked that the set P (S) of all P-semicontinuous
multifunctions from X to Y is not closed in the connected open
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topology. Indeed for each »
10, 1[ if £=0

Fn: R_')Fn =
ve @ {]-Llhﬂ if 220

is P-semicontinuous at 0 and the sequence (F,) C-converges to
; 01 ifz=0

F:mER——»F(m)={
1—-1,0[ if z#0

which is not P-semicontinuous at 0.

DEFINITION 4.2. A net (F); is said to be uniformly V*-
convergent to F if for every open set V C Y such that F*(V)#) there
exists an i € I for which F*(V) C F¥(V) whenever i > i.

Let us observe that uniform V+*-convergence is topological and
the collection I(F)={G € F : F*(V) C G*(V), V CY and open } is a
subbase for the neighborhood system of F in the associated topology.
Obviously this topology is stronger than the compact open topology
and the connected open topology with respect to v*.

We prove the following result.

THEOREM 4.6. Let Y be regular and (F)c; a net of multifunctions
uniformly V*-convergent to F. If F. is P-semicontinuous at zo for
each i € I and F(zy) is compact, then F is P-semicontinuous at Zo.

Proof. If F were not P-semicontinuous at z,, then it would
exist an open set V containing F(zo) and, for each U € N(zo), zy € U
such that F(zy) NV = 0. Since Y is regular and F(zo) is compact
there exist two open disjoint sets Gy D F(zo) and G D -V. Hence
for some iy in I, Fi(z0) C G; and Fi(zy) NG, = ¢ for every i > 4o which
contradicts the hypothesis. ‘

The assumption that F(z,) is compact, is essential in the
previous theorem. Let us consider, as an example, the multifunctions

10, 1[ ifr=0

Fo:zeR - F(z) =
’ (@) {]1—1/n,2] if 20

10,1f ifz=0

F:meR—>F(z)={ o
[1,2] if z20
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The sequence (F,) is uniformly V*-convergent to F, F, is
P-semicontinuous at zo = 0 for every n, but F is not.

Let us observe, furthermore, that in Theorem 4.6 the statement
may not hold if the net (F) is not uniformly V*-convergent to F as
shown by the following example

{1} if z=1

Gn:zE[O,llﬁGn(l‘)={ .
[0,z"] if z#1

Each multifunction G, is P-semicontinuous at 0, the sequence
(Gr) is pointwise convergent to

{1} ifz=1

G: 0,1] - G(z) =
z€bl (@) {{0} if z#1

but G is not P-semicontinuous at 1.

5. Upper and lower semiconnected multifunctions.
Smithson gives the following definition in [21]:

DEFINITION 5.1. A multifunction F : X — Y is said to be

i) upper semiconnected in X if for each closed and connected set
K CY the set F-(K) is closed.

ii) lower semiconnected in X if for each open and connected set
K CY, F~(K) is open.

He also gives a sufficient condition in order that a lower or
upper semiconnected multifunction be continuous.

We shall prove that upper and lower semiconnectedness can be
reduced to continuity by an appropriate change of the topology on the
range Y of F. In order to do this, on the family A(Y) of all nonempty
subsets of Y, let us consider the collection B*={ECY:ECV, V
open inY and Y -V connected}. Let V** denote the topology on A(Y)
generated by taking B* as a subbase. Obviously V** C V*, moreover
it results
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THEOREM 5.1. The multifunction F is upper semiconnected if
and only if F is continuous from X to the topological space (AY), V*).

At the same time, let us consider on Y the topology generated
by the collection {V C Y,V open and connected} and the related
lower Vietoris V*~ on A(Y); that is the topology generated by

B=={ECY:ENV#), V open and connected in Y'}. Then V*- C V-
and it is also evident that:

THEOREM 5.2. The multifunction F is lower semiconnected if
and only if F is continuous from X to the topological space (A(Y), V*").

THEOREM 5.3. If Y is a locally connected space, each lower
semiconnected multifunction is lower semicontinuous.

Proof. We only need to observe that V*- = v, since the family
of the open connected subsets of v is a base for its topology.

Whyburn gives the following definition in [25].

DEFINITION 5.3. A topological space Y is said to be semilocally
connected about a subset A provided that for every open set U
containing A, there exists an open set V with A CV C U such that
Y — V has only a finite number of components.

We shall say that:

DEFINITION 5.4. Y is semilocally connected about a multifunction
F if Y is semilocally connected about F(z), for each z € X.

Now we prove the following result.

THEOREM 5.4. If F is upper semiconnected and Y is semilocally
connected about F, then F is upper semicontinuous.

Proof. Let 1o be an element of X and V an open set containing
F(zo). There exists an open set W such that F(z) C W C V and

Y -W = UC,- where each (C; is closed and connected. The set

1=1

C= UF‘(C&) is closed and z¢ ¢ C. Thus X — C is a neighborhood of

i=1
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zo mapped by F into V.

Since a continuum Y, that is a compact connected Hausdorff
space, is locally connected if and only if it is semilocally connected
about each of its compact subsets [25], we have:

THEOREM 6.5. Let Y be continuum and locally connected. If F
is compact valued and upper semiconnected multifunction, then F is
upper semicontinuous.

Moreover we can prove the following result.

THEOREM 5.6. Let v be locally connected and regular. If F is
closed valued and upper semiconnected, then F is graph closed.

Proof. If (z,y) ¢graphF there exist two disjoint open sets A, B
such that y € A and B D F(z); since Y is locally connected and regular
there exists also an open connected set V; such that y e v; C 7, C A.
Moreover it results F(z)NV; = § and, since F is upper semiconnected,
there is a neighborhood U of z such that F(U) C —V;. Thus U x V; is
a neighborhood of (z,y) which does not meet the graph of F.

6. An unifying approach to the study of functions preserving
connected sets.

Several authors proved that some continuous-like functions
preserve connected sets. In this section we provide a unified method
to obtain these results, based on the approach to the study of
continuity-like properties developed in [3]. In this way we obtain
also some results in [16], [17].

Let us begin by recalling some definitions: given a non empty
set X, a family {(z) of subsets of X is said to be a generalized local
sieve (g.l.s.) at z € X when

i) if B € ¢(z) and A D B then A € £(2)
ii) the intersection of any two members of £(z) is non empty

iii) z € A for every A € ¢(x).
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For A C X we define
E-clA={ye X :VI€l(y) InA#0}.

A subset C of X is said ¢-connected if C is not the union of
two non empty subsets B, and B, of X such that B, Né-clB; = @
i,7 €{1,2}.

If ¢(@)ex and (¢'(y))er are families of gls. on X and YV
respectively, a function f: X — Y is (¢,¢')-continuous at ¢ € X if
f7I(V) € &(z) for every V € ¢'(f(z)). A function f: X — Y is said to be
- (§,€&)-continuous in X if it is (¢, ¢')-continuous at z, for each z € X.

There is no difficulty in showing that a (¢, ¢')-continuous function
maps {-connected subsets of X onto ¢’-connected subsets of Y.

Let us sketch various possibilities:

a) In [17] strongly semicontinuous functions from X to Y are
studied. These are functions f for which the inverse image f~'(V)
of any open set V C Y, is an a-set (A4 is an a-set if A C int(intA),
where intA is the interior of A). It is also proved that if f is
strongly semicontinuous from X onto ¥ and X is connected, then Y
is connected too. Since the family T* of all a-sets in X is a topology
on X and a strongly semicontinuous function is simply a continuous
one between the the topological spaces (X,7%) and v [20], the above
result is an immediate consequence of the fact that the topological
space X is connected if, and only if, it is 7%-connected [20].

b) The following definition is given in [16]: a function f from
X to Y is said to be weakly continuous if for each point z € X and
each open set V 3 f(z) there exists a neighborhood U of z such
that f(U) C V. Such a continuity notion is a (¢, ¢')-continuity for the
g.l.sieves of the neighborhood filters on X and of the ¢-neighborhoods
on Y (A is a ¢-neighborhood of y € Y if there is an open set O such
that y € O C O C A). Since every 6-connected space is connected, it
follows that if f is a weakly continuous mapping of a connected
space X onto a space Y, then Y is also connected.

With the same technique used before we obtain similar results
about semiweakly continuous functions [18]. In fact they are (¢,¢')-
continuous functions with respect to the following sieves on X and
Y respectively (see [3])
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€@)={ACY:3Vopen:y €V CsclV C A}
{(z)={A C X : Ais a semi-neighborhood of z}.

Let us remember that a semi-neighborhood of z is a subset
containing a semi-open set A to which z belongs (A is semi-open if
there is an open set O such that O C 4 C O [12], and sclV is the
semiclosure of vV [3]).

Keeping in mind the terminology from [3] and the above results,
it follows that the image Y of a point connected multifunction from
a connected space X onto Y is connected if F satisfies one of the

following conditions:

1) F is weakly P-semicontinuous, that is for each z ¢ X and for
every open subset V containing F(z), there exists a neighborhood
U of z such that F(z) N V#) for every z € U.

2) F is almost P-semicontinuous, that is for each z ¢ X and for
every open subset V containing F(z), there is a neighborhood U
of z such that F(z) N int(V)=p for every z € U.

3) F is quasi P-semicontinuous, that is for each z € X and for every
open set V containing F(z), there exists a seml-nelghborhood U

of z for which F(z) N vV#0 for every 2 € U.

BIBLIOGRAFIA

[1] Banzaru T., Crivat N, On the upper semicontinuity of upper topological
limits for multifunction nets, Inst. Politehn. "Traian Vuia" Timisoara
Lucrar. Sem. Mat. Fiz. 1983, May, 59-64.

[2] Correa R., Hiriart Urruty J.B., Penot J.P, A note on connected
set-valued mappings, Boll. Un. Mat. Ital. C, 1.(1986), 357-366.

[3] Del Prete 1., Di Iorio M., An unifying approach to continuity-like
notions for functzons and multzfunctzons, Rend. Acc. Sc. Fis. Mat.,
Serie IV, Vol. LVII, CXXIX, 67-82.

[4] Dugundji J., Topology, Allyn and Bacon 1970.

[5] Ewert J., Lipiniski J.S., Weakly connected multivalued maps, Rad
Mat., vol. 5, (1989), 193 200.

[6] Hiriart Urruty J.B., Images of connected sets by semicontinmous
multifunctions, J. Math. Anal. Appl. 111, (1985), 407-422.



624 IMMACOLATA DEL PRETE - MARGHERITA DI IORIO

[7] Hrycay R., Non continuous multifunctions, Pacific J. Math. 85 (1970),
141-154.

[8] Irudayanathan A., Naimpally S., Connected open topology for function
spaces, Indag. Math. 28 (1966), 22-24.

[9] Kohli J.K., A unified approach to continuous and certain non-
continuous functions, J. Austral. Math. Soc. (Series A) 48 (1990),
347-358.

[10] Kuratowski K, Topology, Vol. 1 Academic Press New York 1966.

[11] Lechicki A., Levi S., Extensions of semicontinuous multifunctions,
Quaderno 28. Dipart. Mat "Enriques" Milano (1988).

[12] Levine N.,Semiopen sets and semicontinuity in topological spaces,
Amer. Math. Montly, 70 (1963), 36-41.

[13] Long P.E., Connected mappings, Duke Math. J. 35 (1968), 677-682.

[14] Michael E., Topologies on spaces of subsets, Trans. Amer. Math. Soc.
71 (1951), 152-183.

[15] Nadler S.B., Hyperspaces of sets, Pure and applied Mathematics. M.
Dekker Inc. 1978. ,

[16] Noiri T., On weakly continuous mappings, Proc. Amer. Math. Soc. 46
(1974), 120-124.

[17] Noiri T., A function which preserves connected spaces, Cas. Pest. Mat.
107 (1982), 393-396. ‘

[18] Noiri T., Ahmad B., On semi-weakly continuous mappings, Kyungpook
Math. J. 25 (1985), 123-126.

[19] Pervin W.J., On the connected open topology, Indag. Math. 29 (1967),
126-127.

[20] Reilly 1., Vamanamurthy M.K., Connectedness and strong semiconti-
nuity, Cas. Pést. Mat. 109 (1984), 261-265.

[21] Smithson R.E., A note on the continuity of multifunctions, J. Nat. Sci.
and Math.,(Lahore) 7, (1967), 197-202. _

[22] Smithson R.E., Almost and weak continuity for multifunctions, Bull.
Cal. Math. Soc. 70 (1978), 383-390.

[23] Smithson R.E., Topologies on sets of relations, J. Nat. Sci. and Math.
(Lahore) 11 (1971), 43-50.

[24] Valadier M., Deus propriétés des trajectoires d’une différentielle
multivoqgue, Séminaire d’Analyse convexe de Montpellier (1975),
Exposé No. 12.

[25] Whyburn G.T., Continuity of multifunctions, Proc. Nat. Acad. Sci. 6
(54),(1965), 1494-1501.

Dipartimento di Matematica e Applicazioni
Universita degli Studi di Napoli
via Claudio 21, (NA)



