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PARTIAL REGULARITY FOR QUASILINEAR
NONUNIFORMLY ELLIPTIC SYSTEMS

MICHELE FRASCA (Catania)
ALEXANDRE V. IVANOV (St.Petersbourg) (*)

We prove the partial regularity of the weak solutions of the
quasilinear nonuniformely elliptic system div(A(Vu) = 0 under an
ellipticity condition wich lies between strong ellipticity and Legendre-
Hadamard condition.

1. Introduction.

The partial regularity of the weak solutions u : Q — IRY of
second order quasilinear systems in divergence form

iA:;(z7u”uI)=Bi(mau’;uz)? 'i=1)""N
0T o

where N > 1, Q is an open set of IR", n>2, u, =(ul), i=1,..,N,
a =1,..,n, has been studied by many authors (in partlcular by
Morrey, Campanato, Giusti, Giaquinta, Modica, Ivert). We refer the
reader to the Giaquinta’s book [5] for a complete survey on the
subject.

(*) Entrato in Redazione 1’8 maggio 1991.
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Up to recent years the regularity proofs required the condltlon
of uniformly strong ellipticity.
Consider in particular the system

(1.1) iAf,(uz)=O, i=1,...,N
0T, ’

and suppose that functions 4! (p) satisfy the conditions
(S) A}, belong to C'(IR™);
(G) there exists a constant cy > 0 such that

|45@)| < ool +]p|™") Vpe R™, m >2.

In this paper m will always denote a real number, m > 2.
The condition of strong ellipticity for system (1.1) means that

(SE) w(1+p|™ D) € <
BA: (p)
ovj

and the condition of uniformly strong ellipticity means that (SE)
holds and moreover

fafﬁ: VE, D € |RnN1 W > O:

dA:(p)

< po(l +|p|™D)¢1?, Ve, pe IR,
o7, —E g < po(L+ pI™AIER, Ve, p

(1.2)

However there exist quasilinear systems interesting for appli-
cations witch are not uniformly strong elliptic.

Consider for example the Euler equations

0

(1.3) Bz,

Fu(u)=0, i=1,..,N

of the variational problem of minimizing an integral with an
integrand of the type

(1.4) F(p) = alp|* + b|p|" + /1 + (det p)?,
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a>0,0>0 (N =mn. It is easy to see that for the system (1.3),
(1.4) the condition (SE) with m = n holds if 4 is large enough, but
condition (1.2) does not hold (see sect. 5).

In 1984 Evans [2] proved the partial regularity of minimizers

of variational integrals | F(p)dz under the assumption of quasi-

convexity for the integrand F(p), i.e.
(QC) there exists a constant v > 0 such that

[ @0+ 0 - Fooaz >

> 5 L(lsozlzﬂsozl’")dw, Ve € R™, Vp e Cl@,IRM),

The Evans’s result was generalized independently by Giaquinta-
Modica [6] and Fusco-Hutchinson [3] to quasiconvex integrands
F(z,u,p). In [2], [3] and [6] there are also assumptions like

(1.5) |Fp| < c(1+[p|™ %), V¥pelR™W.

Later Acerbi-Fusco [1] and Giaquinta [7] proved the partial
regularity of minimizers without assuming any control on the growth
of the second derivatives of F with respect to p.

In particular, if F = F(p), they proved the partial C!'*-regularity
of minimizers assuming that F € C?, |F(p)| < c(1 +|p|™) and quasicon-
vexity condition (QC). From this result it follows that minimizers
(but not stationary points) of variational integral with integrand
like (1.4) are partial regular (for any o > 0, b > 0).

We shall prove later (see Lemma 2.1) that condition (SE) implieé
the following condition

(E) there exists a constant v > 0 such that

é Alpo +p2) — ¢t dz >

> u/(|¢,z|2 +|pz|™dz, Vpoe R™, Voe @, RY).
Q
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In the case m =2 the condition (E) was firstly introduced by
Fuchs [3] who proved the partial C!*-regularity of weak solutions
of the system (1.1) assuming that conditions (S), (E) and

<, YpelRY

‘5143(19)
ap[]@ W >

hold.

Unfortunately we know no quasiconvex (but not convex) function
F(p) satisfying all the conditions of [3] with A! = Fyi. Moreover
we know no nonuniformly strong elliptic system for which these
conditions are valid.

For instance any system of type (1.3), (1.4) does not satisfy
these conditions.

The aim of this paper is to establish the partial C!*-regularity
of weak solutions of system (1.1) assuming only the conditions (S),
(G) and (E). ‘

More precisely, recalling that a weak solution of system (1.1) is
a function u € Hy™(Q,IRY) such that |

(1.6) / Al(ug)pt dz =0, VYo € CHQ,IRY),
Q

we will prove the following (see sect. 4)

THEOREM 1.1. Suppose that conditions (S), (G) and (E) hold.
Let v be a weak solution of system (1.1). Then there exists an open
set Qy C Q where the first derivatives of u are Holder continuous;
moreover the Lebesgue measure of the possible singular set Q\Qp is
zero.

The proof of theorem 1.1 is achieved by a suitable adaptation
of the techniques used by Giaquinta in [7].

We explicitly remark that the partial C!'*-regularity of weak
solutions of a nonuniformly elliptic system under assumptions (S),
(G), (SE) and of the stationary points of variational integrals with
integrands like (1.4) (b large enough) follows from theorem 1.1 (see
lemma 2.1).
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As last remark let us point out that in the case Al(p) = F (p)
the condition (QC) is a consequence of the condition (E). In fact for

all p € CH(Q,IR™) and py € IR" we have
1
[P+ ) — Flpuds - / [ LBy (po + 702 )(r), drdz >
Q Q

1
2[ T—I/U(IT¢I'2+'T(pmlm)dsz=
Q

=v <% + —1—> /([(pI|2+ loz|™)dz.
m/ Jo

2. Connections between the conditions (SE), (E) and
Legendre-Hadamard condition.

LEMMA 2.1. Assume (SE). Then the condition (E) holds.

Proof. From the condition (SE) we have for all y € C}(Q, IRY)

. 1 .
2.1) /A;(po+<pz)<P;ad:c=// (Aa)p;(po+7<px)go;atpéﬂd7dx >
Q Q0
1
_>_/f uo[l+|_p0+7'<px|m"2]|goz|2d7'da:2
Q Y0

1
2> VO/"Pmlzdz + VO/I‘P:F[ (1 - 7lpo +T<,0I|m—2d7'd.’1;.
Q Q

Because of Lemma 8.1 of [2], there exists a constant y € (0,1)
depending only on m such that

1
2.2) / (1 = Dlpo + 7021 > xlioa| 2.
)
Hence from (2.1) and (2.2) we have

f A (po+ pa)' dz > vox / (p2? + lpa™dz,
Q Q
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and lemma is proved.

LEMMA 2.2. Assume conditions (S), (G) and (E). Then it follows
that for all py € R™, ¢ € IRY, n ¢ IR® the Legendre-Hadamard

inequality

K

OA (Do) ;. 2012
(2.3) —2 £ namg > )
o1, £ namg > v1l€)%|n|

holds, where v, = (v, 7).

Proof. From the condition (E) it follows that for all p, ¢ IR™
and ¢ € C}(Q, IRY) we have (with some ¥, (0, 1))

@4 v L (pal? + :™dz <
< / [AL(p0 + pz) — AL o)}, do =
Q
= L (A;)p; (po + 9p)p} 0l dz.

Let us select some point z, € Q and a unit vector 5 € IR, = (n,),
and choose new coordinates y related to z by the transformation

25) =) dul* -3, *-3§=) day?, (@)= )
a=1 =1
where d = (d,,) is a constant orthogonal matrix so that n is the unit
vector in the y! direction. Let ® € C}(Q) and define
__ P@)=¢D(), &R, wy)=Da@),
2.6) Als® = (4D, )
aas(D) = AL(DEE,  'ay5(D) = Gapdradsp

Making the change of variables (2.5), (2.6) we get from (2.4) the

inequality

5 ) , Ow Ow
.7 v|¢] LWM dygL a75@+0¢x)a;%7dy,
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where Q' denotes the image of Q. Now choose

eth—ly' )1 —r/H) if|y'|<h, 0<r<H,
w(y) = ,
outside

@ +... +@")=r* €>0,

with 0 < h < H so small that suppw C Q. Then if we divide both
sides of (2.7) by €? times the measure of the support of w and let
¢ — 0 and then 4 and H — 0 so that A/H — 0 we conclude that

-1l < 'anpo) = oappo)diadip = (AQ), €%/ 1amg
and lemma is proved.

Remark. 2.1. It is obvious that

8Ai,(po)
v

2.8) &€ namg < cpo)l€)? |n)?

3. Caccioppoli’s inequalities and higher integrability.

We denote with B, = B,(z) the ball of IR® with center z, and
radius r and with v, the average 7[ v(z)dz.

v

LEMMA 3.1. Let u be a weak solution of the system (1.1). Suppose
that conditions (S), (E) are satisfied. Moreover suppose that

(Go) |AL®)| < ko(lp| + [pI™"), Vp e IR™
holds. Then there exists a constant c = c¢(n, m, v, ko) such that

3.1) / (gl + ug|™dz <

Bgrp

1 1
‘SC 53 |u—uz ,Rlzdm+—/ lu—-uz ,Rl’"da:}
{R Br ° R™ Jg °

R
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for all B cc Q.

Proof. Let B CC Q, R/2<r < s< R and n € C}(B,) with =1
in B,, |ns| < c/(s —r). We set

(3.2) e=n(u—uo), v=010-m{-— up),

Uy = Uge . Then we have v —ug=p+1), u; = g, +9, in By, and ¢ = ¢, =0
in B,. '
From (E) (with py =0), (1.6), (Gy) and (3.2) we have

33 v / (sl + o ™de < / [A(p2) — Aiu)leh do =
s B, :

= [ [Alus — ¥o) — Al(ua)lpl do <
B,\B,

<o / (] + || + g™ + e ™ Dipslda <
B,\B,

v
<% [ oa + fpaldas
B, '

o (ugf+ug™ + [ * + 9| ™)dz
B.\B,

Since ¢ =u — yg in B, and
[%s] < (1 = Mug|+ |ng] [u — uol

in B, we conclude from (3.3) that

/ (Jug|® + [ug]™dz < ¢ {/ (Jug|* + |ug|™dz+
B, B,\B,

1 1
+ 2/ lu — uo[*dx + m/ [u—uolmdm},
(s —1)J5, (s =)™ Jp,

and hence

(3.4) /(qulz + |ug|™dz < < { (Jug)? + |ug|™)da+
s l1+c¢ B,

IS
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1 2 1 m
+(8_T)2'éﬂlu—uol dm+(8_r)mlR|u—uol dm},

By means of the algebraic lemma 2.3 of [6] (3.4) gives at once
the thesis.

Remark. 3.1. Let us explicitly observe that the proof of lemma
3.1 requires the condition (E) to hold only for py =0

Let p € IR and define

3.5) | Al (p) = Al (po +p) — A (pp).

LEMMA 3.2. Assume (S) and (G). Then there exists a constant
¢ = c(m, ¢, |po|) such that

(3.6) [A1@)] < cllpl + [pI™™h,  Vpe R™.

Proof. Set
K (|po)) = max{|(A}),(p)| : |p| < 1+ |pol}.

Then we have for |p| <1 and a suitable ¢ € (0, 1)

AL = [(ALy(p0 +99) - oI < K ([ [p],
while for |p| > 1 from (G) it follows that
[AL®)| < c(1+ o] + |po| ™" + Ip| + [p™ 1) <
< (1 + [po| + [po|™ (1 + [p| + |p|™ ") <
< (1 + [po] + [po| ™~ X(|p| + [p|™ ")
and (3.6) is proved.

LEMMA 3.3. Assume (S), (G) and (E). Let u be o weak solution
of the system (1.1). Then for all py € IR™Y there exists a constant



634 MICHELE FRASCA - ALEXANDRE V. IVANOV

¢ = c(n, m,v,co, |po|) such that

(3.7) (luz — pol* + |ug — po|™dz <
1 [ )
<cd =5 |u—tgr— pole — zo)|*da+

+ — [ |u— tg,r— polz — :zo)l"‘da:} .

for‘ all Bp cc Q.

Proof. Denote i = u — po(z — z0). In view of (3.5) we have
Lﬁi(ﬁz)soi,,dm = / Allug)ph de=0, VYo e CiQ,IRY),
: Q

Taking into account that for all p € C}(Q, IRY)
£ Aoty do = [ Ao+ el ds 2 v [ (o + o™i,
Q Q

so that A’ verify the condition (E) (with py = 0), we can use lemma
3.1 and lemma 3.2 and obtain the inequality

(|G ]* + |G5|™)dz <
Bgp

1 - 1 o m
<c {'ﬁi | |& — uxo,R|2dm + —R;/B‘ | ~ Gz R dm}
R R

and hence (3.7).

Remark. 3.2. The constant ¢ in lemma 3.3 is increasing in |py|.
We now recall a well-known theorem by Giaquinta-Modica (see
[5], cap. V).

THEOREM 3.1. [Reverse Hélder]. Let Q be a bounded open set
in IR". Suppose we have have

1/q I/r 1/q
(7[ !glqdm) _<_b< lg!’dw) +< lfl"dw)
Bg/2 Bg Bp
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for all Bp cc Q, where g ¢ L9(Q), f€ L*(Q), 0< r < g < 8 < +00.
Then there exists a positive § = 6(n,q,r,s,b) so that g € Lfo‘f(ﬂ).
Moreover for every Q' CcC Q

& : &
™ody c Ydzx c ™y
(qm ) < <7£lgl ) + (7£|f| )

where ¢ is a constant depending on n.gq,r,s,b, |Q|/|Q| and
1Q|/(dist(Q, o)

~ We are now in a position to state the following theorem on
higher integrability of the gradient.

THEOREM 3.2. Suppose that conditions (S) (G), and (E) are
satisfied. Let u be a weak solution of (1.1). Then there exist a positive
number § and a constant c, depending on the same quantities on
which depend the constant in lemma 3.3, such that

™
(3.8) ( (luz - PO'Z + luz - p()lm)Hédm) <
<c ( (lug — po|2 + |ug — po|m> dz
Bp

for all By cc Q and for all py € IR™.

Proof. Fix a point z) € By, a ball B,,, cC By and apply lemma
3.3. Using the Sobolev-Poincaré inequality, we estimate the right
hand side of the corresponding (3.7) by

_ 2 o
1 o1 ™

3.9) cy / luz — po*dz | +— / |uz — po|™dx ;
T B, ™ \Jg

ngq
n+gq
Note that 2m, < 2,m so that, using the Hélder inequality in

we have set ¢, =
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(3.9) from (3.7) we have

f (Juz — pol? + Juz — po|™dz <
r/Z

<c (f (Jug = pol* + |ug — pol”‘)z‘/zdw)
B,

Applying theorem 3.1 with

2
2.

9=(uz —pol* +|ug —po|™*%, q=2/2,, r=1, f=0

we have at once (3.8).

4. Partial regularity.

In this section we prove the theorem 1.1.
Fix a point zp € Q and a radius R <dist(zo,0Q) and set

Po= (ux)zo,R'
Let v be the solution of the Dirichlet problem
0 . .
“n 5o <(A )p;(po)v )_ i=1,....N in Bg), ;
v—u=0 on 0Bp/»

B, is the ball B,(zo). Recall that the coefficients of system (4.1)
satisfy the conditions (2.3) and (2.8). Then it is well-known (see [5]
cap. III) that for all = € IR™ and e p < R/2

4.2) / vz — 72dz < c/ luz — 7|*daz,

Bpr/ Bp/2

(43) 7§ I'U:c - (v:c)a:o,plzdm <c (%)27[ IUI - (vz)zo,R/2|2dm'

I BB/Z

Moreover from LP-theory for elliptic systems we deduce that if
u € HYW(Bg/y,IRY), p>2, then v € H'?(Bg/,IR") and

4.4) / |vy — 7|Pdz < c/ |uz — 7[Pdz,

Bgp By
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4.5) 7§p|vx — (Vg)gop/Pdz < € <]%>p7£ [y — (Ve)zo,m/2|Pd.

Bpgy

Notice that constants appearing in (4.2)...(4.5) depend on |py|
and it is possible to assume that they are increasing in such quantity.
From (4.3), (4.5) we deduce for p < R/2 and hence for p < R

p nt+2
(4.6) p"(x0, 0) < ol[po)) { (2)" R*@, R)+
+ (lug — vzl2 + |ug — vzlm)dm} ,
Bﬂ/z ’
where
@ ®(z0, R) = 7[ Itz — (U)o ol + iz — (tia)ag o™l

By

We only need to estimate the integral

(lwe|? + [wz[™)da,
Bry2

where w = u — v; obviously w € H&’"‘(BR/z, IRM).
Using the condition (E) with py =0 we have

(4.8) v / (wz|* + |we|™dz < [AL(ws) — ALO)]w! dz = 1.
Brp Brp

Set
Dpjp={x € B2 : |we| > x1},

for some y; to be fixed later. Then

49 I= / {LAL () — AL0) — (AL),, O], Tui +
Br/2\Dpg/2 r

+ (A;)p/ (O)w;awéﬂ}dz +/ [A! (wg) — AL(O)]w;ad(r =
? Dpgy2



638 MICHELE FRASCA - ALEXANDRE V. IVANOV

1
- { [ (A1), (rw,) — (A1), O))drws w] +
Brp2\Dgy2 ? ?

+AL) ” (O)w;;w{;ﬁ} dz + / [AL(wz) — ALO)]w: dz = Jy + J,.
Drp

Notice that for |p| < x; we have

1

4.10) [ C42),,(p) = (AL),, @)dr < wcss

where w(t; s) is the modulus of continuity of (A}),(p): we may assume
w to be concave in s and

w(t; 8) < 2max{|(A)),(®)} : |p| < t}

Taking into account (4.10) we have

4.11) JISCI/ W(Xl;,wzl)lwzlzdm+cll-/ |lwe|*dz.
Bg)2 Br/2

Using Hoélder inequality, (4.2), (4.4), LP-estimates in theorem
3.2, and Jensen inequality we estimate the first integral on the right
hand side of (4.11) by

@12) ¢ / wixt; wa|wal?ds < ctx1)R” (75 |w1|2“*5’d:s> -

Bgp Brp

-@g

R/2

. <7£ qu _p0|2(1+5)dz+f
B

w(xl;lwzl)dm> < c(x1)R™

™
2(1+6
vz — pol Ddg )
Brp R/2

‘W (Xl;f '“z_pOIdZ+7[ lvz-POIde?) <
Bgp Bg)2

< elxt, [pol) | (ug — pof* + |uz — po|™)dz-
Br

1/2
‘W (x::C(Ipol) <7£ |tz —polzdw> ) =
Bpg
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=m(zo, R) | (luz — po|* + [uz — po|™)dz.
Bg

On the other hand we have

4.13)  [Dppal < G +xP)! / (wel? + Jwe™dz <
Bg/2

< cllpoDOG +xM™ | (uz — pol* + |uz — po|™daz;

and taking into account the condition (G)

@14 < f |45 (wg) — AL(0)] [ws|de <
Drg/2

< c/ 1+ [wa? + s ™)z <
D

R/2

< c(|po)) {IDR/?.I + (Juz — pol* + |ug — pol"‘)dz} .

Using LP-estimates in theorem 3.2 we get from (4.13), (4.14)

(4.15) J2 < c(po]) {| Dgy2l+

1
™

+( (I”"p“'z“"“w‘m’"')l*édm) |Dapl ™ ¢ <
Dg/2

™
1
+|Bry2| 7 ( (luz — pof® + |uz — Polm)l+5d1‘> IDR/2IT%} <

< cillpo)) {(x? +x™7 | (uz — pol* + |ug — po|™)dz+
Br

i
+OG + X ( (|ug — pol* + ug — po|"f)dz) :

Bg
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/ (lug — pol? + ug — :ool"‘)dz} :
Bp

Fix now an arbitrary ¢ € (0,1) and set

1+61
X1 =

€

c1 = ci(|po|) being the constant in (4.15). Then from (4.15) it follows
(4.16) J2 < [e+m(zo, B)1 | (Jug — p0|2 + |ug — po|™)dz
Bp

where
L
1+6

m(zo, R) = ¢ ( (luz — pol* + |ug — pol’")dm>

Bp
From (4.8), (4.9)-(4.12), (4.16) we get

@17 v / (Jwsl? + |wa|™dx < [e + m(zo, R)+
Br

+m2(z0, R)1 | (lug — pof* + |ug — po|™)dz + C”/ |w,|*dz.
‘ Bpr Brj2

Now we estimate the integral
/ |wg|*de.
By
Set
fao = Auluz) = Alpo) — (AL (o), — o) =

1
- [ [CAL),(Po + sz — po) — (45, (eo)ud, — po

Using the Fourier transform and Legendre-Hadamard inequality
(2.3), we can write

4.18) / lwg|?dz < / (A;)p;(po)w;awf;ﬁdm / (—fwh dz.

Brp2 Brp2 Br/2zg)
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Set
Egp2={z € Bp2 : |ug — po| > x2}
for some y, to be fixed later. Then

..+/ o= J3+ Jy.
E

R/2

(4.19) (—fow!de = /

Brp Br/2\Eg/2

For |p — po| < x2 we have

1
420 [ KAL), o+ 70— o)~ (D) @l < an]+ i — pu)

where w(t; s) has the same meaning as in (4.10). Taking into account
(4.20) we obtain

v
4.21) J3 < —&l lwe|*dx + c/ w?(po| + x2; |[uz — po|) luz — po|*dz.
Bry Br/

Using LP-estimates in theorem 3.2 and Jensen inequality we
get as before

(4.22) c/ w?(|po| + x2; |uz — po|)|ug — po|fdz <
Bg/2 _ /

< clxz, po)) | (luz — pol* + |ug — po|™)dz-
Br

1/2
w | |po| + x2; ( |ug — polzdz) =
Br

=m(zo, B) [ (Juz — polz +|ugz — po|™)dz.
Bp

On the other hand we have

(4.23) (Juz — pol* + [uz — po|™dz > (3 + x| Eryal.

Recélling the condition (G) we have

424 Ji< / AL ) — A o) — (AL, o), — po [wsldo <
Er/2
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< C(lpol){IER/zl+ (qu—po|2+luz—polm)dw}+

+ 2 [ (ws + 2 jwe™da;
4 o
Bpr/2

¢ is the constant in (4.11). From (4.23), (4.24) we get as before

(4.25) Ja < c(|pol) {(x% +x£”)‘1/ (lug — pof* + [ug — po|™)dz+
Br

35
+0G+xJ)™™ ( (lug — po|® + |uz — pol-"‘)da:> :
\vBg

| (ug — pol? + ug — polm)dm} +
Bg

+ 2 [ (wel? + = |ws|™dz.
4 ) o
R/2

Fix now an arbitrary ¢ € (0,1) and set

_1+c(lpo))
X2=———
€
From (4.18), (4.19), (4.21), (4.22) and (4.25) we get at once the
 estimate

(4.26) f |wal?de < [+ na@o, B | (uz — pof® + |uz — po|™da+
BR/2 BR

v m
+ S lwg|™d,

Bp

where

146
na(zo, RB) = m(zo, R) + c2 ( luz — pof* + |ug — pol’")de:) .

Bp

Finally from (4.6), (4.17) and (4.25) it follows that

2 n
4.27) ®(z0, p) < <(|po|) [(-}%) +<§> (€+n($o,R))} ®(zo, R);
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we have set
n(zo, R) = m(zo, R) + m2(zo, R) + nalzo, R).

Theorem 1.1 follows in a standard way from (4.27); see [7]
proposition 3.1 for a similar argument.

5. An example.

Consider the Euler equations of variational integral with
integrand

(5.1) F(p) = alp|* + blp|” + \/1 + (det p)?.

a>0,b>0. We have

1

. . A
— ) nb n—-2
Fp:, - 2a'pa + 'pl pa + /—1 + A2 Aa

where

. A LA
A=detp, A, = b%; (A = E pLAZ,) ,
“ra a=1

F

o8

0= 20662 + nb(n — 2)|p|"* pl,pf; + nb|p|™> 6768+

AL A

+ + AY
(1+A232 " /T4 A2

where
i 8%A

o apf,apfg '

We have

4 E5Eh = 2al¢[* + nblpl™ (€[ + nin— 2)b(p - € |pl"*+
ALEDALED) A
+ +
(1+A232 1+ A2
nb
o2~ Pl 2lel > (2a+ i ) e,

52) F

P

AT 6] > 2ale P+
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if b is taken so that nb > 2¢(n). In particular in the case n=2 we
can take b > 4. In view of (5.2) condition (SE) holds but it is obvious
that condition (1.2) (with m = n) does not hold because we have only

Fyptadh < o+ [P, ¥E,pe ™.

Therefore the considered system is not uniformly elliptic. It is
easy to see that this system satisfies all the hypothesis of theorem

1.1 with m = n. Hence every stationary point of the integral / F(uz)dz
with integrand of type (5.1) is partial Cl-regular.
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