ON SOME LINE CONGRUENCES IN IP4

EMMA FRIGERIO - CRISTINA TURRINI (Milano)(*)

Consider a line congruence in $\mathbb{P}^4(\mathbb{C})$ or, equivalently, a smooth threefold V in the Grassmannian G(1,4); we say that the congruence has type (m,n) if V is numerically equivalent to $m\Omega(0,4) + n\Omega(1,3)$.

We prove that there are no general, non-degenerate line congruences of type (m, 1), for any m, and (m, 2), for $m \le 5$.

Further, we give an explicit example of a general line congruence in $\mathbb{P}^4(\mathbb{C})$, which is a generalization of the classical Reye congruence in $\mathbb{P}^3(\mathbb{C})$, and we show that its type is (15,10).

Introduction.

By line congruence C_V in $\mathbb{P}^4 = \mathbb{P}^4(\mathbb{C})$ we mean a set of lines in \mathbb{P}^4 parametrized by the points of a threefold V in the Grassmannian G(1,4) of lines in \mathbb{P}^4 . Line congruences C_V with the property that the set of points in \mathbb{P}^4 through which infinitely many lines of C_V pass is finite are classically called general. In the cohomology ring of the Grassmannian G(1,4), V can be written as

$$V \approx m\Omega(0,4) + n\Omega(1,3),$$

^(*) Entrato in Redazione il 2 luglio 1991.

where the pair (m, n) is called the type of V.

In the spirit of classifying projective varieties with small projective invariants, we showed in [7] that there are no general line congruences of type (2, n), for any n. Here we give non-existence results for line congruences of type (m, 1), for any m, and (m, 2), for $m \le 5$ (Theorems 1.1 and 1.3).

In Section 2, in order to give an explicit example of a general line congruence in \mathbb{P}^4 , we exhibit a line congruence which is a generalization of the classical Reye congruence in \mathbb{P}^3 (see also [6] and [11]) and, in Proposition 2.3, we show that it has type (15,10). We are grateful to the Referee for having suggested us a shorter proof of this fact.

1. Line congruences with small characters.

Throughout this work we denote by:

- IP⁴ the four-dimensional complex projective space;
- $-G(1,4) \subseteq \mathbb{P}^9$ the Grassmannian of lines in \mathbb{P}^4 , which has dimension 6;
- $pprox ext{homological equivalence};$
- $-A \cdot B$, or AB if no confusion arises, both the intersection cycle and its degree;
- pencil, net, web a linear system of dimension one, two, three respectively;
- $-\langle A,B\rangle$ the linear span of A and B.

Let $A_0 \subset A_1 \subseteq \mathbb{P}^4$ be a flag of linear subspaces of dimension $a_i = \dim A_i$ (i = 0, 1) and denote by $\Omega(A_0, A_1)$ the set of all lines ℓ in \mathbb{P}^4 such that $\dim(\ell \cap A_i) \geq i$. Using the same notation as in [10], we will denote by $\Omega(a_0, a_1)$ the Schubert cycle of type (a_0, a_1) , i.e. the corresponding cohomology class $\Omega(a_0, a_1) \in H^*(G(1, 4), \mathbb{Z})$.

Let V be a smooth threefold in G(1,4) and denote again by V the cohomology class corresponding to V in $H^*(G(1,4),\mathbb{Z})$. Since the Schubert cycles of dimension k form a basis of the cohomology group

 $H^{2(3-k)}(G(1,4),\mathbb{Z})$ and dim $\Omega(A_0,A_1)=a_0+a_1-1$, for suitable integers m and n we have

$$V \approx m\Omega(0,4) + n\Omega(1,3)$$
.

As

$$m = V \cdot \Omega(0,4)$$
 and $n = V \cdot \Omega(1,3)$,

m is the number of lines of C_V passing through a generic point of \mathbb{P}^4 and n is the number of lines of C_V intersecting a generic line and contained in a given generic hyperplane through it; the integers m, n and the pair (m,n) are respectively called *order*, class and type of V. The degree of V is

$$d = m + 2n$$
.

For any point $L \in G(1,4)$, we will denote by ℓ the corresponding line in \mathbb{P}^4 and viceversa. The family C_V of lines ℓ parametrized by the points $L \in V$ will be called *line congruence* associated to V. Conversely, for a given algebraic three-dimensional family C of lines in \mathbb{P}^4 , we will denote by V_C , the corresponding subvariety of G(1,4), which will also be called line congruence, provided that it is smooth.

If $V \subseteq \mathbb{P}^9$ is non-degenerate, we will say that the corresponding line congruence C_V is non-degenerate as well.

A point $P \in \mathbb{P}^4$ is said to be *fundamental* for V if infinitely many lines $\ell \in C_V$ pass through P. The set of fundamental points for V is called the *fundamental locus* of V. Line congruences with finite fundamental locus are said to be *general*.

From now on, we will suppose that V is general and that $m \geq 2$. For a fixed generic two-dimensional linear subspace $\pi \subset \mathbb{P}^4$, consider the intersection V_{π} of V with the Schubert variety $\Omega(\pi, \mathbb{P}^4)$, hyperplane section of G(1,4). Since the singular locus of $\Omega(\pi, \mathbb{P}^4)$ is $\Omega(\lambda,\pi)$, where λ denotes a line in π , and $V \cdot \Omega(1,2) = 0$, it follows, by transversality and by generality of π , that V_{π} is a non-singular hyperplane section of V. We can define a morphism

$$\psi:V_{\pi}\to \mathbb{P}^1,$$

as follows: identify \mathbb{P}^1 with the pencil of hyperplanes containing π and set $\psi(L) = \langle \ell, \pi \rangle$. Clearly ψ is everywhere defined and its fibers

are curves of degree n, since

$$\psi^{-1}(\langle \ell, \pi \rangle) = V \cdot \Omega(\pi, \langle \ell, \pi \rangle) \approx n\Omega(P, \pi).$$

THEOREM 1.1. In \mathbb{P}^4 there are no general line congruences of type (m, 1), $m \geq 2$.

Proof. Since n = 1, ψ is the ruling of a rational scroll of degree d > 2, so that V is a scroll of planes over \mathbb{P}^1 (cf. [9, Proposition 2.3]). The classification of 3-scrolls in G(1,4) (cf. [2]) implies $m \le 2$, but, if m = 2, V cannot be general (cf. [7, Theorem 3.2]).

Let V be non-degenerate and g_s its sectional genus, i.e. the genus of the curve C_s , section of V with two generic hyperplanes in \mathbb{P}^9 . Since C_s is a non-degenerate curve of degree d = m + 2n in \mathbb{P}^7 , Castelnuovo inequality gives

$$(1.1) g_s \le 3a(a-1) + a\varepsilon,$$

where a = [(d-1)/6] and $d-1 = 6a + \varepsilon$.

LEMMA 1.2. In \mathbb{P}^4 there are no general non-degenerate line congruences with class n=2, order $m\geq 2$ and sectional genus $g_s\leq 2$.

Proof. Since n = 2, V_{π} is a conic bundle over \mathbb{P}^1 , hence, by adjunction as in [9, Proposition 1.11, ii], V is a quadric bundle over \mathbb{P}^1 . Let k be the number of singular fibers of V; the Betti numbers of V, which can be computed via the Mayer-Vietoris argument, are

$$b_0 = b_6 = 1$$
, $b_1 = b_5 = 0$, $b_2 = b_4 = 3$, $b_3 = k$.

We proceed by checking the list of threefolds with small sectional genus in [9].

Case $g_s = 0$. By [9, Proposition 2.3], V is one of the following: case 0.1) a hyperplane in \mathbb{P}^4 :

case 0.2) a hyperquadric in IP4;

case 0.3) a scroll of planes over a rational curve.

Case $g_s = 1$. By [9, Proposition 2.6], V is one of the following:

- case 1.1) a Fano threefold:
- case 1.2) a scroll of planes over an elliptic curve.

Case $g_s = 2$. By (1.1) $d \ge 9$, so [9, Corollary 3.3 and Theorem 3.4] imply that V is one of the following:

- case 2.1) the Segre embedding of $\mathbb{IP}^1 \times \mathbb{IF}_1$, where \mathbb{IF}_1 denotes the blow-up of \mathbb{IP}^2 at one point;
- case 2.2) a scroll of planes over a curve of genus 2.

Cases 0.1 and 0.2 are obviously ruled out.

Cases 0.3, 1.2 and 2.2 do not occur since all these threefolds have $b_2 = 2$.

In case 1.1, since by (1.1) we have $d \ge 8$, by [8] the only possibility is d = 8 and V is \mathbb{P}^3 embedded into \mathbb{P}^9 via the Veronese embedding. This gives a contradiction since $b_2(\mathbb{P}^3) = 1$.

Also case 2.1 is ruled out since there are no Segre embeddings of $\mathbb{P}^1 \times \mathbb{F}_e$ in G(1.4) for e > 0 (cf. [3]).

THEOREM 1.3. In \mathbb{P}^4 there are no general non-degenerate line congruences of type (m,2) with $2 \le m \le 5$.

Proof. In our hypotheses, (1.1) implies $g_s \leq 2$. Thesis follows from Lemma 1.2.

2. Reye congruence in \mathbb{P}^4 .

Let S be a 4-dimensional linear system of quadrics in \mathbb{P}^4 such that:

- 1) S is base-point-free;
- 2) if a line $\ell \subset \mathbb{P}^4$ is singular for a quadric of S, then in S there are no pencils of quadrics containing ℓ .

The family C of lines $\ell \subset \mathbb{P}^4$ contained in a net in S will be called *Reye congruence* in \mathbb{P}^4 and the corresponding subvariety $V = V_C$, in G(1,4) can be described as follows.

Two points P, P' in \mathbb{P}^4 are said to be conjugated with respect to a quadric Q if $Q(\mathbf{p}, \mathbf{p}') = 0$, where, here and in the following, we denote by the same symbol a quadric and a symmetric bilinear form defining it and by \mathbf{p} a representative vector in \mathbb{C}^5 for $P \in \mathbb{P}^4$. Define

$$X = \{(P, P') \in \mathbb{P}^4 \times \mathbb{P}^4 | P, P' \text{ are conjugated } \}$$

with respect to all the quadrics in S};

notice that X is three-dimensional, since it is the complete intersection of five sufficiently general hypersurfaces of bidegree (1,1) in $\mathbb{P}^4 \times \mathbb{P}^4$. Indeed the equations for X are

(2.1)
$$Q_i(\mathbf{p}, \mathbf{p}') = 0, \quad i = 1, \dots, 5,$$

where Q_1, \ldots, Q_5 form a basis for S. If $(P, P') \in X$, then $P \neq P'$, for otherwise P would be a base point of S; hence the involution

$$a: \mathbb{IP}^4 \times \mathbb{IP}^4 \to \mathbb{IP}^4 \times \mathbb{IP}^4$$

defined by $\iota(P, P') = (P', P)$ is fixed-point-free on X.

Let U be the complement of the diagonal in $\mathbb{P}^4 \times \mathbb{P}^4$ and consider the map

$$\phi: U \to G(1,4)$$

defined by $\phi((P, P')) = L$, where L denotes the point corresponding to the line $\ell = \langle P, P' \rangle$. As in the case of classical Reye congruences in \mathbb{P}^3 (cf. [4]), its restriction φ to X induces an isomorphism between the quotient of X under the involution ι and V.

PROPOSITION 2.1. X and V are smooth threefolds (1).

Proof. Since i is fixed-point-free on X, it suffices to prove the smoothness of X. Denote by e_i (i = 1, ..., 5) the standard basis of \mathbb{C}^5 ; the Jacobian matrix of X is

$$J(X)(\mathbf{p}, \mathbf{p}') = \begin{bmatrix} Q_1(\mathbf{e}_1, \mathbf{p}') & \dots & Q_1(\mathbf{e}_5, \mathbf{p}') & Q_1(\mathbf{p}, \mathbf{e}_1) & \dots & Q_1(\mathbf{p}, \mathbf{e}_5) \\ \dots & \dots & \dots & \dots & \dots \\ Q_5(\mathbf{e}_1, \mathbf{p}') & \dots & Q_5(\mathbf{e}_5, \mathbf{p}') & Q_5(\mathbf{p}, \mathbf{e}_1) & \dots & Q_5(\mathbf{p}, \mathbf{e}_5) \end{bmatrix}.$$

 $^(^{1})$ Since V is a threefold, this generalization of the Reye construction is completely different from that given in [5].

Its rank at a point (P, P') is less than 5 if and only if the line $\ell = \langle P, P' \rangle$ is singular for a quadric $Q \in \mathcal{S}$. But a line in \mathcal{C} cannot be singular for any quadric $Q \in \mathcal{S}$, due to assumption 2.

PROPOSITION 2.2. V is fundamental-point-free, hence general.

Proof. By assumption 1, for any $P \in \mathbb{P}^4$, the quadrics of S through P form a web W_P which has a finite number of base points, including P itself. Let $\ell \in C$ be a line through P; the quadrics of S containing ℓ form a net $\mathcal{N}_{\ell} \subset W_P$. If now Q^* is a quadric in $W_P \setminus \mathcal{N}_{\ell}$, ℓ intersects Q^* in P and in another base point of W_P . Hence ℓ is a line joining P with one of the other base points of W_P .

PROPOSITION 2.3. V has type (15,10).

Proof. Since for generic P the web W_P has 16 distinct base points, it follows from the proof of Proposition 2.2 that m = 15.

In order to compute n, consider the natural homomorphisms of cohomology rings

$$j^*: H^*(\mathbb{IP}^4 \times \mathbb{IP}^4, \mathbb{Z}) \to H^*(U, \mathbb{Z})$$

and

$$\phi^*: H^*(G(1,4), \mathbb{Z}) \to H^*(U, \mathbb{Z})$$

induced by the inclusion $j: U \to \mathbb{P}^4 \times \mathbb{P}^4$ and by the map ϕ defined in (2.2) respectively. Denote by A and B the generators of $H^*(\mathbb{P}^4 \times \mathbb{P}^4, \mathbb{Z})$ and again by X the class of X; by (2.1) we have

$$(2.3) X = (A+B)^5.$$

Observe that

(2.4)
$$\phi^*(\Omega(1,3)) = j^*(A^2B + AB^2).$$

In order to show it, notice that the Zariski closure Z of $\phi^*(\Omega(1,3))$ in $\mathbb{P}^4 \times \mathbb{P}^4$ is five-dimensional, hence

$$Z \approx xA^3 + yA^2B + zAB^2 + tB^3$$

where

$$x = Z \cdot AB^4 = Z \cdot A^4B = t$$
, $y = Z \cdot A^2B^3 = Z \cdot A^3B^2 = z$.

An easy geometrical argument shows that x = t = 0 and y = z = 1. Projection formula yields

$$\phi_*(\phi^*(\Omega(1,3)) \cdot j^*(X)) = \Omega(1,3) \cdot \phi_*(j^*(X)).$$

Recalling that φ is a double cover and $X \subseteq U$, by (2.3) and (2.4) we obtain

$$\phi_*(j^*((A^2B + AB^2)(A + B)^5)) = 2\Omega(1,3) \cdot V;$$

computing degrees we get 20 = 2n.

Remark 2.4. The same technique used to compute n could be used to compute m as well. Indeed, substituting

$$\phi^*(\Omega(0,4)) = j^*(A^3 + A^2B + AB^2 + B^3)$$

for (2.4), we get 30 = 2m.

Moreover, the description of X as a complete intersection in $\mathbb{P}^4 \times \mathbb{P}^4$ allows to compute its Chern classes, from which the Chern classes of V can be easily deduced. Thus it can be checked that our computations for m and n agree with the general formula for threefolds in G(1,4) (cf. [1]).

REFERENCES

- [1] Alzati A., Varietà di Grassmann e loro sottovarietà. Istituto Lombardo (Rend. Sc.) A 118 (1984), 323-345.
- [2] Alzati A., 3-Scroll immersi in G(1,4). Ann. Univ. Ferrara, Sez VII Sc. Mat. 32 (1986), 45-54.
- [3] Alzati A., *Prodotti di Segre in G*(1,4). Atti Accad. Sc. Torino **121** (1987), 89-103.
- [4] Beauville A., Surfaces algébriques complexes. Astérisque 54 (1978).
- [5] Conte A., Verra A., Reye constructions for nodal Enriques surfaces. Preprint.
- [6] Dolgachev I., Enriques Surfaces, vol.II. Birkhauser. In preparation.

- [7] Frigerio E., Turrini C., On order-two line congruences in \mathbb{P}^n . Arch. Math. 55 (1990), 412-416.
- [8] Fujita T., On the structure of polarized manifolds with total deficiency one, I. J. Math. Soc. Japan 32 (1980) 709-725.
- [9] Ionescu P., Embedded projective varieties of small invariants. Algebraic Geometry Bucharest 1982, Proc., 142-186. Lect. Notes Math. 1056. Springer, 1984.
- [10] Kleiman S., Laksov D., Schubert Calculus. Amer. Math. Monthly, 79 (1972), 1061-1082.
- [11] Oliva C., Doctoral Thesis. In preparation.

Emma Frigerio and Cristina Turrini Dipartimento di Matematica Università degli Studi Via C. Saldini, 50 I- 20133 Milano (Italy)