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ON SOME LINE CONGRUENCES IN IP*
EMMA FRIGERIO - CRISTINA TURRINI (Milano) (*)

Consider a line congruence in IP4(C) or, equivalently, a smooth
threefold V' in the Grassmannian G(1,4); we say that the congruence
has type (m,n) if V is numerically equivalent to mQ(0,4) + nQ(1, 3).

We prove that there are no general, non-degenerate line
congruences of type (m, 1), for any m, and (m,?2), for m <5

Further, we give an explicit example of a general line congruence
in IP*(C), which is a generalization of the classical Reye congruence

- in IP?(C), and we show that its type is (15,10).

Introduction.

By line congruence Cy in IP* = IP*C) we mean a set of lines in
IP* parametrized by the points of a threefold V in the Grassmannian
G(1,4) of lines in IP*. Line congruences C, with the property that
the set of points in IP* through which infinitely many lines of ¢,
pass is finite are classically called general. In the cohomology ring
of the Grassmannian G(1,4), V can be written as

V ~ mf(0,4) + nQ(1,3),

(*) Entrato in Redazione il 2 luglio 1991.
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where the pair (m,n) is called the type of V.

In the spirit of classifying projective varieties with small
projective invariants, we showed in [7] that there are no general
line congruences of type (2, ), for any n. Here we give non-existence
results for line congruences of type (m, 1), for any m, and (m,2), for
m < 5 (Theorems 1.1 and 1.3).

In Section 2, in order to give an explicit example of a general
line congruence in IP*, we exhibit a line congruence which is a
generalization of the classical Reye congruence in IP? (see also [6]
and [11]) and, in Proposition 2.3, we show that it has type (15,10).
We are grateful to the Referee for having suggested us a shorter
proof of this fact.

1. Line congruences with small characters.

Throughout this work we denote by:
— IP* the four-dimensional complex projective space;

— G(1,4) C IP’ the Grassmannian of lines in IP*, which has
dimension 6;

— ~ homological equivalence;

— A B, or AB if no confusion arises, both the intersection cycle
and its degree;

— pencil, net, web a linear system of dimension one, two, three
respectively;

— (A, B) the linear span of 4 and B.

Let Ao C A; C IP* be a flag of linear subspaces of dimension
a; =dimA4; (1 =0,1) and denote by Q(4y, A;) the set of all lines ¢ in
IP* such that dim(¢ N 4;) > i. Using the same notation as in [10], we
will denote by Q(ag,a;) the Schubert cycle of type (ao,a1), i.e. the
corresponding cohomology class Q(ag,a1) € H*(G(,4), Z).

Let V be a smooth threefold in G(1,4) and denote again by V
the cohomology class corresponding to V in H*(G(1,4),Z). Since the
Schubert cycles of dimension & form a basis of the cohomology group
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H®X-B(G(1,4),Z) and dim Q(Ap, A1) = ao + a1 — 1, for suitable integers
m and n we have

V '~ m€0,4) + nQ(1, 3).

As
m=V Q0,4 and n=V . QqU,3),

m is the number of lines of Cy passing through a generic point of IP*
and n is the number of lines of Cy intersecting a generic line and
contained in a given generic hyperplane through it; the integers m,
n and the pair (m,n) are respectively called order, class and type of
V. The degree of V is

d=m+2n.

For any point L € G(1,4), we will denote by ¢ the corresponding
line in IP* and viceversa. The family Cy of lines ¢ parametrized
by the points L € V will be called line congruence associated to V.
Conversely, for a given algebraic three-dimensional family C of lines
in IP*, we will denote by V¢, the corresponding subvariety of G(1,4),
which will also be called line congruence, provided that it is smooth.

If v C IP’ is non-degenerate, we will say that the corresponding
line congruence Cy is non-degenerate as well.

A point P ¢ IP* is said to be fundamental for V if infinitely
many lines £ € Cy pass through P. The set of fundamental points
for v is called the fundamental locus of V. Line congruences with
finite fundamental locus are said to be general. | ’

From now on, we will suppose that V is general and that
m > 2. For a fixed generic two-dimensional linear subspace = C IP*,
consider the intersection V, of V with the Schubert variety Q(r, IP*),
hyperplane section of G(1,4). Since the singular locus of Q(r,IP*) is
Q(\, ), where )\ denotes a line in 7, and V - Q(1,2) = 0, it follows,
by transversality and by generality of =, that V, is a non-singular
hyperplane section of V. We can define a morphism

Ve — IPY

as follows: identify IP' with the pencil of hyperplanes containing =
and set ¢(L) = (¢,n). Clearly ¢ is everywhere defined and its fibers
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are curves of degree n, since
oL, 7)) =V - Qn, (£, 7)) ~ nQUP, 7).

THEOREM 1.1. In IP* there are no general line congruences of
type (m,1), m > 2. -

Proof. Since n=1, ¢ is the ruling of a rational scroll of degree
d > 2, so that V is a scroll of planes over IP' (cf. [9, Proposition 2.3]).
The classification of 3-scrolls in G(1,4) (cf. [2]) implies m < 2, but, if
m =2, V cannot be general (cf. [7, Theorem 3.2]). ||

Let V be non-degenerate and g, its sectional genus, i.e. the
genus of the curve C,, section of V with two generic hyperplanes in
IP°. Since C;, is a non-degenerate curve of degree d = m +2n in IP’,
Castelnuovo inequality gives

(1.1) 9s < 3ala — 1) +ae,
where a =[(d - 1)/6] and d — 1 = 64 +¢.

LEMMA 1.2. In’ IP* there are no general non-degenerate line
congruences with class n=2, order m > 2 and sectional genus g, < 2.

Proof. Since n=2, V, is a conic bundle over IP!, hence, by
adjunction as in [9, Proposition 1.11, ii], V is a quadric bundle over
IP!. Let k be the number of singular fibers of V; the Betti numbers
of V, which can be computed via the Mayer-Vietoris argument, are

bo=bs=1, b1 =bs=0, by=bs=3, bs3=k.

We proceed by checking the list of threefolds with small sectional
genus in [9]. .
Case g, =0. By [9, Proposition 2.3], V is one of the following:

case 0.1) a hyperplane in IP*;

case 0.2) a hyperquadric in IP*;
case 0.3) a scroll of planes over a rational curve.

Case g, = 1. By [9, Proposition 2.6], V is one of the following:
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case 1.1) a Fano threefold;

case 1.2) a scroll of plane‘s over an elliptic curve.

Case g, =2. By (1.1) d > 9, so [9, Corollary 3.3 and Theorem 3.4]
imply that V is one of the following:

case 2.1) the Segre embedding of IP' x IF;, where IF; denotes the
blow-up of IP? at one point;

case 2.2) a scroll of planes over a curve of genus 2.
Cases 0.1 and 0.2 are obviously ruled out.

Cases 0.3, 1.2 and 2.2 do not occur since all these threefolds
have b, =2.

In case 1.1, since by (1.1) we have d > 8, by [8] the only
possibility is d =8 and V is IP® embedded into IP° via the Veronese
embedding. This gives a contradiction since b,(IP%) = 1.

Also case 2.1 is ruled out since there are no Segre embeddings
of IP! x IF, in G(1.4) for e > 0 (cf. [3]). N

THEOREM 1.3. In IP* there are no general non-degenerate line
congruences of type (m,2) with 2 < m < 5.

Proof. In our hypotheses, (1.1) implies g, < 2. Thesis follows
from Lemma 1.2. ' |

2. Reye congruence in IP%,
Let S be a 4-dimensional linear system of quadrics in IP* such
that: |
1) S is base-point-free;
2) if a line ¢ C IP* is singular for a quadric of S, then in S there

are no pencils of quadrics containing 4.

The family C of lines ¢ c IP* contained in a net in § will
be called Reye congruence in IP* and the corresponding subvariety
V =V, in G(1,4) can be described as follows.
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Two points P, P’ in IP* are said to be conjugated with respect
to a quadric Q if Q(p,p’) =0, where, here and in the following, we
denote by the same symbol a quadric and a symmetric bilinear form
defining it and by p a representative vector in C’ for P ¢ IP*. Define

X ={(P,PyeP*xIP*| pP are conjugated
with respect to all the quadrics in S};
notice that X is three-dimensional, since it is the complete intersection

of five sufficiently general hypersurfaces of bidegree (1,1) in IP* x IP*.
Indeed the equations for X are

(2.1) Qi(p,pH) =0, i=1,...,5,

where Q,...,Qs form a basis for S. If (P,P') € X, then P#P', for
otherwise P would be a base point of S; hence the involution

2 : IP* < IP* = IP* & IP?

defined by (P, P') = (P, P) is fixed-point-free on X.
Let U be the complement of the diagonal in IP* x IP* and consider
the map

(2.2) ¢:U -G, 4

defined by ¢((P, P")) = L, where L denotes the point corresponding to
the line ¢= (P, P'). As in the case of classical Reye congruences in
IP? (cf. [4]), its restriction ¢ to X induces an isomorphism between
the quotient of X under the involution : and V.

PROPOSITION 2.1. X and V are smooth threefolds(}).

Proof. Since : is fixed-point-free on X, it suffices to prove the
smoothness of X. Denote by e; (= 1,...,5) the standard basis of C>;
the Jacobian matrix of X is

Quer,p) ... Qiles,p) Qupe) ... Qulp,es)
JOOM,P) = | oo R U
Qs(er,p') ... Qs(es,p’) Qs(p,er) ... Qs(p,es)

(*) Since V is a threefold, this generalization of the Reye construction is
completely different from that, given in [5].
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Its rank at a point (P, P') is less than 5 if and only if the line
2= (P, P') is singular for a quadric Q € S. But a line in C cannot be
singular for any quadric Q € S, due to assumption 2. ]

PROPOSITION 2.2. V is fundamental-point-free, hence general.

Proof. By assumption 1, for any P ¢ IP*, the quadrics of S
through P form a web Wp which has a finite number of base points,
including P itself. Let ¢ € C be a line through P; the quadrics of S
containing ¢ form a net N, C Wp. If now Q* is a quadric in Wp\A,,
¢ intersects Q* in P and in another base point of Wy. Hence ¢ is a
line joining P with one of the other base points of Wp. |

PROPOSITION 2.3. V has type (15,10).

Proof. Since for generic P the web Wp has 16 distinct base
points, it follows from the proof of Proposition 2.2 that m = 15.

In order to compute n, consider the natural homomorphisms of
cohomology rings

j*: H*(P* x IP*, Z) — H*(U, 2Z)

and
¢* : HHG(,4),Z) — H*(U,Z)

induced by the inclusion j : U — IP* x IP* and by the map ¢ defined in
(2.2) respectively. Denote by A and B the generators of H*(IP* x IP* Z)
and again by X the class of X; by (2.1) we have

(2.3) X =(A+B).
Observe that ,
(2.4) $*(Q(1,3)) = j*(A’B + AB?).

In order to show it, notice that the Zariski closure Z of $*(Q(1, 3))
in IP* x IP* is five-dimensional, hence

Z ~ zA®+yA’B + 2AB* +tB?,
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where
r=27-AB*=7 A*B=t, y=2Z.4°B*=7.4AB*=,

An easy geometrical argument shows that z=¢t=0and y=2=1.
Projection formula yields:

$(67(€2(1,3)) - 7*(X)) = Q(1,3) - $.(7*(X)).

Recalling that ¢ is a double cover and X C U, by (2.3) and (2.4)
we obtain

¢ *((A’B + ABY(A + B)®)) = 2(1,3) - V;
computing degrees we get 20 = 2n. . n

Remark 2.4. The same technique used to compute n could be
used to compute m as well. Indeed, substituting

¢*(Q(0,4) = j*(A3 + A’B + AB*> + B%)

for (2.4), we get 30 = 2m.

Moreover, the description of X as a complete intersection in
IP* x IP* allows to compute its Chern classes, from which the Chern
classes of V can be easily deduced. Thus it ¢an be checked that
our computations for m and » agree with the general formula for
threefolds in G(1,4) (cf. [1D).
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