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EXISTENCE OF SOLUTIONS FOR SOME DEGENERATE
QUASILINEAR ELLIPTIC EQUATIONS

ALBO CARLOS CAVALHEIRO

In this paper we are interested in the existence of solutions for Diri-
chlet problem associated to the degenerate quasilinear elliptic equations

−
n

∑
j=1

D j[ω(x)A j(x,u,∇u)]+ω(x)g(x,u(x),∇u(x)) = f0−
n

∑
j=1

D j f j,

on Ω, in the setting of the weighted Sobolev spaces W1,p
0 (Ω,ω).

1. Introduction

In this paper we prove the existence of (weak) solutions in the weighted Sobolev
spaces W1,p

0 (Ω,ω) (see Definition 2.3) for the Dirichlet problem

(P)

 Lu(x) = f0(x)−
n

∑
j=1

D j f j(x), on Ω

u(x) = 0, on ∂Ω

where L is the partial differential operator

Lu(x) =−
n

∑
j=1

D j
[
ω(x)A j(x,u(x),∇u(x))

]
+ω(x)g(x,u(x)∇u(x)) (1)
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where D j = ∂/∂x j, Ω is a bounded open set in Rn, ω is a weight function,
and the functions A j : Ω×R×Rn→R ( j = 1, ...,n) and g : Ω×R×Rn→R
satisfying the following assumptions:

(H1) x 7→A j(x,η ,ξ ) is measurable in Ω for all (η ,ξ )∈R×Rn

(η ,ξ ) 7→A j(x,η ,ξ ) is continuous in R×Rn for almost all x∈Ω.
(H2) [A (x,η ,ξ )−A (x,η ′,ξ ′)].(ξ−ξ ′)≥0, whenever ξ ,ξ ′∈Rn, ξ 6=ξ ′, where

A (x,η ,ξ ) = (A1(x,η ,ξ ), ...,An(x,η ,ξ )).

(H3) A (x,η ,ξ ).ξ ≥λ |ξ |p + Λ|η |p−h1(x)|η |−h2(x), with 1 < p < ∞, where
λ and Λ are positive constants, h1∈Lp′(Ω,ω) and h2∈L1(Ω,ω) (we denote by
p ′ the real number such that 1/p+1/p ′ = 1).
(H4) |A (x,η ,ξ )|≤K1(x)+h3(x)|η |p/p′+h4(x)|ξ |p/p′ , where K1,h3 and h4 are
positive functions, with h3 and h4∈L∞(Ω), and K1∈Lp′(Ω,ω).
(H5) x 7→g(x,η ,ξ ) is measurable in Ω for all (η ,ξ )∈R×Rn

(η ,ξ ) 7→g(x,η ,ξ ) is continuous in R×Rn for almost all x∈Ω.
(H6) |g(x,η ,ξ )|≤K2(x)+h5(x)|η |p/p′ +h6(x)|ξ |p/p′ , where K2, h5 and h6 are
positive functions, with h5,h6∈L∞(Ω) and K2∈Lp′(Ω,ω).
(H7) g(x,η ,ξ )η≥0, for all η∈R.
(H8) (g(x,η ,ξ )−g(x,η ′,ξ ′))(η−η ′) > 0, whenever η ,η ′∈R, η 6= η ′.

By a weight, we shall mean a locally integrable function ω on Rn such that
ω(x) > 0 for a.e. x∈Rn. Every weight ω rise to a measure on the measurable
subsets on Rn through integration. This measure will be denoted by µ . Thus,
µ(E) =

∫
E ω(x)dx for measurable sets E⊂Rn.

In general, the Sobolev spaces Wk,p(Ω) without weights occur as spaces of
solutions for elliptic and parabolic partial differential equations. For degenerate
partial differential equations, i.e., equations with various types of singularities
in the coefficients, it is natural to look for solutions in weighted Sobolev spaces
(see [3], [4],[5] and [8]).

A class of weights, which is particulary well understood, is the class of Ap-
weights (or Muckenhoupt class) that was introduced by B. Muckenhoupt (see
[10]). These classes have found many usefull applications in harmonic analysis
(see [11]). Another reason for studying Ap-weights is the fact that powers of
distance to submanifolds of Rn often belong to Ap (see [9]). There are, in fact,
many interesting examples of weights (see [8] for p-admissible weights).

Equations like (1) have been studied by many authors in the non-degenerate
case (i.e. with ω(x)≡1) (see e.g. [1] and the references therein). The degene-
rate case with different conditions haven been studied by many authors. In [2]
Drabek, Kufner and Mustonen proved that under certain condition, the Dirichlet
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problem associated with the equation −div(a(x,u,∇u)) = h, h∈ [W 1,p
0 (Ω,ω)]∗

has at least one solution u∈W 1,p
0 (Ω,ω).

The following theorem will be proved in section 3.

Theorem 1.1 Assume the conditions (H1)-(H8). If ω∈Ap, with 1 < p < ∞, and
f j/ω∈Lp′(Ω,ω) ( j = 0,1, ...,n) then problem (P) has a solution u∈W 1,p

0 (Ω,ω).

The basic idea is to reduce the problem (P) to an operator equation Au = T
and apply the theorem below.

Theorem 1.2 Let A : X→X∗ be a monotone, coercive and hemicontinuous ope-
rator on the real, separable, reflexive Banach space X . Then for each T ∈X∗ the
equation Au = T has a solution u∈X .
Proof. See Theorem 26.A in [13]. �

2. Definitions and basic results

Let ω be a locally integrable nonnegative function in Rn and assume that
0 < ω(x) < ∞ almost everywhere. We say that ω belongs to the Muckenhoupt
class Ap, 1 < p < ∞, or that ω is an Ap-weight, if there is a constant C = Cp,ω

such that (
1
|B|

∫
B

ω(x)dx
)(

1
|B|

∫
B

ω
1/(1−p)(x)dx

)p−1

≤Cp,ω

for all balls B⊂Rn, where |.| denotes the n-dimensional Lebesgue measure in
Rn. If 1 < q≤ p, then Aq⊂Ap (see [7],[8] or [11] for more informations about
Ap-weights). The weight ω satisfies the doubling condition if ω(2B)≤Cω(B),
for all balls B⊂Rn, where ω(B) =

∫
B ω(x)dx and 2B denotes the ball with the

same center as B which is twice as large. If ω∈Ap, then ω is doubling (see
corollary 15.7 in [8]).

As an example of Ap-weight, the function ω(x) = |x|α , x∈Rn, is in Ap if and
only if −n < α < n(p−1) (see corollary 4.4, chapter IX in [11]).

If ω∈Ap, then (
|E|
|B|

)p

≤Cp,ω
ω(E)
ω(B)

whenever B is a ball in Rn and E is a measurable subset of B (see 15.5 strong
doubling property in [8]). Therefore, if ω(E) = 0 then |E|= 0.
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Definition 2.1. Let ω be a weight, and let Ω⊂Rn be open. For 0 < p < ∞, we
define Lp(Ω,ω) as the set of measurable functions f on Ω such that

‖ f‖Lp(Ω,ω) =
(∫

Ω

| f (x)|pω(x)dx
)1/p

< ∞.

Remark 2.2. If ω∈Ap, 1 < p < ∞, then since ω−1/(p−1) is locally integrable,
we have

Lp(Ω,ω)⊂L1
loc(Ω)

for every open set Ω (see Remark 1.2.4 in [12]). It thus makes sense to talk
about weak derivatives of functions in Lp(Ω,ω). �

Definition 2.3. Let Ω⊂Rn be open, 1 < p < ∞, and let ω be an Ap-weight,
1 < p < ∞. We define the weighted Sobolev space W 1,p(Ω,ω) as the set of
functions u∈Lp(Ω,ω) with weak derivatives D ju∈Lp(Ω,ω), for j = 1, ...,n.
The norm of u in W 1,p(Ω,ω) is given by

‖u‖W 1,p(Ω,ω) =
(∫

Ω

|u(x)|pω(x)dx+
n

∑
j=1

∫
Ω

|D ju(x)|pω(x)dx
)1/p

. (2)

We also define W 1,p
0 (Ω,ω) as the clousure of C∞

0 (Ω) in W 1,p(Ω,ω), and

‖u‖W 1,p
0 (Ω,ω) =

( n

∑
j=1

∫
Ω

|D ju(x)|pω(x)dx
)1/p

.

The dual space of W 1,p
0 (Ω,ω) is the space [W 1,p

0 (Ω,ω)]∗ = W−1,p ′(Ω,ω) (see
[4]),

W−1,p ′(Ω,ω)
= {T = f0−div f : f = ( f1, ..., fn), f j/ω∈Lp ′(Ω,ω), j = 0, ...,n}.

It is evident that the weight ω which satisfies 0 < c1≤ω(x)≤c2 for x∈Ω

(c1 and c2 positive constants), give nothing new (the space W1,p
0 (Ω,ω) is then

identical with the classical Sobolev space W1,p
0 (Ω)). Consequently, we shall

interested above all in such weight functions ω which either vanish somewhere
in Ω̄ or increase to infinity (or both).

In this paper we use the following two theorems.
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Theorem 2.4 Let ω∈Ap, 1 < p < ∞, and let Ω be a bounded open set in
Rn. If un→u in Lp(Ω,ω) then there exist a subsequence {unk} and a function
Φ∈Lp(Ω,ω) such that
(i) unk(x)→u(x), nk→∞, µ-a.e. on Ω;
(ii) |unk(x)|≤Φ(x), µ-a.e. on Ω.
Proof. The proof of this theorem follows the lines of Theorem 2.8.1 in [6]. �

Theorem 2.5(The Weighted Sobolev Inequality) Let Ω be an open bounded set
in Rn (n≥2) and ω∈Ap (1 < p < ∞). There exist constants CΩ and δ positive
such that for all u∈C∞

0 (Ω) and all k satisfying 1≤k≤n/(n−1)+δ ,

‖u‖Lkp(Ω,ω)≤CΩ‖∇u‖Lp(Ω,ω).

Proof. See Theorem 1.3 in [4]. �

Definition 2.4. Let 1 < p < ∞. We say that an element u∈W 1,p
0 (Ω,ω) is a

(weak) solution of problem (P) if

n

∑
j=1

∫
Ω

ωA j(x,u,∇u)D jϕ dx+
∫

Ω

g(x,u,∇u)ϕ ω dx

=
∫

Ω

f0ϕ dx+
n

∑
j=1

∫
Ω

f jD jϕ dx,

for all ϕ∈W 1,p
0 (Ω,ω).

3. Proof of Theorem 1.1

We define B : W 1,p
0 (Ω,ω)×W 1,p

0 (Ω,ω)→R and T : W 1,p
0 (Ω,ω)→R by

B(u,ϕ) =
n

∑
j=1

∫
Ω

ωA j(x,u,∇u)D jϕ dx+
∫

Ω

g(x,u,∇u)ϕω dx;

T (ϕ) =
∫

Ω

f0ϕ dx+
n

∑
j=1

∫
Ω

f jD jϕ dx.

Then u∈W 1,p
0 (Ω,ω) is a (weak) solution to problem (P) if

B(u,ϕ) = T (ϕ), for all ϕ∈W 1,p
0 (Ω,ω).
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Step 1. We define the operators

Fj : W 1,p
0 (Ω,ω)→Lp′(Ω,ω) and G : W 1,p

0 (Ω,ω)→Lp′(Ω,ω)

by (Fju)(x) = A j(x,u(x),∇u(x)) and (Gu)(x) = g(x,u(x),∇u).

We have that the operators Fj and G are bounded and continuous. In fact,
(i) Using (H4) and Theorem 2.5, we obtain

‖Fju‖p′

Lp′ (Ω,ω)
=
∫

Ω

|Fju(x)|p
′
ω dx

=
∫

Ω

|A j(x,u,∇u)|p
′
ω dx

≤
∫

Ω

(
K1 +h3|u|p/p′ +h4|∇u|p/p′

)p′

ω dx

≤ C
∫

Ω

[
(K p′

1 +hp′
3 |u|

p +hp′
4 |∇u|p)ω

]
dx

= C
[∫

Ω

K p′
1 ω dx+

∫
Ω

hp′
3 |u|

p
ω dx+

∫
Ω

hp′
4 |∇u|pω dx

]
≤ C

[
‖K1‖p′

Lp′ (Ω,ω)
+(CΩ‖h3‖p′

L∞(Ω) +‖h4‖p′

L∞(Ω))‖u‖
p
W 1,p

0 (Ω,ω)

]
. (3)

Therefore, in (3) we obtain

‖Fju‖Lp′ (Ω,ω)≤C
(
‖K1‖Lp′ (Ω,ω) +‖u‖

p/p′

W 1,p
0 (Ω,ω)

)
. (4)

Analogously, by condition (H6), we have

‖Gu‖p′

Lp′ (Ω,ω)
=
∫

Ω

|g(x,u,∇u)|p
′
ω dx

≤
∫

Ω

(
K2 +h5|u|p/p′ +h6|∇u|p/p′

)p′

ω dx

≤ C
[
‖K2‖p′

Lp′ (Ω,ω)
+(CΩ‖h5‖p′

Lp′ (Ω,ω)
+‖h6‖p′

L∞(Ω))‖u‖
p
W 1,p

0 (Ω,ω)

]
.

Hence,

‖Gu‖Lp′ (Ω,ω)≤C
(
‖K2‖Lp′ (Ω,ω) +‖u‖

p/p′

W 1,p
0 (Ω,ω)

)
. (5)
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(ii) Let un→u in W 1,p
0 (Ω,ω) as n→∞. We need to show that Fjun→Fju and

Gun→Gu in Lp′(Ω,ω).
If un→u in W 1,p

0 (Ω,ω), then |∇un|→|∇u| in Lp(Ω,ω) and un→u in Lp(Ω,ω).
Using Theorem 2.4, there exist a subsequence {unk} and functions Φ1 and Φ2
in Lp(Ω,ω) such that

unk(x)→u(x), µ− a.e. in Ω,

|unk(x)|≤Φ1(x), µ− a.e. in Ω,

|∇unk(x)|→|∇u(x)|, µ− a.e. in Ω,

|∇unk(x)|≤Φ2(x), µ− a.e. in Ω.

Hence, we obtain

‖Fjunk −Fju‖p′

Lp′ (Ω,ω)
=
∫

Ω

|Fjunk(x)−Fju(x)|p′ω dx

=
∫

Ω

|A j(x,unk ,∇unk)−A j(x,u,∇u)|p′ω dx

≤ C
∫

Ω

(
|A j(x,unk ,∇unk)|

p′ + |A j(x,u,∇u)|p′
)

ω dx

≤ C
[∫

Ω

(
K1 +h3|unk |

p/p′ +h4|∇unk |
p/p′
)p′

ω dx

+
∫

Ω

(
K1 +h3|u|p/p′ +h4|∇u|p/p′

)p′

ω dx
]

≤ 2C
∫

Ω

(
K1 +h3Φ

p/p′

1 +h4Φ
p/p′

2

)p′

ω dx

= C̃
[∫

Ω

K p′
1 ω dx+

∫
Ω

hp′
3 Φ

p
1ω dx+

∫
Ω

hp′
4 Φ

p
2ω dx

]
≤ C̃

[
‖K1‖p′

Lp′ (Ω,ω)
+‖h3‖p′

L∞(Ω)

∫
Ω

Φ
p
1ω dx+‖h4‖p′

L∞(Ω)

∫
Ω

Φ
p
2ω dx

]
≤ C̃

[
‖K1‖p′

Lp′ (Ω,ω)
+‖h3‖p′

L∞(Ω)‖Φ1‖p
Lp(Ω,ω) +‖h4‖p′

L∞(Ω)‖Φ2‖p
Lp(Ω,ω)

]
.

Analogously, we have

‖Gunk −Gu‖p′

Lp′ (Ω,ω)
≤ C̃

[
‖K2‖p′

Lp′ (Ω,ω)
+‖h5‖p′

L∞(Ω)‖Φ1‖p
Lp(Ω,ω)

+ ‖h6‖p′

L∞(Ω)‖Φ2‖p
Lp(Ω,ω)

]
.
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By condition (H1) and (H5), we have

Fjun(x) = A j(x,un(x),∇un(x))→A j(x,u(x),∇u(x)) = Fju(x), as n→ ∞,

Gun(x) = g(x,un(x),∇un(x))→g(x,u(x),∇u(x)) = Gu(x), as n→ ∞,

for almost all x∈Ω. Therefore, by Dominated Convergence Theorem, we obtain

‖Fjunk −Fju‖Lp′ (Ω,ω)→0 and ‖Gunk −Gu‖Lp′ (Ω,ω)→0

that is, Fjunk→Fju and Gunk→Gu in Lp′(Ω,ω). By Convergence principle in
Banach spaces, we have

Fjun→Fju in Lp′(Ω,ω), and Gun→Gu in Lp′(Ω,ω). (6)

Step 2. We have,

|T (ϕ)| ≤
∫

Ω

| f0||ϕ|dx+
n

∑
j=1

∫
Ω

| f j||D jϕ|dx

=
∫

Ω

| f0|
ω
|ϕ|ω dx+

n

∑
j=1

∫
Ω

| f j|
ω
|D jϕ|ω dx

≤ ‖ f0/ω‖Lp′ (Ω,ω)‖ϕ‖Lp(Ω,ω) +
n

∑
j=1
‖ f j/ω‖Lp′ (Ω,ω)‖D jϕ‖Lp(Ω,ω)

≤
(

CΩ‖ f0/ω‖Lp′ (Ω,ω) +
n

∑
j=1
‖ f j/ω‖Lp′ (Ω,ω)

)
‖ϕ‖W 1,p

0 (Ω,ω).

Moreover, we also have

|B(u,ϕ)|≤
n

∑
j=1

∫
Ω

|A j(x,u,∇u)||D jϕ|ω dx+
∫

Ω

|g(x,u,∇u|ϕω dx

≤
∫

Ω

(
K1 +h3|u|p/p′ +h4|∇u|p/p′

)
|∇ϕ|ω dx

+
∫

Ω

(
K2 +h5|u|p/p′ +h6|∇u|p/p′

)
|ϕ|ω dx

≤ C
[
‖K1‖Lp′ (Ω,ω) +‖K2‖Lp′ (Ω,ω) +

(
CΩ(‖h3‖L∞(Ω) +‖h5‖L∞(Ω))

+ ‖h4‖L∞(Ω) +‖h6‖L∞(Ω)

)
‖u‖p/p′

W 1,p
0 (Ω,ω)

]
‖ϕ‖W 1,p

0 (Ω,ω). (7)
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Since B(u, .) is linear, for each u∈W 1,p
0 (Ω,ω), there exists a linear and continu-

ous operator Au : W 1,p
0 (Ω,ω)→ [W 1,p

0 (Ω,ω)]∗ such that 〈Au,ϕ〉 = B(u,ϕ), for
u,ϕ∈W 1,p

0 (Ω,ω), and

‖Au‖∗≤C
(
‖K1‖Lp′ (Ω,ω) +‖K2‖Lp′ (Ω,ω) +‖u‖

p/p′

W 1,p
0 (Ω,ω)

)
. (8)

Consequently, problem (P) is equivalent to the operator equation Au = T ,
with u∈W 1,p

0 (Ω,ω).

Step 3. Using conditions (H2) and (H8), we have

〈Au1−Au2,u1−u2〉= B(u1,u1−u2)−B(u2,u1−u2)

=
∫

Ω

ωA (x,u1,∇u1).∇(u1−u2)dx−
∫

Ω

ωA (x,u2,∇u2).∇(u1−u2)dx

+
∫

Ω

ω[g(x,u1,∇u1)−g(x,u2,∇u2)](u1−u2)dx

=
∫

Ω

ω

(
A (x,u1,∇u1)−A (x,u2,∇u2)

)
.∇(u1−u2)dx

+
∫

Ω

ω[g(x,u1,∇u1)−g(x,u2,∇u2)](u1−u2)dx≥0.

Therefore the operator A is monotone. Moreover, using (H3), (H7) and the
weighted Sobolev inequality (with k = 1), we obtain

〈Au,u〉= B(u,u)

=
∫

Ω

ωA (x,u,∇u).∇udx+
∫

Ω

ωg(x,u,∇u)udx

≥
∫

Ω

(
Λ|u|p +λ |∇u|p−h1|u|−h2

)
ω dx

= Λ

∫
Ω

|u|pω dx+λ

∫
Ω

|∇u|pω dx−
∫

Ω

h1|u|ω dx−
∫

Ω

h2ω dx

≥ Λ

∫
Ω

|u|pω dx+λ

∫
Ω

|∇u|pω dx

−
(∫

Ω

hp′
1 ω dx

)1/p′(∫
Ω

|u|pω dx
)1/p

−‖h2‖L1(Ω,ω)

≥ C‖u‖p
W 1,p

0 (Ω,ω)
−‖h1‖Lp′ (Ω,ω)‖u‖Lp(Ω,ω)−‖h2‖L1(Ω,ω)

≥ C‖u‖p
W 1,p

0 (Ω,ω)
−CΩ‖h1‖Lp′ (Ω,ω)‖∇u‖Lp(Ω,ω)−‖h2‖L1(Ω,ω)

≥ C‖u‖p
W 1,p

0 (Ω,ω)
−CΩ‖h1‖Lp′ (Ω,ω)‖u‖W 1,p

0 (Ω,ω)−‖h2‖L1(Ω,ω).
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Hence, since 1 < p < ∞, we have

〈Au,u〉
‖u‖W 1,p

0 (Ω,ω)
= C‖u‖p−1

W 1,p
0 (Ω,ω)

−CΩ‖h1‖Lp′ (Ω,ω)−
‖h2‖L1(Ω,ω)

‖u‖W 1,p
0 (Ω,ω)

,

and

〈Au,u〉
‖u‖W 1,p

0 (Ω,ω)
→+∞,

as ‖u‖W 1,p
0 (Ω,ω)→+∞, that is, A is coercive.

Step 4. We need to show that the operator A is continuous. Let un→u in
W 1,p

0 (Ω,ω) as n→ ∞. We have,

|B(un,ϕ)−B(u,ϕ)|

≤
n

∑
j=1

∫
Ω

|A j(x,un,∇un)−A j(x,u,∇u)||D jϕ|ω dx

+
∫

Ω

|g(x,un,∇un)−g(x,u,∇u)||ϕ|ω dx

=
n

∑
j=1

∫
Ω

|Fjun−Fju||D jϕ|ω dx+
∫

Ω

|Gun−Gu||ϕ|ω dx

≤
n

∑
j=1
‖Fjun−Fju‖Lp′ (Ω,ω)‖D jϕ‖Lp(Ω,ω) +‖Gun−Gu‖Lp′ (Ω,ω)‖ϕ‖Lp′ (Ω,ω)

≤ C
( n

∑
j=1
‖Fjun−Fju‖Lp′ (Ω,ω) +‖Gun−Gu‖Lp′ (Ω,ω)

)
‖ϕ‖W 1,p

0 (Ω,ω),

for all ϕ∈W 1,p
0 (Ω,ω). Hence,

‖Aun−Au‖∗≤C
( n

∑
j=1
‖Fjun−Fju‖Lp′ (Ω,ω)

)
+‖Gun−Gu‖Lp′ (Ω,ω).

Therefore, using (6), we have ‖Aun−Au‖∗→0 as n→+∞.

Therefore, by Theorem 1.2, the operator equation Au = T has a solution u in
W 1,p

0 (Ω,ω) and u is the solution for problem (P).
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4. Example Let Ω = {(x,y)∈Rn : x2 + y2 < 1}, and consider the weight func-
tion ω(x,y) = (x2 + y2)−1/2 (ω∈A2), the functions A : Ω×R×R2→R2 and
g : Ω×R×R2→R defined by

A ((x,y),η ,ξ ) = h4(x,y)ξ
g((x,y),η ,ξ ) = ηcos2(xy).

where h4(x,y) = 2ex2+y2
. Let us consider the partial differential operator

Lu(x,y) = −div
[

ω(x,y)A ((x,y),u,∇u)
]

+ω(x,y)g((x,y),u,∇u)

= − ∂

∂x

[
ω(x,y)h4(x,y)

∂u
∂x

]
− ∂

∂y

[
ω(x,y)h4(x,y)

∂u
∂y

]
+ ω(x,y)u(x,y)cos2(xy).

Therefore, by Theorem 1.1, the problem

(P)

 Lu(x,y) = cos(xy)
(x2+y2)1/5 − ∂

∂x

(
sin(xy)

(x2+y2)1/9

)
− ∂

∂y

(
sin(xy)

(x2+y2)1/9

)
, on Ω

u(x,y) = 0, on ∂Ω

has a solution u∈W 1,2
0 (Ω,ω).
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