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DISCRETE FINITE ELEMENTS METHOD
IN SPACE-TIME DOMAIN
FOR PARABOLIC LINEAR PROBLEMS

MARIA MORANDI CECCHI (Padova)
ROSARIA NOCIFORO (Catania)(*)

Theory, error-bound and applications of Discrete Finite Element

Method is given to solve a class of linear one and two-dimentional pa-

. rabolic problems on Sobolev space-time domains, with non homogenous
discontinuous initial data and general boundary conditions.

1. Introduction.

A Discrete Finite Element Method in a space-time domain
is presented here to solve linear differential parabolic problems
with non homogeneous discontinuous initial conditions and general
boundary conditions.

The method presented is an evolution of a method that was
formulated in [12] to reach a better way of solution considering the
possibility of applying finite elements both in space and in time

Key Words - Finite Element Method, Space-time, Heat equations.
(*) Entrato in Redazione il 4 ottobre 1991.
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allowing the definition of variable slabs in time and discontinuous
initial data.

To be more specific the discrete method solves the problem by
a unique space-time finite element solver not using a Semidiscrete
Galerkin method, but chosing the time depending test functions
defined in a space different from the solution space.

After giving a theoretical justification and an error estimates,
the method is applied to the solution of the heat conduction problem.

An iterative algorithm is generated to solve the problem into
different slabs of time, with the solution of the linear system
characterized by a symmetric bounded matrix.

Numerical results are given of one and two-dimensional test
problems and they are compared with the exact solution.

2. Weak Formulation of the linear parabolic problems.

Let Q be an open bounded domain in R¥ and let T be the
boundary of Q, regular of class C*°, with I' partitioned in I') and I,
where I, =" — I'; (measure I'; > 0).

Let H!(Q) and H}(Q) be two real Sobolev spaces

HYQ) = {u: u, D;u € L*(Q)}
HYQ) = {ue H'(Q): u() =0}

Setting V = {u € H'(Q) : () = 0}, V results a real closed
subspace such that H}(Q) c V c HY(Q).
The inner product and the norm in H!(Q) are respectively

(u, V) = /[Du(:r)Dv(:v) + uvldz
Q

172
lull g = (u, u)‘l,f/,z(g) = [‘/.[IDu(:/E)I2 + |u(@)|*]dz
Q

The inner product and the related norm in Vv are the following

(u,v)=/Du(m)Dv(z)da:, Hullo = (u, u)}/?
Q
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Let be Q = Q2x]0,T[ and let be A a differential operator of order
two, of the type

(D A< t i) ——i __8_ <a--(m t)—a—> +id-(m t)—@—-i- (z,t)
T, ,am = & a.’IJ;’ LYACTR amj ar LG am ao\T,

;
where

(1.1 aij, ai,a0 € L2(Q) Q =Qx]0,T[

(1.2 Y i@, 066 > a6rl? + &l +...+ [En[) @ > 06 € Cae. in Q
Let To(t) be a family of operators such that
To(t) € LCHA(T2); H™A(I)

and the function (Ty(t)u, v) whit u,v € H*(T;), is measurable on (0, T)
and

|To@®u, v)| < dflull graayllvll gy

The initial-boundary value parabolic problem that will be
analyzed consists in finding a function u(z,t) € H(Q) solution of the
problem

2 A (m,t, i) @+ 2u@ = fo,)  uzt)eQ
Oz ot

(2.1) u(z, 0) = up(x) | : Tz €Q
22)  ulz,t)=0 zelte©7)
2.3) —a—u(ac,t) +To(u=0 : zelihte©,T)
a‘UA
where 9 = Ea--’(z t) cos(nz;) i f(z,t) is a given function of L2(Q)
31),4 1) 3 1 am') ’ 3

and ug(z) is a function of L%(Q).
One defines now a weak formulation for the problem (2)-(2.3).
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Let us set W = L2(0, T; V); the inner product and the norm in W
are respectively

(u, Vw = /'Dxu(m,t)DIv(a:,t)dmdt

172

llullw = [/[D u(m)]zdmdtJ [ Hu(t)Hth]

One indicates by U ¢ W the subspace of functions of W that
satisfy the initial condition of (2.1). Let a(t;u,v) be a of sesquilinear
form depending on the parameter ¢t > 0, while u,v € W satisfying the
following continuity condition:

la(t; u,v)| < M||ullv|lv]|V VYu,veWwW

where M is a constant independent on ¢,u and W.

Let ® be the space of test functions defined as the subspace
of functions of W that are square integrable on (0,7) with their
first derivatives respect to z and respect to ¢, and that satisfy to

¢z, T)=0.
The norm in ® is so defined

T
I6l13 = [ @I dt + ol

where

bl = / 6O Pdz, H = LAQ)
Q

Performing an inner product on H of both sides of the equation
(2) by a function ¢ € @, and integrating on t between 0 and T, it
- results

T

T
[ KA <z %) w0, ¢(t>) W), ¢(t»g} gt = [ (), bt
H

The first term of this equation can be transformed into a
sesquilinear form in U x ® so that the equation assumes the
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following equivalent form
QT T
3) [ lot; 4, 6) — (u(®), /() )t = [ (F®), BE)adt + (o, 5O)g

where

N N
altiu,$)=) / aii(z, ) D/ u(z) D' p(a)dz + Y / ai(z, (D' u(z))p(z)dz+
Q

ij=1"Q i=1
+ / a0z, Yu(@)(z)dz + (To)you, bdr,
Q
Now let us assume that Tj(¢) is a family of differential tangential

operators of I'; with continously differentiable coefficients, so that,
for every ¢ > 0, there exists a constant c(¢) for which

|(To)vou, 108)| < ellull? +c@)|ul} Ve>0

and (Tou, you) < [ lvoul?dt (c; constant)
2

The first member of the equation (3) can be written as the
following sesquilinear form

. |
E@,¢) = [ [a(t; u, 8) — (u(t), &'t 1dt

where
T

-
B, ¢) = [ a(t;¢(t),¢(t))dt—% [ d%'lfbolzdt:

T

1
= [ ot 9,600t + 5100l

The second member of (3) can be written as the following linear
form

T .
L() = [ (F@), $E)rdt + (w0, Oz

that is defined and continuous on ¢ whit respect to the norm || . ||o
Therefore the equation (3) can be written as

4 Ewu,)=L() uelU Voed
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This equation is the weak formulation of the parabolic problem
(2)-(2.3) and now the problem is to find the function u € U that
satisfies equation (4).

The existence and the uniqueness of solution of (4) is proved by
Lions [10] (Theoreme 1.1 p. 46)

_ Since the form a(t;¢,¢) results weakly coercive for every
o<t < T, that it, there exists two constants A € R and k£ > 0 such
that

ats u, v) + Alulf > kllulfy,

we have for ¢ ¢ @

T T T
1 .
56,902 k [ it =2 [ fofyds 5160l > KUGIE > [ folyet

where K =inf(k,1/2).
As it well know, we may assume ) = 0 without loss of generality
[10] (p. 46).

3. A stability condition for the weak formulation.

By an application of Theorem 1.1 [10] for the weak formulation
the linear parabolic problem, it follows the interesting result [10]:

If U, and ® are the space above defined and:

— let E,(u,¢) and E(u,¢) are the sesquilinear form defined in
W x ®, continuous in W for every ¢ € ® so that

|Ea (8, 0)| > of|¢|l3
a>0 ¢e€d
|E(, ¢| > oll¢l[3

— the function

R.(¢) = E,(u,¢) — E(u,¢) is continuous on ® and
| Rn(¢le — 0 n— 00

where

1B (@l = RO 4 g 420
oo
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— the semilinear form I, and L are continuous on ® such that
ILn —Llle =0 n— o0
— let u, be the solution of the problem with
En(un, ) =Ln(¢) Vo€
— let u be the solution of the problem
E(u,¢) Voe®

then

up —u onW ifn—oo

4. Discrete finite element method.

The finite element method here is applied to computing an
approximate solution of a weak formulation of parabolic problems.

In this method the piecewise polynomial functions are defined
on a finite number of subdomains to approximate the exact solution
of the problem.

This method is applied to obtain a discrete formulation of the
weak problem. '

Let P, be a projection operator that maps the subset U of w,
into a finite dimensional subspace U, of U, and maps the subspace
¢ of W, into D,

The approximating problem becomes to find the function u; of
U, such that

(5) E(un, ¢n) = L(¢n) VYon € @4

In the Finite Element Method the approximating spaces U, and
®,, are spaces of piecewise polynomial functions defined on a given
partition of Q x [0,T]. The functions u; and ¢, are constructed by
local interpolation across the elements from the nodal values.
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Notice that here the two subspaces U, and ®; are not coincident,
because the test functions ¢, are chosen so that ¢, (T") =0. We set:

T
©) = Ea" e ¢ =E Bim;

where n;, is the dimension of the subspaces U, and ®,. Here {e"}
and {?7,"} are given piecewise polynomial functlons on U, and @,
and (a}) e (8) are unknown parameters.
Moreover we set:
Th

=) Bror

. j=1
where the {qb]’?} is determined by performing an appropriate
transformation of the {n]’.‘} so that may be mantained the same
coefficients (3}):

L
$(0) = pret

j=1
Substituting in the discrete problem (5) one obtains:

o'MBT=P'B VBER"

where a = {a}} e 8= {8}}

M= (M}, M= [ Lot eb, ) — (el whlds

T
P={PF}, P =[ (f, n)dt + (u(0), n})
and, for any S, « is the solutions of the linear system
(7 Mla=P

Substituting « into (6) one computes the approximate solution
up.

Notice that, owing the coerciveness of E(¢,¢) and the special
finite element discretization, the matrix M is a square, positive
definite and symmetric matrix.
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5. Space of lagrange approximation and error estimates.

In the application of Discrete Finite Element Method in
space-time domain for linear parabolic problems, the Lagrange
approximation in several variables leads to interesting results on
the solutions. ‘

From the coerciveness in & of sesquilinear form E(u,v) and
from the definition of the norm || ||o, it follows that E(u,v) is coercive
even in W

(8) © k||¢|]3 < E(¢, ) VoeW

Let U, and @, be a finite dimentional subspace respectively of
U and ®, such that:

E(un,®)=L(¢) u, € U, Vo € @y,
and let u is the exact solution of the weak problem:
E(u,p)=L(¢) velU Ve

if W, is the linear span of finite elements and suppose that w, € W,
assumes the same values of u, at nodes and if 9, is a generic finite
element of the domain Q = Q x (O, T), where E is the total number of
finite elements of the mesh, since the finite element method takes
the local interpolation on each 6; we can write [4]

1/2
E
9) [un — wallw = (E llun — wnf”%{l((;,))
=1

where H'(9;) is the projection over the finite element g; of the
functions of w, € W, and w,; is the interpolant of u, in 8;, therefore
the problem of finding the estimate for the error ||u — u,||w is reduced
to a local interpolation problem. .

For solving a local interpolation problem the following theorem

holds [8]:

THEOREM "Given an integer k > 1 and let u, € H*'(9,) the
restriction of the approximate solution u, € U, where 6; is a close
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convex hull of a k-unisolvent set 3 = {a;}; 1 < i < nof RN, verteces of
;.

If w,; is the unique Lagrange interpolating polynomial of degree
< k of u,, in sense that w,; is the unique element of H*'(9;) such that

Wei (@) = Unay) 1<i<m

for h; =diameter of 6; and p; = |sup{diameter of the spheres in 6;}
then, for h; small, exists a constant C independent on 6; such that

hlg+1
(10) : llun — was [y < Cllun]|eney =

The error bound for the FEDM is derived by a straightforward
combination of the applications (9) and (10).

It is clear that the estimate (10) is better when the ratio 4;/p;
is small.

The intuitive significance of this is that, for a good approximation,
one should not consider k-unisolvent sets 5~ whose finite element 6,
are too flat.

In practice in the finite element method one takes the family
{3_;}jer of k-unisolvent sets, with associated parameters k; and p;,
the element of a particular set >_; are verteces of a particular finite
element 6;. A family {3°,},¢; is defined a regular family if

hi <ap; forall jelI for some constant a > 0.

For such regular families the error bounds of (11) can be written
at once into the following form

(11) |t — waj || g0,y = OCAY)

and this is the form of the interpolation error in this method.
Then the FEDM approximation error gives

_— —_ = k i = :
llu — un|lw < Bllun — wyllw = Oh*) with b lrgr}anEh,.
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6. The application of the Discrete Finite Element Method
to the heat conduction problems.

Here the Discrete Finite Element Method is applied to the
following heat conduction problem

(12) ut(m,t) — kVu(z,t) + zu(z,t) = f(z,1) u(z,t) € Q

(12.1)  u(z,0) = uo z€Q t=0
(122) u(z,t)=0 zely te©,71)
(12.3) lcga;u(m,t)+ Hu=0 zel te0,1)

This problem is a linear parabolic problem of the type (2)-(2.3),
where

— the coefficient of the difierential operator (1)

) N
A <m,t, .(.9;> = _.MZ;I B2, <a,,($ t)— > +Ea,(m t) +ao(:z: 1)

~ are respectively a;;(z,t) = k (const.> 0), a;(z,t) =0 and ag(z,t) = 2
(const.).
— the linear operat.ir Ty(t) are the constant value H.

The corresponding form is

N
at;u,$)=k Y L D’ uw(z)D'¢(z)dz + 2 L u(z)p(z)dz + (Hu(z), $(2))r,

ij=l
Assuming the ¢(z) =0 for z € ', the equation (3) becomes

r N N Su ¢
[‘/ Ezé_b_ zu¢>—u¢' dzdt =
= .

(13)
T

[ (Hu, ¢)r,dt + [ / fodzdt — [ % / u(0)p(0)dzdt
Q

this is the weak formulation of the heat conduction problem
(12)-(12.3).
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The domain Q = Q x (0,7) is partitioned into subdomains
6; = Q. x Atp,, where the domain Q is partitionated into element €.,
with 1< e < E, where E is the number of the finite elements of the
mesh and the time domain (0,7) is partitioned as At,, = (tm, tms1),
with 1 < m < L, where L is the number of time-slabs.

Applying the Lagrange :' approximation to (13) and using of
piecewise polynomial functions defined in each element as

up=w'a ¢,=wbh

where w! is a row vector containing the terms of the approximating
polynomial and a and b are vectors of coefficients.

Let suppose that:

Oup, odn .
T = —— T = r— -— 1 e
wa; F wb; Frl N

whb! = _5% whi' = ¢

substituting the previous positions in the (13) and assembling for
all 6; of the domain Q, one gets

(14)

T N
Z[ L [k E a,-wwa;"-" — aw' wb! + zawwaT:l dzdt—

i,j=1
}:H [ ayawiwbV*lgt = E [ fwa - —wobT] dzdt

Let be

T T
K= [ L:WT wdzdt f.= [ L flz,tywdzdt wuo= L"uo(z)wodmdt

where wy is the restriction of w to the terms not containg the variable
t, with w = {W(),Wl}, b= {bo,bl} e u = {llo, 0}; ObViOUSI)’ 06b0 =ugb.
Posing

al =Ggia’ i=1,...N

bl =Gp" j=1,...N bl =Grb"
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and substituing into (14)

E(aMbT —PTpT) =0

where
N N '
M=) "kGTK.Gj - Y K.Gj+zK,
ij=1 j=1
P=f —u
Now the boundary conditions are imposed taking into account
the terms comming from the partial derivatives

[3uh

5‘_’;]1‘2 and [¢;]r,

that are added into the elements of the matrix M considering the
rows corresponding to the nodal values of the boundary.

If the unknown coefficients a and b are expressed by
1s a=Nu, b=Ng,

where N is a row vector containing the terms of the test functions of
the polynomial approximation and u, and ¢, are vectors coefficients,
containing the nodal values of u and ¢, and its partial derivatives,

one get
S @!N"MN - PTN)g, =0

By the standard procedure of assembling the equations of the
single elements, this equation becomes

(16) UTM —PT)=0
The (16) must be verified for every ¢ € ®, therefore it is:
(17) . MTU=P

The solution of this equation in U, provides the parameters
needed in (16) for the computation of the approximate solution.
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7. Iterative numerical metho_d.

In this application the Discrete Finite Element Method solve
numerically the heat conduction problems. For such reason we have
implemented an iterative algorithm, that computes the unknown
temperature on the first step’starting from know initial data, and
it proceeds iteratively.

The algorithm generated for one-dimentional linear heat conduc-
tion problems is presented here in an analogous way the algorithm
for two-dimentional problems is generated . The one-dimentional
heat conduction problem is given by

(18)  ui(z,t) — kugy(z, 1) + 2ulz, t) = f(z,1)  u(z,t) €Q

(18.1) u(z,0)=ug z€Q t=0
(182) wu(xz,t)=0 zely te©,T)
(18.3) k%u(a;,mHu:o €T, te(T)

where Q is an open bounded domain of R!.
The weak formulation of this problem is

T
[ Bu a¢d dt— [ u———d:z;dt+[ £2u¢dzdt=
8z Oz
(19) . T
—[ /f¢>dzdt+lc[ [@-qs} dt+/uo¢odm

where the last two terms of this equation contain respectively the
boundary condition (18.3) and the initial condition (18.1). where

T

T 1o
(20) [ /c[—“-qu dt = — [ Hluglr,dt
oz " |r,

substituing (20) in (19)



DISCRETE FINITE ELEMENTS METHOD IN SPACE-TIME DOMAIN,... 669

T T T

ou 04 ¢ _

[ L éga—md zdt— [ /ub—t—dmdt+[ ‘Z;zuqbdmdt-—
[ [ #daat - [ gt + | uadods

Expressing the unknown functions » and ¢ by

21

u=Nu e ¢=No@

where N is the vector of the shape functions and u and ¢ are the
vectors of the nodal values of u and ¢, taking

T
= k?—lf- Q—N-dmdt NT———dzdt +2 NTNdzdt =K, - K; — K,
O Ox

——H[ [NTN]r,dt——H[ NTNRdt+H[ NINLdt =V, — Vg

=[ LNdmdt E=LN3’Nodz

where the index R and L of the matrix indicate respectively the
values on the right and on the left boundary of one-dimentional
domain. Therefore the equation (22) gives

w'K¢ = fTZ¢ — uhVpop +ulV, ¢, +ulEd,

Partitioning this equation in two parts, one indipendent on
time, with index 1, and the other time depending, with index 2, and

taking
l } { 1 } { Ll }
u Up2 ug

|
SUREIRE
o} _
|



670 MARIA MORANDI CECCHI - ROSARIA NOCIFORO
the (22) gives

u[ K¢, +ulKog, = fTZ1¢, + fT 2+
23) — Uh VRidg: — U Viodp+

T T
+up, Vg +ul, Vg, +ufEdy

Considering that ¢ is any test function and taking the time-
independent terms at the right hand side, we obtain

T T _ T T
Ko uz + Viup, — sz“LZ = —Kﬁul +Zy, f+ 2y, f-
(24) '
— V£1u31,+ VfluLl + ETll]

This is the equation of the iterative process.

It is a system of E equations in EF unknowns, where E is
the number of the finite elements; the unknown parameter of this
system is the vector u; and the temperature values contained in the
right hand side’are that computed at preceding time slab.

If L time slabs are given, to determine the temperature at the
time T, L-systems as (23) are evaluated by the program.

8. Example.

The Discrete Finite Element Method for linear heat conduction
problems is implemented on VAX 8650 in Fortran 77.

In the program for solving one-dimentional linear heat conduc-
tion problems, bilinear rectangular finite elements in the space-time
with Lagrange interpolation polinomial are used.

In the program for solving two-dimentional linear heat conduc-
tion problems bilinear prismatic finite elements are used.

The results presented for same one-dimentional and two-
dimentional test problems are plotted.
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EXAMPLE 1.

Q5(x,t) — uylz, t) = Yo n~2e~" sin(nz) u € [0,1] x [0, 1]

w(0,t)=u(1,t)=0 O<t<l
u(z,0) = sin(2x) O0<z<l
1.
0.5
0.5 1. 1.
-0.5
—q
EXAMPLE 2.
1073 uy5(2, 1) = wi(z,t) z€1[0,1]t €[0,1]
u(0,t) = 0. O<tk1
u(l,t)=1. O<t<1
u(z,t)=0. O0<z< .5
U(.’E,l)=l, 5<I<1
1.4 —~———
- 0.8
0.6
0.4
0.2
f

0.2 0.4 0.6 0.8 1.
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EXAMPLE 3.
Uzr(T, 4, 1) + uyy(x,y,0) = we(z,y,t) (z,y) € Qt €[0,1]
u(z,y,t)=0 (z,)eQ0<t <1

u(z,y,0) = S5sin z sin 3y (z,y) € Q
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