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LINEAR SPACES: HISTORY AND THEORY
ALBRECHT BEUTELSPACHER (Giessen)

Linear spaces belong to the most fundamental geometric and
combinatorical structures. In this paper I would like to give an
overview about one of the most important aspects of the theory of
linear spaces, namely the problem of embedding finite linear spaces
in finite projective planes. I shall not only present some of the known
results but shall also try to indicate some of the (in my opinion)
interesting open questions.

1. The Past.

A linear spaces S consists of a set P of points, a set I, of lines
and a symmetric incidence relation I C P x L satisfying the following
two simple axioms:

(IL1) Any two distinct points are incident with precisely one
common line.
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(L2) Any line is incident with at least two points.

L

There is an abundance of examples of linear spaces: projective
planes, projective spaces, affine planes, affine spaces, the euclidean
plane, the hyperbolic plane, complete graphs, Steiner triple systems,
2—(v, k, 1) esigns — in short: every geometer and every combinatorialist
works every day with linear spaces.

But probably people thought for a long time that these structures
are too weak to be considered in their own right. So it was only
in 1964 when Libois [13] coined the name «espace linéaire». In the
meantime, this name has been smuggled into different languages:
linear space, spazio lineare, linearer Raum.

Here, a little philological remark is in order. All these names
want to suggest that the structures under consideration are spaces
endowed with lines. Thus, from a philological point of view expression
like line space, spazio di rette, Geradenraum (or Inzidenzraum) would
have been better choices. One might complain about this, but the
established name in now linear space — if one likes it or not.

But linear spaces have been studied long before they were
baptized. I would like to describe here in particulat two results.

1.1. M. Hall’s free extension process.

One of the papers which is fundamental for the modern theory
of projective planes is M. Hall’'s famous 1943 paper [11].

A projective plane is a linear space satisfying the following two
additional axioms:
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(P1) Any two distinct lines are incident with a (necessarily
unique) common point.

(P2) There exist four points, no three of which are incident with
a common line.

M. Hall proved — among many other things — that any linear
space S can be embedded into a projective plane. Let us recall this
process. Let S be a linear space containing four points, no three of
which are collinear. (Such a linear space is called non-degenerate).

If S is already a projective plane, then there is nothing to show.

If § =8y is not a projective plane, then there are pairs of lines
which have no point in common. To any such pair we adjoin a new
point being incident with precisely those two lines.

- So we get a structure S, which has the property that any two
lines meet uniquely. But there are now pairs of points which have no
line in common. (Otherwise S) would be a projective plane, but any
new point is on just two lines, which is impossible in a projective
plane).

Now we join any two points P, which are not on a common
line by the new line {P,Q}. So we obtain a new linear space S;
which has pairs of non-intersecting lines.

Repeating this process we get a series
S=Sog51 QSZQ

of linear spaces, none of which is a projective plane. Let now P be
the union of all these (infinitely many) linear spaces. Then P is a
projective plane. (For any two points P, Q) of P are contained in some
S;, so they are joined in S;;1; dually, any two lines are contained in
some S;, so they intersect in any S, with k£ > j +1. Hence in P any
two points are joined and any two lines meet; thus P is a projective
plane).

To sum up, any linear spaces S can be embedded in a projective
plane. However, if S is not itself a projective plane, then the above
constructed projective plane P is always infinite, even if S is finite.

It is tempting to ask whether a finite linear space can be
embedded in a finite projective plane. In fact, this is a well-known



28 ALBRECHT BEUTELSPACHER

conjecture which probably goes back to Hall’s paper (although it is
not stated there):

CONJECTURE. Any finite linear space is embeddable in a finite
projective plane.

One would even like to ask a more precise question: Given a
finite linear space S. What is the least order of a projective plane P
such that S is embeddable into P?

The above conjecture is the leitmotiv in the theory of finite
linear spaces. If the conjecture should be true, then today we are
still far apart from answering it completely, although we shall see
that there have been obtained many interesting and deep results. In
the following I would like to point out some key embedding results;
finally I shall try to indicate why this conjecture is a very difficult
one.

The result which is most quoted in the theory of linear spaces is

1.2. The Hanani-de Bruijn-Erdos Theorem.

From now on, we shall exclusively consider finite linear spaces.
These are linear spaces with a finite number v of points and hence
also a finite number b of lines. The Hanani-de Bruijn-Erdés theorem
says that a non-trivial finite linear space has at least as many lines
as points.

THEOREM [6]. Let S be a finite linear space with v points and
0 > 1 lines. Then b > v with equality if and only if S is a projective
plane or a near-pencil.

[A near-pencil is a linear space on v points which has a line
with v — 1 points (all other lines having just two points)].

Therefore, in particular, linear spaces with the minimal number
of lines are projective planes, so they are trivially embeddable in a
finite projective plane. For the history of the Hanani-de Bruijn-Erdos
theorem and in particular for the history of its proofs we refer to [22].
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2. The Present.

I would like to present here two types of embedding results,
global results and local results. By a global result I mean a theorem
which has as its hypotheses only conditions on v and b. For instance,
the result discussed in the preceding section. If b=, then the lienar
space is embeddable is a result of global type. A local result has as
its hypotheses also conditions on the degrees of the points and the
lines. (The degree of a point P is the number rp of lines through
it; dually, the degree of the line [ is the number k; of points on ).
A typical result in this direction is the Kuiper-Dembowski theorem,
on semiaffine planes [7] which might our context be formulated as
follows:

Kuiper-Dembowski theorem [7]. If a finite linear space S satisfies

mp — ki < 1 for any non-incident point-line pair (P, 1),

then S is embeddable in a finite projective plane.

Before going a little bit in details, I would like to mention that
I want to deal here only with embeddings of proper linear spaces,
that is only considering the structure of points and lines — not of
planes. Embeddings of so-called planar spaces has also attracted
much attention, the reader is referred to [3], [10], [17].

2.1. Global Results.

A deep generalization of the Hanani-de Bruijn-Erdés theorem
was obtained by Erdss, Mullin, Sés, Stinson [9] and Metsch [18]. In
order to formulate the result we need a definition.

Let S be a finite linear space with v points. Denote by n the
uniquely defined positive integer satisfying
W—n+l=@m—-12+@n-D+l<o<nd+n+l,

We define the number B(v) as follows:

n2+n—1, ifo=n®—n+224

B(v) =4 n*+n, ifr* —n+3<v<nP+lorv=4

n2+n+1, ifn2+2gv.
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Now the above mentioned result reads as follows.

THEOREM 2.1.1. [9], [18]. Let S be a finite linear space with v
points and b lines and let B(v) be the above defined number. Then

b> Bv).

Moreover, equality implies that either S is embeddable in a
projective plane of order m, or that S is the following exceptional linear
space which satisfies n=73 and is embeddable in the projective plane
of order 4. ’

An exceptional linear space with v = §.
(Lines of size 2 are not drawn.)

Theorem 2.1.1. describes linear spaces with few lines. Now we
turn to linear spaces with many points. Let S be a finite linear space
and denote by n+ 1 the maximum point degree of S; the so-defined
number n is called the order of S.

A relatively old but very useful result is

THEOREM 2.1.1. [21]. Let S be a linear space of order n If
v > n?, then S is embeddable in a projective plane of order n.

The proof of 2.1.2. is relatively simple and consists of two steps.
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First one has to establich the existence of a line of degree n. Then,
any such line lies in a unique parallel class. One of the problems in
proving the following results is that in general one cannot assume
that there exists an n-line.

This theorem has attracted much attention and was generalized
several times (see for instance [8]). The latest version reads as follwos.

THEOREM 2.1.3. [18]. Let S be a linear space of order m. If
v>n?— in+1 and n > 222, then S is embeddable in a projective

plane of order n.

Now we turn to linear spaces in which the maximum point
degree is bigger than n+ 1. Here, the closed complements of a Baer
subplanes are the most prominent examples. Let P be a projective
plarie of order n having a Baer subplane (that is a Subplane B of
order y/n). Then any point of P outside B is on precisely one line of B.
So, the lines of B form a parallel class of P — B. If P— B is completed
by one infinite point which is incident with exactly the lines of B,
we obtain the so-called closed complement of a Baer subplane. These
structures have been characterized in a very satisfactory way. The
result should be compared with 2.1.3.

THEOREM 2.1.4. [16] Let S be a linear space with b < n? +n+ 1
1
and v > n? — —n+ 1. If some point is on more than n+ 1 lines, then

S can be embedded in the closed complement of a Baer subplane in a
projective plane of order n. In particular, n is a perfect square.

Finally we turn to the so-called restricted linear spaces; these
are linear spaces satisfying (b —v)?> < v. In the classification, inflated
affine planes play an important role. A completely projectively inflated
affine plane is an affine plane together with a (possibly degenerate)
projective plane defined on all its points at infinity. The following
theorem is a corollary of Totten’s classification theorem.

THEOREM 2.1.5. [19]. Let S be a restricted linear space. Then
either S is embeddable (in a very natural way) in a finite projective
plane or S is a completely inflated affine plane.
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As corollaries one gets the classification of all linear spaces
satisfying b=v+1 [5], b=v+2 [23] and b =v + 3 [20].

We mention that recently, Metsch [18] has also determined all
linear spaces satisfying (b — v)> < b.

2.2. Local Results.

We call a linear space a-semiaffine, if a is the maximum number
of lines through a point P outside a line [ which are disjoint to {. The
semiaffine planes considered by Dembowski are just the 1-semiaffine
linear spaces. Also 2-semiaffine linear spaces have been classified (see
[12], [15]).

Notice that every finite linear spaces S is a-semiaffine for some
positive integer a, namely the maximum value of ry — k;, where (P, ()
is a non-incidnet point-line pair of S. A general asymtotic result is

the following.

THEOREM 2.2.1. [4] Let S be a finite a-semiaffine linear space of
order n. If
4n > 6a* +9a> + 1902 + 8,

then S is embeddable in a projective plane of order n

As corollaries one gets the classification of linear spaces with
bounded line degree and not too many points ([11, [2]).

3. The Future.

3.1. What can we (not) hope for?
3.1.1. Desarguesian planes.

The nicest class of projective planes are the Desarguesian planes.
Can one hope to embed any finite linear space in a Desarguesian
plane? Clearly, the answer is «no», since for instance the linear spaces
which is the «anti-Desargues-configuration» cannot be embedded in a

Desarguesian plane.



LINEAR SPACES: HISTORY AND THEORY 33

The Anti-Desargues Configuration.

Of course, this configuration can be embedded in any non-
Desarguesian plane. Hence the least order of a projective plane, the
non-Desargues configuration can be embedded in, is 9.

Clearly, this argument generalizes. If a class C of projective
planes is characterized by the validity of one of certain configurational
theorems, then there is a finite linear space which cannot be embedded
in any plane belonging to C.

3.1.2. Projective spaces.

Some people believe that, if a linear space S is not embeddable
in a finite projective plane, it is perhaps embeddable in a finite
projective space, since a space <has more freedom». This is, of course,
not true.

Suppose that a linear space S is embeddable in a finite projective
space Il = PG(d, ¢). Denote by P any plane of II. Then there exists
a projective space II* = PG(d,q*) of order ¢* with the following
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properties:
o II is emdedded in IT* (that is, ¢* is a power of ¢),
e there exists a point X of IT* such that
— no line of S passes through X,

— no plane which has at least two lines of S passes through
X. ‘ '

(The existence of X follows if the order ¢* is big enough with
respect to ¢, see for instance [14]).

Then the projective of S from X on P gives an embedding of S
in the Desarguesian projective plane P.

To sum up, if a linear space is embeddable in a finite projective
space of dimension d > 3, then it is even embeddable in a Desarguesian
projective plane. So, by 3.1.1, not every finite linear space is embeddable
in a projective space of dimension d > 3.

3.2. Can one do it by induction?

It is natural, but perhaps naive, to try to prove the conjecture
by induction. The induction step would be as follows: A part S; of S
is embedded in a finite projective plane P;. Problem: Extend P; to a
bigger, but still finite, projective plane P,, in which a bigger part S,
of S is embedded.

However, it is not known in general whether a finite projective
plane can be embedded in a bigger but still finite projective plane.
This is only known for classes of relatively well understood projective
planes. So, the question is: Can one hope to embed all finite linear
spaces in finite projective planes belonging to a «well-behaved» class
of projective planes?

3.2.1. The naive approach: Induction on v.

Of course, linear spaces with a small number v of points are
embeddable.
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| Suppose now that S is a linear space with v points and assume
that every linear space with v — 1 points is embeddable.

Consider a point X of S and the lines [;,..., [, of S throught X.

By induction, §' =S — X is embeddable in some finite projective
plane P. It is clear that the lines [;,...,[, form a parallel class in
the embedded S'. But as lines of P they mutually intersect, and,
in general, in distinct points. If all these lines would intersect each
other in the same point, we would have an emebdding of S.

So, the problem is the following: Modify P in such a way that

— the lines [y, ..., !, intersect in one common, point,
— §' remains unchanged,

— the modification is still a finite projective plane.

This seems to be an extremely difficult task.

3.2.2. A more sophisticated approach: Induction on —b.

Let me show you another argument which reduces the whole
embedding problem to a silly assertion to be proved.

Any linear space S on v points has at most v(v — 1)/2 lines with
equality if and only if S is a complete graph. _

Let’s try to prove the conjecture by induction on the number
c=vlw—1)/2—b. If ¢c=0, then S is a complete graph. Take any
Desarguesian projective plane P of order > v — 1. Then any conic of
P has at least v points, no three of which are collinear. This gives an
embedding of S.

Let now S be a linear space with ¢ := v(v—1)—b > 0 and suppose
that the assertion is true for any linear space having ¢’ < c.

Since ¢ > 0,S is not a complete graph. So, S has a line [ with
k > 3 points. Now replace in S the line [ by a near-pencil. We obtain
a linear space S’ on the same set of points having & =b+k—1 > b
lines. So, by induction, S’ is embeddable in a projective plane.

It remains to show that also S is embeddable in a finite projective
plane. This is left as homework for the reader.
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3.3. Some of the linear spaces I would most like to see embedded.

Notice that most (all) embedding theorems stated in section 2
embed a linear space S of order = in a projective plane of the same
order n!

I am convinced that the reason why we cannot solve the
embedding conjecture is that we do not understand the embedding
of linear spaces of order n in projective planes of an order m
«unrelated» (or, at least, unequal) to n. Here are some challenges.

3.3.1. Inflated affine planes.

Let A be an affine plane with line of infinity l,. Let S be a
linear space which is defined on some of the points of l.. Then the
linear space whose points and lines are the points and lines of A and
S is called an affine plane inflated by Se.. If Sy, is a near-pencil, it is
called a simply inflated affine plane, and if S., is a projective plane,
it is called a projectively inflated affine plane [19].

Problem Embed an inflated affine plane in a finite projective
plane.

The only example I know of is the (simply) inflated affine plane
of order 2, alias a quadrangle with non-collinear diagonal points.
This structure is embeddable in PG(2,3), in fact, by the theorem of
Gleason in any finite projective plane which is not PG(2,2%) for some
positive integer a.

- 3.3.2. Closed Complements. Problem: Embed a closed complement
of a Baer subplane of a finite projective plane in a finite projective
plane.

This is unsolved even for Desarguesian planes and even for the
smallest case n=4.

3.3.3. Affine planes with a strange point at infinity.
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Let A be an affine plane, and denote by IT a parallel class of A.
In the natural embedding, the lines of IT meet in a common point.
But this is not necessarily the case in every embedding. The lines
of IT might form an configuration which is the dual of a (possibly
degenerate) linear space (since, clearly, any two lines of IT meet).

Problem: Embed an affine plane in which the lines of one parallel
class form a certain configuration in a finite projective plane.

Examples of such configurations are:

\ | //

An example of such an embedding is the embedding of the affine
plane of order 3 (alias the unital of order 2) in the projective plane
of order 4.
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