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SUPPORTS OF (v, 4,2) DESIGNS
CHARLES J. COLBOURN (Waterloo) - GORDON F. ROYLE (Vanderbilt)

The spectrum of possible numbers of repeated blocks in (v,4,2)
designs is determined for all v > 121.

1. Background.

A (v, k,)) design is a pair (V,B), where V is a set of v elements,
and B is a collection of k-subsets of V' called blocks; each 2-subset
of V appears in precisely A of the blocks. This definition permits
repeated blocks.

" The support of a design (V,B) is the set B* of distinct blocks in
the design. While b = |B| is always Av(v — 1)/k(k — 1), the support size
b* = |B*| is not determined uniquely by the parameters in general.
In part due to a number of statistical applications, there has been
much recent activity in determining the spectrum of support sizes for
(v, k,)) designs. For triple systems (k = 3), the problem is essentially
settled for all A <8 [5, 6, 7, 16]. ‘

We study the spectrum of support sizes for (v, 4, 2) designs in this
paper. In fact, we consider an equivalent problem: the determination
of the possible numbers of repeated blocks. If a (v,4,2) design has r
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repeated blocks, its support size is v(v — 1)/6 — r.

(v,4,2) designs exist if and only if v = 1 (mod 3) [9]. Let M, be
v(v—1)/12 if v = 1,4 (mod 12), or (v(v — 1) —42)/12 if v = 7,10 (mod
12). Let R4(v) denote the set of numbers of repeated blocks in (v,4,2)
designs. We prove the following: :

THEQREM For v=1,4 (mod 12), v > 88,
Ra)={0,1,.... MyN\{M, — 5. M, — 3. M, — 2, M, — 1},
and for v =17,10 (mod 12), v > 127,
Ra()={0,1,..., M,\{M, — 2, M, — 1}.

Our proof of the Main Theorem relies on a number of known
results; we recall these here. A transversal design T'D(k,n) is a set of
k disjoint sets of n elements each (called groups), and a set of blocks
of size k, so that each block intersects each group in precisely one
element, and every pair of elements from different groups appears
in a block. An incomplete transversal design IT'D(k,n,m) also has
k groups of size m; in each group, m elements are distinguished as
belonging to a hole. A pair of elements from different groups then
appears in one block if they are not both in the hole, and zero blocks
if both elements are in the hole. Such incomplete designs could be
obtained, for example, by removing a sub-T"D(k, m) from a T D(k,n);
however, there are other examples when the T'D(k, m) does not itself
exist.

The following is well known:

LEMMA A [1,18]: There exists a T'D(5,7n) for all n ¢ {2,3,6}
except possibly n = 10. . . O

We also use incomplete transversal designs:

LEMMA B [10l: For n > 3m and m > 1, there exists an
IT D(4,n,m) except for (n,m) = (6, 1). 0

We also employ a powerful theorem of Rees and Stinson:
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LEMMA C [141: Let v,w = 1 (mod 3), v(v — 1) = w(w — 1) (mod
12), and v > 3w. Then there exists a pairwise balanced design on v
elements having one block of size w and all other blocks of size four.O

Omitting the w-block leaves a hole of size w, forming an
incomplete PBD which we denote as a (v, w;4) — IPBD.

We use Lemmas A, B and C as building blocks in recursive
constructions for determining R4(v). In section 2, we establish the
necessity of the conditions in the Main Theorem, and dispense with
the (easier) case when v = 1,4 (mod 12). In section 3, we then
use Lemmas A and B in examining the intersection problem for
transversal designs T"D(4,n). In section 4, we prove sufficiency in
the Main Theorem using the results obtained on intersection of
transversal designs, and using Lemma C to take care of the values
missed in this way. | |

We assume familiarity with constructions using pairwise balanced
designs and group divisible designs; see [1] for further background.

2. Necessary Conditions.

Consider the graph G whose edges are the pairs which do not
appear in repeated blocks. The graph 2@, obtained from G by taking
each edge twice, must have a partition into K4’s. Hence ¢ must have
all vertex degrees = 0 (mod 3). Moreover, the partition of 2¢¢ must
have no repeated Ks, and hence no vertex degree is equal to 3. & is
then a simple graph on v points with degrees 0, 6, 9 and so on.

When v = 1,4 (mod 12), G has 0 (mod 6) edges, and when
v=17,10 (mod 12), G has 3 (mod 6) edges. Hence we have

LEMMA 21. {M, -5 M, -3, M, —2,M, — 1} N R4(w) = § for
v=1,4 (mod 12).

Proof. If M, — s € Ra(v), the graph G defined has 6s edges. Now
G must contain a vertex of degree at least six, and hence must have
at least seven vertices of degree at least six. Then if s20, s > 4. We
must rule out s =5. In this case, G has 30 edges, and must have 10
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vertices each of degree 6.

Suppose that G has degree sequences 6™. Choose a vertex z and
let the six neighbours of z be yi,...,ys. Since z must appear in four
distinct quadruples, there are at least ten edges of the form {y;,y;}.
Now g has [ = m — 7 further vertices, whose total degree is 6l. Since
edges from the {y;} account for at most 10 of this total degree, we
obtain that I({ — 1) > 6] — 10. But then [ cannot equal 3 or 4, and
hence G cannot have degree sequence 6! or 6!1. 0.

LEMMA 2.2. {M, -2, My — 1, M, + 1, M, +2, M, +3}N Rs(v) = §
for v="7,10 (mod 12).

Proof. If M, — s € R4(v), the graph &G has 6s+ 21 edges. G has
at least one vertex of nonzero degree, since G' has at least three
edges. Hence GG has at seven vertices of nonzero degree, and at least
21 edges. Hence s > 0. If s =1, G has 27 edges and has 9 vertices
of degree 6. Consider the 2-regular complement of G on these nine
vertices. If the complement contains a triangle or a 4-cycle, it is
routine to verify that 2G has no partition into K4’s. If the complement
forms a 9-cycle, one can verify that G only contains nine distinct K4’s
in it. These nine do not partition 2@, and hence no such partition
exists. . ,

For s =2, G has 33 edges. It could have two vertices of degree 9
and eight of degree 6, or it could have eleven of degree 6. The latter
case is eliminated in the proof of Lemma 2.1. In the first case, by
considering a K4 involving neither vertex of degree 9, one concludes
that G must contain an edge which appears in no K4’s at all. Hence
the first case is ruled out. ' O

Now we dispense with sufficiency in the easier case, when

= 1,4 (mod 12).

LEMMA 2.3. For v = 1,4 (mod 12) and v > 40,
Ra() ={0,1,... M, \{My — 5, My, — 3, M, — 2, M, — 1},

except possibly for My3—4 € R4(73), Mgs—4 E R4(85) and M,—7 € R4(v)
for v € {40,49,52,61,64,73}.

Proof. Colbourn, Hoffman and Lindner [4] proved that for v = 1,4
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(mod 12) and v > 40, there are two (v,4,1) designs having r blocks
in common for all 0 < r < M, except r = M, —s for s € {1,2,3,4,5,7}.
Taking the union of these (v,4,1) designs establishes r € R4(v). Hence
we need only consider M, — 4 and M, — 7. For the first, consider the
unique graph G on eight vertices which is 6-regular (the «cocktail
party graph» on eight vertices). The multigraph 2G has a partition
into eight distinct K4’s. We use this to show that My — 4 € R4(40).
Form an IT'D(4,9,2); add four points at infinity. On each group
together with the four points, place a (13,4, 2) design with a hole on
the four added points, having every block repeated. Place a repeated
block on the four added points. The pairs left to partition form 2@,
and hence yield 8 nonrepeated blocks. Using Lemma C, we obtain
M, —4 € Rs(v) for all v = 1,4 (mod 12) and v > 121. A similar
strategy settles v € {52, 88,100}. Instead placing one point at infinity
settles the cases v € {49,61,97,109}. Placing no points at infinity
handles v € {64,112}. For v =76, we use a packing by quadruples
whose leave is the cocktail party graph, given in [8].

For M, —7, we use a group divisible design with blocks of size
4 and group-type 623* [15]. Add a point at infinity to extend each
group. The result is a pairwise balanced design on 25 elements with
two blocks of size 7 and all others of size four. Double each 4-block
and replace each 7-block by the blocks of a (7,4,2) design. This shows
Mys —7 € R4(25). By lemma C, we have M, —7 € R4(v) forallv =14
(mod 12), v > 76. , O

3. Intersection of transversal designs.

Our main strategy in dealing with the remaining congruence
classes is to use a simple quadrupling construction using incomplete
transversal designs ITD(4,n,m). Our particular concern is with the
case m € {1,2}. However,” we state a number of the results more
generally.

For uniformity, we view a T'"D(4,n) as an IT D(4,n,0). Now two
ITD(4,n,m)s are said to intersect in s blocks if the I7T°Ds have
groups on the same sets of points, their holes on the same sets of
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points, and s blocks in common. We denote by TI(n,m) the set of
intersection sizes of IT D(4,n, m)’s. The maximum value in 7' I(n, m)
is n* — m?, provided of course that an ITD(4,n, m) exists at all.

Now we develop some straightforward constructions:

LEMMA 8.1. If an ITD(4,n,m) exists, then for 0 < i< n—m,
wn—m—1, and 0< j <m, j#m — 1,

m+j(m—m) € TI(n,m).

Proof. Let one group of the ITD(4,n,m) be {1,2,...,n} so that
the hole lies on {1,2,...,m}. Form a second ITD by applying
the permutation fixing 1,...,7 and m+1,...,m +4, and moving the
remaining elements so that elements in the hole remain in the hole.
This is applied to a single group. Since each element in the hole
meets n— m blocks, and each outside the hole meets n blocks, we
obtain the intersection in+ j(n— m) as required. g

We can also fill the holes in an ITD:
LEMMA 3.2. If r € TI(n,m) and s € TI(m,u) then r+s € T'I(n, u).
Proof. Fill the hole of an IT'D(4,n,m) with an ITD@, m,u). O

Next we describe some applications of Wilson’s fundamental
construction -[19]:

LEMMA 3.8. For 1 < i< n*—m? let r; € TI(k,0). Then if an
ITD(4,n,m) exists,

nz—mz

E ri € TI(kn, km).

1==]

Proof. Give every point in the ITD(4,n, m) weight k; each block
then becomes a T'D(4, k). For each of the n? — m? blocks, choose two
T D(4, k)Ys which intersect in r; blocks. : O
' This can be extended in a useful way; In an IT D4, n, m), define
a holey parallel class to be a set of n— m pairwise disjoint blocks
involving no elements from the hole.
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LEMMA 34. Let t =n* —m? —lln—m). For 1< i <t let
r; € TI(k,0), and for 1 < j < l(n—m) let s ETI(k+1,1). If k > 1 and
an ITD(4,n,m) exists having | disjoint holey parallel classes, then

¢ ln—m)

Domi+ Y sj € TIGkn+1,km+1).

i=1 j=1 ,

Proof. Give every point of the IT'D(4,n, m) weight k: blocks not
in a holey parallel class become T'D(4, k)s. Add [ points at infinity
to each group; then blocks in the I-th holey parallel class become
ITD(@4,k+1,1)s placing the hole on the I-th additional point in each
group. 0

We use Lemma 8.4 primarily in the case when m =0; in this
case, a T'D(5,n) can be used to form a resolvable T D(4, n). Naturally,
an ITD(5,n,m) could also be used here.

Now we turn to results for small values to be used applying
these lemmas. It is evident that if s > 1 and s € TI(n,0) then
s—1€ TIn1).TI(1,0) = {1} and TI(2,0) is empty. Colbourn,
Hoffman and Lindner [4] established that 7I(3,0) = {0,1,3,9}, and
that T1(4,0) = {0, 1,2, 4, 8, 16}. Using these results, we obtain a strong -
general result: :

LEMMA 3.5. Let z be a positive integer, = ¢ {2,3,6,10}. Let
0<y<uz Let M=Q@Bx+y)?—y? and let 0<s< M, s#M —t for
t€{1,2,3,4,5,7,10,11,13,19}. Then s € TI(3z + v, y).

Proof. Apply Lemma 3.4 with weight 3 to a resolvable TD4, x)
(from Lemma A). Use TI(3, 0) = {0, 1, 3, 9} and TI@4, 1) =
{0, 1, 3, 7, 15}. 0

The same construction with y = z leaves further possible
exceptions, namely M — T for ¢t € {6,9,17,18,21,25,33}.

LEMMA 3.6. Let n=9 or n> 12, n#14. Then if 0 < s < n* and
s#n? —t for t € {1,2,3,4,5,7,10,11,13,19}, then s € TI(n,0).

Proof. When n ¢ {9,17,20,23}, this follows directly from Lemma
3.5. When n =9, this follows from Lemma 3.3. When n = 23, apply



46 CHARLES J. COLBOURN - GORDON F. ROYLE

weight 3 to an ITD(4,7,1) having two holey parallel classes (use a
TD(6,7) to obtain this). Fill the remaining hole with a T"D(4, 5). For
n = 20, remove four points from a block and one further point from
a (25,5,1) to from a group divisible design of type 3*1® having block
sizes four and five. Use this to form a 7"D(4,20) with four disjoint
TD#4,3)s.

For n =17, start with a group-divisible design block size 4 and
group type 3°. We add two extra points, and apply weight four, using
'3 ITD(4,6,2)s, a TD(@4,5), 4 TD(4,3)s 5 TD(4,1)s and 12 TD(4,4)’s
minus a parallel class. 0

Remark that for n = 14, one can obtain an almost complete
determination of 7'I(14,0) using the HSOLS(2°3') of Stinson and
Zhu [17].

Now we turn to the determination of T'I(n,2). In general, we
can apply Lemma 3.5 with y =2, or with y > 6; in the latter case, an
ITD(4,y,2) is then used to fill the hole and leave a (smaller) hole.
This enables us to prove

LEMMA 3.7. Let n € {14,17,18,21} or n > 23. Let 0 < s < n* — 4
and s#n* —4 —t for t € {1,2,3,4,5,7,10,11,13,19}. Then s € TI(n,2).

Proof. For n ¢ {18,21,24,25,28,32,36,37}, this follows directly
from Lemma 3.5 using y =2 or y > 6. For n € {18,21, 24,36}, apply
weight 3 in Lemma 3.3 to an [T'D(4,n/3,2), and fill the hole with
an ITD@4,6,2). For n =25, apply Lemma 3.4 with weight 3 to an
ITD(4,7,1) with four holey parallel classes, using an ITD (4,7,2) to
fill the hole. For n= 28, do the same using an I7°D(4,8,1) with four
holey parallel classes, and for n=32 use an ITD(4,9,1) having five
holey parallel classes. The basic ingredients here exist using T"D(8,7),
TD(8,8) and T"D(9,9) designs. Finally for n= 37, apply weight 9 to a
T D(4,4) having a parallel class, filling with three IT°D(4,10,1)s and
one [T D(4,10,2). 0

4. Small Orders.

In [4], numerous results are settled for the small cases v = 25,
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28 and 37 not covered by Lemma 2.3. In this section, we examine
the small cases for v = 7,10 (mod 12).

For v =7 and v = 10, it is easy to see that the (v,4,2)
designs are unique up to isomorphism, and have no repeated blocks.
The first nontrivial case is therefore v = 19. At the present time,
very little is known about this case. From Lemma 2.2, we have
R4(19) C {0,...,22} U {25}. Moreover, since no (19,4,2) can contain
a (7,4,2) subdesign, one cannot obtain a (19,4,2) with 25 repeated
blocks. This leaves many possibilities in principle. However, by local
optimization techniques, we have thus far been able to settle only
four cases affirmatively:

LEMMA 4.1. {0,1,2,3} C Ra(19).

Proof. There is a (19,4,2) design with no repeated blocks [9]; for
example, the starter blocks {{0,1,4,15},{0,6,11,13},{0,7,9, 10}} in
Zy19 give a block-transitive (19,4,2) design. For the remaining values,
we found designs by computer using local optimization techniques.
We present the list of blocks using elements {a,5b,...,s}.

For 1 € R4(19), take the design with blocks: adgm adgm frps
epra ifrm odbn naji hken sigb aslk cpob fige cgfk haks jemq idrs jlrh
ghjf brch hgso ofaq kbqi fbnl dipj debp gjse lcie ngkr oigh fhdl moen
sejo ghep pmgh ebkm fhed rgqe qdke mhni rlom kjfo mpkj orkd jldg
glop qnps sndc jenr cfms coai abrq blms alce bhaj gqln fpna plik.

For 2 € R4(19), take the design with blocks: adgm adgm bcef
beef asbk incl hgkb srcm qsca ehlq sgnf lhes reja dgjh pfml mqer
ihpr peod icdn qolg gsid nalb pdes brld prkl oegi nmej osrk frqa djob
ohbm c¢jpg hnpa rhgc fndr rjno mocl ngpb aofh ipmk hijf qckj egkn
smnh aopc jgls sfoi khed sjpb pfgq mfkj kqno aeik 1kdf qmbi lija grib.

For 3 € R4(19), take the design with blocks: adgm adgm bcef
beef hijk hijk lbgj nmje disc mekp rdnq qgfj shlq ianf qofm obsr mlbk
agjc aotk engh fjrs pcha nogk spkq elao drkc ksfg riom idlf ndjb pigc
jpol cnkl dhlf seja phfm shmb geml pdes slan paib ergh qahr qioe
dohb qgbi heno mejr odjp nmsi Irgp gbnp qdke ogsc karb eril frpn. O

Turning to v =22, the situation is much more satisfactory:
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LEMMA 4.2. {0,1,...,26} U {35} C R4(22).

Our general strategy is to select two Kirkman triple systems of
order 15, having parallel classes Py, ..., P; and Q;,..., Q7, respectively.
Seven new points zi,...,z7 are added; next we assign each of the
seven points to a different parallel class from the {P;},a nd assign
each to a different parallel class from the {Q;}. A (22,4,2) is then
_ formed by adding z; to each block in the parallel classes to which
z; is assigned, and finally placing a (7,4,2) design on the {z;}. The
number classes of repeated blocks is then the sum for 1 =1,...,7 of
the number of blocks in common between the two parallel classes to
which z; is assigned. In order to obtain different numbers of repeated
blocks, there is much freedom in this approach — one can choose
different Kirkman triple systems, and different assignments of extra
points to parallel classes.

By taking the two Kirkman triple systems identically, but varying
the assignment of extra points to parallel classes; we obtain (22,4,2)
designs with 0, 5, 10, 15, 20, 25 and 35 repeated blocks. Taking any
Kirkman triple system, and a copy of it in which two elements are
transposed, and varying the assignment of extra points to parallel
classes, we obtain designs with 3, 6, 8, 9, 11, 12, 14, 17 and 23
repeated blocks. Taking any Kirkman triple system, and a copy of it
in which the permutation z — y — 2z — z has been applied to the
elements of a block {z,y,2} and again varying the assignment, we
obtain designs with 2, 4, 6, 7, 8, 9, 11, 13 and 17 repeated blocks.

Now take two Kirkman systems as follows. One has parallel
. classes {bcd, eim, afk,glnhjo}, {bef, cik, dno, agj, hlm}, {bgh, cjl,a
dm, eko, fin}, {bij, cmo, dfg, ael, hkn}, {bkl, acn, deh, fim, gio},
{bmn, ceg, djk, flo, ahi}, {abo, cfh, dil, ejn, gjm}. The second has
the first three parallel classes the same, while the remaining four
are {bij, acn, deh, flo, gkm}, {bkl, cmo, dfg, ejn, ahi}, {bmn, cfh,
djk, ael, gio}, {abo, ceg, dil, fim, hkn}. Now assigning extra points
to the parallel classes of these two Kirkman systems in various ways
gives designs with 1, 16, 18, 19 and 21 repeated blocks (and some
numbers among those already achieved).

Next take two Kirkman systems as follows. The first is {bcd,
eim, afk,gln, hjo}, {bef, cik, dno, agj, hlm}, {bgh, cmo, djk, ael, fin},
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{bmn, ¢jl, dfg, eko, ahi}, {bij, ceg, adm, flo, hkn}, {bkl, acn, deh, fjm,
gio}, {abo, cfth, dil, ejn, gkn}. The second system has the same first
four parallel classes, and three further parallel classes as follows:
{bij, acn, deh, flo, gkm}, {bkl, cth, adm, ejn, gio}, {abo, ceg, dil, fjm,
hkn}. Assigning extra points as before gives designs with 22, 24 and
26 repeated blocks. O

For v =31, we use a similar strategy. Mathon, Phelps and Rosa
[12] have enumerated thirty of the Kirkman triple systems of order
21; we make extensive use of their results.

LEMMA 4.3. {0,...,53} U {55,56, 58, 60, 62, 64, 70,74} C Ra(31).

Proof. To obtain the bulk of the values, we proceed as follows.
Take two Kirkman triple systems of order 21, having parallel classes
Pi,...,Pp and Q1,...,Q10. Add ten points at infinity; each of these
ten points is added to the blocks of one of the {P;} and one of the
{Q;}. Finally, a (10,4,2) subdesign is placed on the ten additional
points. Hence we must consider intersections among the parallel
classes of two Kirkman triple systems. To do this, form a 10 x 10
matrix X in which the (i, j)-entry is the number of blocks in common
between P; and @Q;. The sum of the entries in any transversal of X
is then a support size for a (v,4,2) design.

Consider, for example, the Kirkman designs labelled A.3a and
A.3b in [12]. The 10 x 10 matrix of intersections for these two designs

1S

7
7
7
4 1 1 1
1 1 1 1 2
2 2 2 1
1 3 3
2 1 3 1
1 1 1 1 3
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The transversal (1,1), (2,2), (3,3), (4,4), (6,5), (7,6), (5,7), (8,8),
(9,9), 10,10) has sum 44, and hence we obtain 44 € R4(31). It is an
easy verification that using this matrix we have {0,...,44} C R4(31).

Similarly, using designs A.3a and A.3c from [12], we obtain
{46,48,52,56,58} C R4(31). Designs A.3]1 and A.8m give {47,51,55}.

For 49 repeated blocks, we permute three points in the hole of a
(31,10;4)—IPBD to obtain a second (isomorphic) I PBD; taking their
union and filling the hole with a (10,4,2) design gives the desired
result. For 50 repeated blocks we permute three points of the hole in
a (31,7;4) — IPBD. For 60 repeated blocks, we use a group-divisible
design of type 6° with blocks of size four [3], taking each block twice.
We add a new point, and on each group together with the new point,
we place a (7,4,2) design.

For 62 and 64 repeated blocks, we observe that in design A.3a
of [12], the union of parallel classes #1 and #8 forms a disconnected
graph with components of size 9 and 12. Hence we can produce
a distinct Kirkman triple system by exchanging the two parallel
classes in either component while leaving the other unchanged. From
the design with 64 repeated blocks, exchanging two of the resulting
parallel classes gives a design with 53 repeated blocks, and from the
one with 62 repeated blocks we obtain one with 45.

Finally, taking each block of a (31,10;4) — IPBD twice and
filling the hole with a (10,4,2) design gives 70 repeated blocks; using
a (31,7;4) — IPBD similarly gives 74 repeated blocks. O

Unlike the cases v = 22 and 31, the case v = 34 is not constructed
using a Kirkman triple system. Nevertheless, we can use similar
techniques to handle many of the cases here.

LEMMA 44. If s € {0,...,87} U {90}, then s € R4(34) except
possibly for s = 43, 49, 59, 65, 67, 73, 74, 75, 77, 79, 80, 81, 82, 83 85
or 87.

Proof. Rees and Stinson [13] construct a resolvable pairwise
balanced deisign on 24 points having ten parallel classes of triples
and one parallel class of quadruples as follows. On (Z;p U {a, b} x Z,
place 5 quadruples taken by developing {(0,0),(0,1),(5,0),(5, 1)}
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modulo (10,—), and place a quadruple on {a,b} x Z;. Now let
Py be the set of blocks {(a,0),(0,0),(2, 1)}, {®,0),(,0),O, 1},
{(1,0),(7,0),(8,1)} and {(3,0),(4,0),(6,0)} developed modulo (—,?2).
Let P; be obtaining from P, by adding (1,0) modulo (10, —) to each
point (where a+7 = a and b+1 = b). This forms the required resolvable
pairwise balanced design. As with a Kirkman system, we can extend
the parallel classes of triples by adding ten additional points.

We examine the effect of applying a permutation to form a second
(but isomorphic) resolvable design, and then extending parallel classes
of each as before. In this case, unlike that of Kirkman systems, we
must also consider the effect on the quadruples which do not involve
one of the additional points. For example, choose the permutation
mapping (5,1) — (6,1) —» (7,1) - 8,1) —» (9,1) — (5,1), and fixing
the remaining points of the resolvable design. This mapping fixed
one quadruple, namely {(a,0), (b,0), (a, 1), (b, 1)}; it maps each parallel
class P; to a parallel class @);. As before, we consider the intersections
of the two sets of parallel classes; by varying the assignment of
parallel classes to additional points, we obtain designs with r repeated
blocks for r € {1,2,39} and r € {4,...,33}.

Applying instead the permutation (6,1) — (7,1) — (8,1) —
9,1) — (6,1), we fix two quadruples from the parallel class,
and varying assignments of the parallel classes of triples yield
designs with r repeated blocks for r € {34,35,36,37,38,47}. Now
applying (7,1) — (8,1) — (9,1) — (7,1), fied three quadruples from
the parallel class and gives designs with r repeated blocks for
r € {3,40,41,44,45,46,56}. Applying (8,1) — (9,1) — (8,1) gives
r € {48,53,54,66}. Applying the identity yields designs with 62, 70
and 86 repeated blocks.

Now observe that in the Rees-Stinson design, the elements
{a,b} x Z, appear with 1-factors of edges on Ziy x Z; in fact, each
such edge is either on the set {0,2,4,6,8} x Z; or on {1,3,5,7,9} x Zy;
we call these edges even and odd, respectively.

To obtain a (possibly nonisomorphic) resolvable pairwise balanced
design, one can apply a permutation to the elements of {a,b} x Z,
only on the blocks containing even edges in the 1-factors. For
example, interchanging (a,0) and (a, 1) just in those blocks containing
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even 1-factor edges, one obtains a (34,4,2) with 76 repeated blocks.
Permuting three points instead gives a (34,4,2) with 71 repeated
blocks. In this design, three points of {a,b} x Z, each .appear
in 6 repeated blocks and the last appears in 11; the points of
{0,2,4,6,8} x Z, each appear in 8. The points of {1,3,5,7,9} x 2,
each appear in 11. The point associated with P, appears in 5 if i is
even, 8 if 7 is odd. Hence permuting the parallel classes, we obtain
designs with 61 and 55 repeated blocks.

Next we use a (34,7;4) — IPBD, constructed by Brouwer [2].
Removing the 7 points of the hole gives a pairwise belanced design
having seven parallel classes of triples, and the remaining blocks (27
of them) are quadruples. We can from a second JPBD by permuting
the points of the hole and the points outside the hole independently.
Taking the union of the two IPBDs and then placing a (7,4,2) design
on the hole yields a (34,4,2) design. Permuting points in the hole
gives designs with 63, 72 and 90 repeated blocks. Permuting points
of a block not intersecting the hole gives designs with 50 and 60
repeated blocks. .

Now in Brouwer’s design, two of the parallel classes have the
property that their union consists of three connected components on
nine vertices each. Hence we can interchange portions of these two
parallel classes to form the second design, and of course we can also
permute classes as well. This gives designs with 42, 51, 57, 69, 78
and 84 repeated blocks. Instead interchanging a portion and then
permuting points of a block neither in the hole or the changed portion
gives 58 and 64 repeated blocks; doing so in the changed portion
gives 52 and 68 repeated blocks. 0

While we have by no means settled all of the values for small
cases, we have the following useful general result.
| LEMMA 4.5. Let t and v be integers satisfying
(1) t=4 and v > 31, or
(ir) t € {22,23,24,25} and v > 58, or
(ii)) 9 <t <35 and v > 67.
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Then M, —t € R4(v).

Proof. Choose w =10, 19 or 22 depending on which case (i), (i)
or (iii) is required. Form a (v, w;4) — IPBD using Lemma C and take
each block twice. Fill the hole with a (w,4,2) design having M, — ¢
repeated blocks, provided by the (10,4, 2) design, or by Lemma 4.1 or
Lemma 4.2. ' 0

Naturally, any improvement in the state of knowledge about
R4(19) or R4(22) would lead to a stronger result here.

5. Supports: v = 7,10 (mod 12).

We use the results on T'I(n,m) for m € {0,1,2} to determine
R4(v) for v = 7,10 (mod 12). We also first prove an easy result:

LEMMA 5.1. Let v=17,10 (mod 12). Then if v > 22, there is a
(v,4,2) design containing a sub-(7,4,2) design in which exactly one
block is repeated, and one in which every block outside the subsystem
is repeated. And if v > 31, there is a (v,4,2) design containing a
sub-(10,4,2) in which exactly one block is repeated, and one in which
every block outside the subsystem is repeated.

Proof. To form the designs with repeated blocks, form a pairwise -
balanced design on v elements with blocks of size four and one block
of size 7 or 10 [14]. Replace each block of size b by a (b, 4, 2) design. To
obtain exactly one block repeated, take the same pairwise balanced
design. It follows from results of Lindner and Street [11] that a
second pairwise balanced design can be formed which has the large
block, but only one block of size four, in common with the original.
The union of the two pairwise balanced designs, and the replacement
of the large block of size b by a (b,4,2) design yields the required
(v,4,2) design. O

LEMMA 5.2. Let 5; >0, s;j+1 € Ra(z+3), 1=1,2,3 4 and let
t € TI(z,0)UTI(z,2). Then if t < z%, t+s1 +s2+ 583+ 54 € Ra(dz +3),
and if t >0, t — 1 +s; + 83+ 83+ 84 € Ry(dz + 3).
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Proof. Form the union of the 7"D(4,z)s or IT'D(4,z,2)s; for
the latter, fill the remaining hole with the decomposition of
the cocktail party graph. Place the resulting design on points
{vi; 11 <4<, 1< 7 <z}, so that a block appears on {v11, va1, v31, v41}.
For the first case of the lemma, choose this block to be nonrepeated;
for the second, choose the block to be repeated. In either event, omit
one copy of the block. Now add three points a, b, ¢, and for 1 = 1,2, 3,4,
take a (z +3,4,2) deisgn and omit a repeated block. Place the result
on {v; : 1 <j < z}U{a,b,c}, leaving the hole of size 4 on {a,b,c,v;1 }.
Finally, on {a,b,c,vi1,v21,v31,va1} place a (7,4,2) design omitting a
block on {Ull,vzl,v31,v41}. O

From this lemma, we obtain a neaﬂy complete solution for the
case v = 7 (mod 12). However, a further construction along the same
lines also proves to be useful:

LEMMA 5.3. Let t € TI(z,00UTI(z,2), 0< s< 4 and z=0,3
(mod 12), © > 7. Then t +sMy7 € Ra(4z + 7).

Proof. We form two T'D(4, z)’s or ITD(4,z,2)s sharing t blocks
on points {v;; :1=1,2,3,4;1 < j < z}. If ITD’s are used, fill the hole
with the decomposition of the cocktail party graph. Now seven further
points are added. For each i =1,2,3,4, on the points {v;;}, 1 <j <z
and the seven additional points, a (z +7,4,2) is placed, omitting a
(7,4,2) subdesign on the seven extra points. By Lemma 5.1, this can
be done so as to repeat all or none of the blocks for each 1. O

Now we can settle the case v =7 (mod 12).

LEMMA 5.4. For v="17 (mod 12), v > 43,
R4('U\) = {O, 1, ey Mv}\{Mv - 2, Mv - 1}

with the possible exception of M, —t for t € {3,5,7} and v =67, and
t € {3,5} and v ="79.

Proof. When z = (v —3)/4 = 1,10 (mod 12), we apply Lemma
9.2, using Lemma 2.3 to provide Rs(z +3), and Lemmas 3.6 and
3.7 to provide T'I(z,1) and TI(z,2). When z € {10,13,22,25,634},
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the lemmas cited do not provide solutions; however, it is a routine
exercise to verify that with the results of [4] for small cases not
handled by Lemma 2.3, and the existence of D4, x), IT D4, x,?2)
and ITD(4,,3) (Lemma B), each required number of repeated blocks
can be realized.

When z = 4,7 (mod 12), 2#16, proceeding in a similar way, using
Lemma 5.1 to construct two extreme values in R4(z + 3), yields all
values except M, —t for t < 14 and t € {15,16}. Since we have a
complete solution for v =43, applying Lemma C for v > 139 yields

M, —147,... . M, =3} U{M,} C Rs(v).
Hence the lemma holds for v > 139.

For v = 127, we modify Lemma 5.2 to employ a T"D(4,31) or
ITD(4,31,2) with a sub-T"D(4,7) (both are easily constructed). We
align the sub-7"D(4,7) with a (7,4,2) in each (34,4,2) added, and
replace the (7,4,2)s and the 7"D(4,7) by a (28,4,2) design. The case
v = 115 is handled similarly using T"D(4,28) and IT D(4,28,2) with a
sub-T"D(4,7).

For v =79, using an IT D(4, 18, 6) and a pairwise balanced design
on 25 points with two 7-blocks meeting in a point and 4-blocks
elsewhere, one can form a pairwise balanced design on 79 points with
one 25-block, one 7-block and 4-blocks otherwise; Using the (partial)
determination of R4(25) resulting from [4] and Lemma 2.1, we obtain
M9 —t for t € {6,7,8,12,15}. Hence for v =79, the only values in
doubt are My —t for t € {3,4,5,9,10,11,13,16}. Lemma 4.5 then
provides My —t for t € {4,9,10, 11,13, 16}.

For v = 67, we use Lemma 5.4; this leaves as possible exceptions
Mg —t for t € {3,5,7,10,11,13,19}. Lemma 4.5 provides designs for
t € {10,11,13,19}. O

Now we turn to the ~ase v = 10 (mod 12). We adopt a similar
strategy here.

LEMMA 5.5. Let s; > 0, s; € Ra(x+2), 1=1,2,3,4. Let t € T'I(x, 2).
Then t+ 81+ 83+ 83+ 84 € R4(4x + 2).

Proof. Form two IT'D(4,z,2)’s on the same groups (and with the
same hole) having ¢ blocks in common, and form their union. Add
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two extra points, and on each group together with the two extra
points take the blocks of an (z +2,4,2) omitting a repeated block on
the two extra points and the two points of the hole. Fill the final
hole with the blocks of a (10,4,2) design. O

This lemma is sufficient to establish the following:
LEMMA 5.6. For v = 10 (mod 12), v > 130,

Ra(v)=1{0,1,..., M,)\{M, — 2, M, — 1}.

Proof. Using Lemma 3.7 to provide the ITDs, and Lemmas 2.3,
5.1 and 5.4 to provide the smaller orders, we realize all values up
to M, — 38 (and some larger than this as well). Then using Lemma
5.4 to provide R4(43) and embedding using Lemma C, we obtain all
values larger than M, — 148. Hence all values are covered. O

When v < 130, the values near the largest pose a serious
problem. For v = 118, we can use ITD(4,29,5)s adding two extra
points. The groups are filled with a (22,4,2) missing a (7,4,2), and the
final hole is filled with a (22,4,2). This handles all but Mg —t for
t € {3,5,7,11,13}. Lemma 4.5 handles the cases when ¢ € {11,13}.

For v = 106, Lemma 5.5 handles all but Mg —t for t €
{3,5,6,7,8,9,11, 14, 15,17, 23}. Using instead ITD(4,25,4) and adding
six points at infinity, filling groups with a (61, 4, 2) misisng a
(10, 4, 2) and filling the final hole with a (22,4,2) yields M, —t
for t € {6,8,9, 14,15,17,23}, leaving only t € {3,5,7, 11}. Lemma 4.5
handles ¢ = 11.

When v = 94, again Lemma 5.5 handles all but Mos — t for
t e {3,5,7,8,9,11,14,15,17,23}. Lemma 4.5 handles all remaining
cases for t > 9.

When v = 82 use ITD(4,20,5)s with two extra points; the
ingredients are a (22,4,2) missing a (7,4,2), and a (22,4,2). Using
Lemma 3.5, T1I1(20,5) contains 375 — ¢ except possibly for ¢t €
{1,2,3,4,5,6,7,8,9,10, 11, 13, 17,18,19,21,25,33}. Lemma 4.5 handles
the remaining cases when ¢t > 9 or t =4, ’

For v = 70, use IT'D®,16,1)s adding six points to obtain
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M70 —t except possibly for t € {1,2,3,5,6,7,8,9,11, 15, 17}. Lemma
4.5 handles t € {9, 11,15,17}.

For v = 58, Lemma 5.5, together with R4(16) [4], leaves the cases
Msg —t for t € {1,2,3,5,6,7,8,9,11,13, 14, 17}.

For v = 46, Lemma 5.5 togetehr with R4(13) [4], leaves the cases
Mas —t for t € {1,2,3,5,6,7,8,9,11}. In his case, Lemma 3.7 does ot
provide T'I(11,2); however, it is an easy exercise using Lemma 3.1 to
obtain the values stated.

The determination for v = 10 (mod 12) is far from complete;
however, all of the remaining values are near the maximum, and
we expect that most would have to be settled by computer search.
Nevertheless, a more complete determination of R4(19) and R4(22)
may provide useful building blocks in the construction of these
designs.

6. Concluding Remarks.

We have given a solution to the support size problem for (v,4,2)
designs which is complete for all v > 121. At the present time, the
only method which we see to obtain a complete determination for the
small values is by exhaustive computation; this seems to be out of
reach. We expect that the Main Theorem holds for all v > 40. A proof
of this, however, will likely await the development of more efficient
methods for the construction of designs with block size four.

In closing, we remark on an interesting property of this problem.
In considering triple systems for v = 1,3 (mod 6), the solutions for
the intersection problem and the support problem are the same. In
our problem, however, the solution to the support problem admits
additional solutions, which are necessarily indecomposable. This
indicates a difficulty of support problems with block size four that
was not encountered with triple systems.
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Note Added in Proof (May 1991): We have now improved Lemma 4.1
to establish that _
{O, 1,2, 3,4,5,6,7,9} C R4(19).
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