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GRAPH DECOMPOSITIONS
AND QUASIGROUP IDENTITIES (*)

CURT LINDNER (Auburn)

1. Introduction.

Since everybody’s favorite graph decomposition is a Steiner triple
system, it is certainly the starting point for a paper on the subject.
(Everybody=block designers in graph theory clothing). A Steiner triple
system (more simply, triple system) is a pair (K,,T), where K, is
the complete undirected graph on = vertices and 7 is a collection
of triangles which partition K,. The number n is called the order
of the triple system (K,,7T") and it has been known forever (= since
1847 [3]) that the spectrum (= set of all n such that a triple system
(K,,T) exists) of triple systems is precisely the set of all n=1 or 3
(mod 6). It is trivial to see that if (K,,T") is a triple system of order

n then |T'| = n(n—1)/6.

EXAMPLE 1.1. In what follows we will denote the triangle

(*) Research supported by NSF grant DMS-8703642 and NSA grant MDA-904-
89-H-2016.
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y z
by {z,y,z} or simply zyz.

(1) The unique triple system or order 3

(2) The unique (to within isomorphism) triple system of order 7

~N N AW
~N N B

~N N AW N

(3) The unique (to within isomorphism) triple system of order 9

123 147 159 168
456 258 267 249
789 369 348 357

(4) There are exactly two (to within isomorphism) triple systems
of order 13 [8].
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1 2 5 1 3 8 1 2 3 3 6 13
2 3 6 2 4 9 | 1 4 5 3 7 11
3 4 7 3 5 10 1 6 7 3 9 10
4 5 8 4 6 11 1 8 9 4 7 9
5 6 9 5 7 2 1 10 11 4 10 13
6 7 10 6 g 13 1 12 13 4 11 12
7 g 11 7 9 1 2 4 6 5 6 10
8 9 12 g 10 2 2 5 7 5 g8 11
9 10 13 9 11 3 2 g8 10 5 9 13
10 11 1 10 12 4 2 9 12 6 g8 12
11 12 2 11 ° 13 5 2 11 13 6 9 11
12 13 3 |12 1 6 3 4 8 7 8§ 13
13 1 4 | 13 2 7 3 5 12 7 10 12
cyclic _ non-cyclic

Now given a triple system (K,,7T) based on Q, we can define a
binary operation «o» on @Q by:

{ (i) aoa=aq, for alla € ), and
(ii) ifa#b,aob=boa =cif and only if {a,b,c} €T

EXAMPLE 1.2. The following groupoids are constructed from the
corresponding triple systems in Example 1.1.
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(4) Constructed from the cyclic triple system of order 13.

87

O 1 2 3 4 5 6 7 8 9 10 11 12 13
1 1 5 g8 | 13 21121 9 3 7 |11 | 10 6 4
2 5 21 6 9 1 3113 (10 4 8| 12 | 11 7
3 8 6 3 7110 2| 4 1|11 5 9113} 12
4 |13 91 7 4 8 | 11 3 5 2|12 6 | 10 1
5 2 1|10 8 5 9112 | 4 6 31 13 7| 11
6 | 12 3 2|11 9 6 (10 | 13 5 7 4 1 8
7 91 13 4 371210 7 |11 1 6 8 5 2
8 3] 10 1 5 4 |13 | 11 8 | 12 2 7 9 6
9 7L 04 (11 2 6 5 1 ]12 9 |13 31 8110
10 | 11 8 5| 12 3 7 6 2 113 |10 1 4 9
11 | 10 | 12 9 6|13 4 8 7 3 1 11 2 5
12 6|11 |13 |10 | 7 1 5 9 8 41 2112 3
13 4 7112 I 11 8 2 6 | 10 9 5 31 13

Now, inspection of the groupoids constructed in Example 1.2
from the triple systems in Example 1.1 reveals two facts: one obvious
and the other not so obvious. The obvious fact is that each of the
groupoids in Example 1.2 is a quasigroup. The not so obvious fact is

that each of these quasigroups satisfies the three identities

2

z° =1z,

(yz)z =y.

zy = yx, and

Rather than being a coincidence, this is always the case. That is to
say, if (K,,T) is a triple system based on Q) and we define a binary




88 CURT LINDNER

operation «o» on () as above, then (@,0) is always a quasigroup
satisfying the three identities 22 = z, zy = yz, and (yz)z = y.

On the other hand let (Q,0) be a quasigroup of order |Q| =n
satisfying the three identities 2% =z, zy = yz, and (yz)z = y and
define a collection of triangles T' of K, (based on Q) by {a,b,c} €T
if and only if aob=boa =c, aoc=coa=b, and boc=cob=gq. Then
(K,,T) is a triple system of order n.

EXAMPLE 1.3. The following quasigroup of order 13 satisfies the
three identities z* = z, 2y = yz, and (yz)z = y.

o 1 2 3 4 5 6 7 8 9 10 11 12 13
1 1 3 2 5 4 7 6 9 8§ 11 | 10 | 13 | 12
2 3 2 1 6 7 4 5110 {12 g8 | 13 9| 11
3 2 1 3 8 | 12 | 13 | 11 4 |10 9 7 5 6
4 5 6 8 4 1 2 9 3 7 113112 | 11 | 10
5 4 7 |12 1 5110 2 |11 {13 6 8 3 9
6 7 4 |13 2110 6 1|12 |11 5 9 8 3
7 6 5111 9 2 1 7 113 4 |12 3110 8
8 91 10 4 3 (11 | 12 | 13 8 1 2 5 6 7
9 8112 110 | 7 |13 | 11 4 1 9 3 6 2 5
10 | 11 8 9113 6 5112 2 31|10 1 7 4
11 | 10 | 13 71 12 8 9 3 5 6 1| 11 4 2
12 | 13 9 5111 3 8 | 10 6 2 | 7 4 112 1
13 112 ] 11 6| 10 9 3 8 7 5 4 2 1|13

If 7 ={{a,b,c}acb=boa=c, aoc=coa=b, boc=cob=a},
then (Ki3,T) is the non-cyclic triple system of order 13 in Example
1.1 (4). Check it out!
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The above comments and examples illustrate the fact that a
Steiner triple system is equivalent to a quasigroup (called, not too
suprisingly, a Steiner quasigroup) satisfying the three identities 72 = T,
zy = yz, and (yz) = y.

Now a triangle in K, is also a cycle of length 3 (a 3-cycle).
Couched in terms of 3-cycles, a Steiner triple system is a pair (K,,,T)
where T' is a collection of 3-cycles which partition K,. Using this
vernacular a Steiner triple system is called a 3-cycle system. In
general, a k-cycle system (kCS) is a pair (K,,C) where C is an
edge-disjoint collection of k-cycles which partition K,. The number
n is called the order of the k-cycle system (Kn,C) and, of course,
|C| = n{n— 1)/2k. Since there is nothing particularly sacred about
the number three, the above comments on Steiner triple systems
(= 3CS's) lead quite naturally to the following problems.

(1) For a fixed k, determine the spectrum of k-cycle systems; i.e.,
the set of all n such that a kCS of order n exists.

(2) If (K,,C) is a kCS, based on the set Q, is it possible to define in
some reasonable way a binary operation « o » from the collection
of k-cycles C so that (Q,0) is a quasigroup?

(3) If the answer to (2) is yes, does the quasigroup (Q, o) satisfy a
finite collection of 2-variable identities which allow us to recover
the £CS it came from? In other words, is a kC.S equivalent to a
quasigroup satisfying a finite collection of 2-variable identities?

The object of this paper is a survey of what is known about the
solutions of problems (1), (2) and (3) for &k = 3,4,5,6, and 7. Mind
boggling details are omitted. The interested reader can refer to the
original papers for details. The author’s aim is to keep things as
simple and understandable as possible. Hence in what follows there
will be lots of examples and superficial explanations and not a lot of
details. And why not? After all this is a survey paper.

2. 3CS's =triple systems.

Since the genesis of this paper is the connection between triple
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systems and quasigroups satisfying certain identities it is certainly
the place to begin a survey on this general subject. Here goes!

We begin with the simplest construction known to man for triple
systems.

The 6k+3 Construction. Let (Q, o) be an idempotent commutative
quasigroup of order 2k + 1; i.e., a quasigroup satisfying the identities
7? = z (idempotent) and zy = yz (commutative). Set S = Q x {1,2,3}
and define a collection of triangles T' of Kgr.3 (based on S) as follows:

1) {(z,1),(z,2),(z,3)} € T for every z € Q, and

(2) if z#y € Q, the three triangles {(z,1),(y,1),(z o y,2)},
{(z,2),(y,2),(z 0y,3)}, and {(z,3),(y,3),(zoy, D} € T.

It is straight forward to see that (K¢i.3,7") is a triple system.
Since an idempotent commutative quasigroup (@Q, o) of order |@Q] = 2k+1
exists for every k& (just rename the Cayley table of the additive group
of integers modulo 2k + 1) this construction produces a triple system
of every order n =3 (mod 6). O

The 6k + 1 Construction. Let Q = {1,2,3,...,2k} and H =
{{1,2},{3,4},{5,6},...,{2k — 1,2k}}. The 2-element subsets in H
are called holes. Let (Q),0) be a commutative quasigroup with the
property that, for each hole h € H, (h,o) is a subquasigroup. Such a
quasigroup is called a commutative quasigroup with holes H.

Commutative quasigroup with holes
H={{1, 2}, {3,4}, (5,6}, (7,8}}.

OO\]O\UI-D-UJ[\)»—-AO
WA QPN oo N | — =
N i jWwWco | ~I [N |[=—=]b [t
— AN R W IN o0 (W
O\ [N |00 [ W IR ]| |
N[O\ [ = | [oo |~ Itn
e Ll AN E*2N Re B § (S T RUS TR B fo )
0 = (Wi OV |
|0 |~ D= W (oo
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Although not as easy to construct as idempotent commutative
quasigroups (at least not when 2k#2- (odd number)), such quasigroups
exist for every 2k > 6 [1]. Now, let (Q, o) be a commutative quasigroup
with holes of order 2k, set S = {oco} U(Q x {1,2,3}), and define a
collection of triangles 7" of Kgry1 (based on S) as follows:

(1) For each hole h € H, construct a copy of the triple system
of order 7 (Example 1.1) on {co} U (h x {1,2,3}) and place these 7
triangles in 7', and

(2) if z and y belong to different holes of H, the three triangles
{(, D, y,D,(z 0y, 2}, {(z,2),,2),(x 0 y,3)}, and {(z,3),(y,3),(z o
y, DeT.

This construction produces a triple system of every order n =1
(mod 6)> 19. But that’s alright, since we already have examples of
triple systems of order 7 and 13 (Example 1.1). d

- Combining the 6k +3 and 6k + 1 Constructions (along with the
triple systems of orders 7 and 13 in Example 1.1) gives a triple
system of every order n=1 or 3 (mod 6).

With the existence of triple systems in hand we turn our
attention to suppling a few details omitted in the introduction.

Let (K,,T) be a triple system based on @ and define a binary
operation «o» on Q) by aoa =a for all a € Q and if a#b, aob = ¢ if and
only if {a,b,c} € T'. To begin with, (Q, o) is always a quasigroup. This
is easy to see. Let {a,b,c} and {a,d,e} € T. Then aoa=a#c=aob
and aob=c#e =qaod. Since (Q, o) is finite (and commutative) the left
cancellation law does the trick!

Trivially (Q,o) satisfies the identities z*> = z (idempotent) and
zy = yz (commutative). To see that (Q,o) also satisfies the identity
(yr)r = y . is just as easy. Let azb € Q and {a,b,c} € 7. Then
(boa)oa=coa=hb.

On the other hand, let (Q,0) be a Steiner quasigroup; ie., a
quasigroup satisfying the identities z? = z, zy = yz, and (yz)z = y. Let
K, be based on () and define a collection of triangles 7" by {a,b,c} eT
if and only if aob=boa=c¢, aoc=coa=b, and boc=cob = a.
If a#b, then {a,b,a0b} € T (by definition) since aob=boa=aqaob,
ao(@aob)=(aob)oa=(boa)oa=b, and bo(aob)=(aob)ob=aqa. It
follows that the edge {a,b} belongs to exactly one triangle.
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The following table is self-explanatory.

Decomposition of K info triangles=3 cycles

spectrum of alln=1 or 3 (mod 6) [3]
3CSs Steiner triple system
) a o a=a, and ¢ T
uasigrou €
Ansisrotp a o b=c, iff :
a b
equivalent x*=x,
xy=yx, and
quasigroup (yx)x=y

3. 4CSs = 4-cycle systems.

A 4-cycle system (4CS) is a pair (K,,C), where C is an edge
disjoint collection of 4-cycles which partition K,. It is a routine
exercise to show that n= 1 (mod 8) is necessary for the existence of
a 4CS and that |C| = n(n— 1)/8. The number n is called the order of

the 4CS (K,,C). We will denote the 4-cycle

Y

w z

by any cyclic shift of (z,y, 2,w) or (y,z,w, 2).
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EXAMPLE 3.1. (4CS of order 9). Let Ko be based on Zy and set
C={0G1+1,8+1,5+1)]i € Zo}. Then (Ko, C) is a 4CS of order 9.

4CSs are easy to construct!

The 8n+1 Folk Construction. Let |X| = 4n and let H =
{h1,ha,..., hy} be a partition of X into subsets (called holes) of size
4. Let S = {oo} U(X x {1,2}) and define a collection of 4-cycles C of
Kgn1 based on S as follows:

(1) For each hole h; € H, place a copy of the 4CS in Example
3.1 on {oo} U (h; x {1,2}) and place these 9 4-cycles in C, and

(2) if z and y belong to different holes of H, place the 4-cycle
((z, 1), (y, 1), (z,2),(y,2)) in C.

It is immediate that (Kgn1,c) is a 4CS of order 8n+1. a

Unfortunately, there is no reasonable (or unreasonable) way to
define a quasigroup from the 4-cycles of a 4CS. There are only two .
ways of attempting to define a binary operation from the cycles of a

4CS (K., O).
’ One way. Let (K,,C) be a 4CS and define

zox=g, all z € Q, and

w Z

goy=z, iff e C.

X Y
But then zow =z also so (Q,0) is Always Never a quasigroup.

The other way. Let (K,,C) be a 4CS and define
rrozx =z, al z € Q, and

w
J toss a coin with y
zoy=| z on one side and | iff e C.
L w on the other X b

There are two things wrong with this attempt, not the least
of which is that z and y may not appear in a 4-cycle as opposite
vertices!
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Well, so much for 4CS'!

Decomposition of K_into 4-cycles

spectrum of alln=1 (mod 8)
4CSs Folk Theorem
o L
quasigroup
equivalent ) ®
quasigroup

4. 5CS's =pentagon systems.

A 5-cycle system (5CS) or pentagon system is a pair (K,,P),
where P is an edge disjoint collection of 5-cycles (or pentagons) which
partition K,. We will denote the pentagon

a

d c

by any cyclic shift of (a,b,c,d,e) or (b,q,e¢,d,c).
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EXAMPLE 4.1.
1) (K5, P), P ={(1,2,3,4,5),(1,3,5,2,4)}.

(2) (K, Py) | (3) (K1, Py)
1 3 9 5 4 1 3 10 5 4
2 4 10 6 5 2 4 11 6 5
3 5 11 7 6 3 5 1 7 6
4 6 1 8 7 4 6 2 8 7
P=5 7 2 9 8 P=l5s 7 3 9 3
6 8 3 10 9 6 8 4 10 9
7 9 4 11 10 7 9 5 11 10
8 10 5 1 11 8 10 6 1 11
9 11 6 2 1 9 11 7 2 1
10 1 7 3 2 10 1 8 3 2
11 2 8 4 3 n 2 9 4 3

There are two reasonable way to define a binary operation from
the cycles of a pentagon system (X, P) based on Q.

(1) aca=aq, for all a € Q, and if a#b, a0b = ¢ and boa =¢ iff
(a,b,c,d,e) € P; OR

(2) aoa =a,foralla € Q, and if a#b, aob = boa = d iff (a, b,c,d,e) € P.
We will concern ourselves with (1) only. The primary reason

being that a similar definition always produces a well-defined binary
operation for any k-cycle system when & > 5.

EXAMPLE 4.2. The following groupoids are constructed from the
corresponding pentagon systems in Example 4.1 using definition (1).
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Inspectidn reveals that the groupoids constructed in (1) and (2)
are quasigroups, whereas the groupoid constructed in (3) is not. For
example 1023 =106 = 10. So, unlike the case for Steiner triple
systems (where the associated groupoid is always a quasigroup) and
the case for 4-cycle systems (where it's never possible to define
a quasigroup), sometimes the groupoid associated with a pentagon
system is a quasigroup and sometimes not! The problem then is to
determine, in general, under what conditions the groupoid associated
with a pentagon system is a quasigroup. A bit of reflection reveals
that the groupoid (Q,o) constructed from the cycles of a pentagon
system (K,,P) is a quasigroup if and only if every pair of vertices
are connected by a path of length 2 in exactly one pentagon of P.

Put another way, if any only if (K,, P(2)) is a pentagon system
where P(2) = {(a,c,e,b,d)|(a,b,c,d,e) € P). Such a pentagon system
is said to be 2-perfect (or Steiner).

EXAMPLE 4.3. We compute P(2) for each of the pentagon systems
in Example 4.1.

(1) (K, P) is 2-perfect, since (K5, P(2)) ={(1,3,5,2,4),(1, 5,4, 3,2)}
is a pentagon system.

(2) (K11, P1) is 2-perfect since (K1, P1(2)) is a pentagon system.

1 9 4 3 5
2 10 5 4 6
3 11 6 5 7
4 1 7 6 8
PQx 5 2 8 7 9
6 3 9 g8 10
7 4 10 9 11
g8 5 11 10 1
9 6 11 2
10 7 2 3
11 8 2 4
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(3) (K11, Py) is NOT 2-perfect since (K1, P»(2)) is NOT a pentagon
system.

1 10 4 3 5 1 4
2 11 5 4 6 2 5
301 6 5 7 36
4 2 7 6 8 4 7
5 3 8 7 9 5 8
P2 uncovered edges=
6 4 9 8§ 10 ' 6 9
7 5 10 9 11 7 10
g 6 11 10 1 8 11
9 7 1 11 2 9 1
10 8 2 1 3 10 2
11 9 3 2 4 11 3

In 1966 Alex Rosa [10] proved that the spectrum for pentagon
systems is precisely the set of all n=1 or 5 (mod 10). We give
a different construction here. (A generalization of the construction
given in Section 2 for triple systems).

The 10k+5 Construction. Let (Q, o) be an idempotent commutative
quasigroup of order 2k +1 and set S =Q x {1,2,3,4,5}. Further let

I={(1,1,2,4,2),(2,2,3,5,3),(3,3,4,1,4),(4,4,5,2,5), (5, 5, 1,3, 1)}
and define a collection of pentagons P of Kjg.s (based on S) as
follows:

(1) For each z € Q, place the two pentagons (z, 1), (z,2), (z,3),
(z,4), (z,5)) and ((z,1), (z,3), (z,5), (z,2), (£,4)) in P, and

(2) for each z#y in Q and each (i,1,7,k,7) € I place the pentagon
((%,1),(y,9),(z,/),(z0y,k),(y,7)) in P.
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Then (Kipk+s, P) is a pentagon system. ad

The 10k +1 Construction. Let Q ={1,2,3,...,2k},

H = {{1,2}, {3,4},...,{2k — 1,2k}}, and (Q,o) a commutative
quasigroup with holes H. (See the 6k + 1 Construction for triple
systems in Section 2). Set S = {o0} U(Q x {1,2,3,4,5}) and define a
collection of pentagons P of Kiors1 (based on S) as follows:

(1) For each hole h € H, construct a copy of the 2-perfect pentagon
system (K11, P1) of order 11 (Example 4.1 (2)) on {co}U(hx{1,2,3,4,5})
and place these pentagon in P, and

(2) if z and y belong to different holes of H and (1,4,7,k,j) € I
(defined as above) place the pentagon ((z, 1), (y,%), (z,]), (zoy, k), (v, J))
in P.

Then (Kipk+1, P) is a pentagon system. O

These two constructions produce pentagon systems of every order
except 21 and this can be taken care of by taking a block design of
order 21 with block size 5 [2] and placing a copy of the pentagon
system (K5, P) in Example 4.1 (1) on each block.

THEOREM 4.4. (Alex Rosa [10]). The spectfum for pentagon
systems (= 5CS's) is precisely the set of all n=1 or 5 (mod 10). O

Remark. The proof of Theorem 4.4 is not Rosa’s original proof.

Unfortunately, except for the orders n=275, 13, and 21 the above
constructions (as well as Rosa’s original construction) never produce
a 2-perfect (= Steiner) pentagon system. This is immediate from a
cursory inspection of the 10k +5 and 10k + 1 Constructions.

In 1983 the author and Doug Stinson [6] remedied this situation
by modifying the 10k +5 and 10k + 1 Constructions in the following

manner.

The 2-perfect 10k +5 Construction. In the 10k + 5 construction
denote the idempotent commutative quasigroup (Q,o) by (Q,o;) and
let (Q,02) be an idempotent self-orthogonal quasigroup which is
orthogonal to (Q,o1). Such a pair of quasigroups exist for every
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2k+1> 5[4, 13, 14, 15]. In the 10k +5 Construction replace (2) by
(2%) for each z#y in Q and each (4,1, 7, k, j) € I place the pentagon
((z,1), (y,1),(z 029,7),(z 01 y,k), (o2 2,7)) in P.
The proof that (Kigrss, P) is 2-perfect can be found in [8]. a

The 2-perfect 10k +1 Construction. In the 10k + 1 Construction
denote the commutative quasigroup (Q,o) with holes H by (Q,o;)
and let (Q,0;) be a self-orthogonal quasigroup with the same holes
H which is orthogonal to (Q,o1). (A pair of quasigroups based on
Q with holes H are said to be orthogonal provided that when the
partial latin squares obtained by deleting the cells h x h, h € H, are
superimposed, the resulting collection of ordered pairs is precisely
@Q x DQ\{(z,»|z,y € h € H}.) Such a pair of quasigroup exists for
every 2k = 2 (mod 4) with a few exceptions. (See [9, 15].) In the
10k + 1 Construction replace (2) by

(2%) for each z#y in Q and each (1,4, ], k,j) € I place the pentagon
(z,1), (y,1), (z 029,7),(z 019, k),(y 02 7,7)) in P.

The proof that (Kioxss, P) is 2-perfect can be found in [6]. O

THEOREM 4.5. (C. C. Lindner and D. R. Stinson [6]). The
spectrum for 2-perfect pentagon systems (=Steiner pentagon systems
=2 perfect 5CS's) is precisely the set of all n=1 or 5 (mod 10), except
n=15 for which no such system exists.

Proof. Except for 10k + 1, when 2k = 0 (mod 4), the 2-perfect
10k +5 and 10k +1 Constructions give 2-perfect pentagon systems
of every admissable order except for a handful of exceptions. These
exceptions are handled by ad hoc constructions in [6]. For 10k + 1
with 2k = 0 (mod 4), write 10k + 1 =20m +1 and use a block design
with block size 5 (as in the 10k + 1 Construction). Finally, there does
not exist a 2-perfect pentagon system of order 15, since such a system
would imply the existence of a block design of order 15 with block
size 5 and X\ =2. No such system exists [2]! 0

Let (K., P) be a 2-perfect pentagon system and (Q,o) the
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quasigroup defined by aoa =a for all a € Q and if azb,a0b =c if
and only if (a,bd,c,d,e) € P. It is routine to see that (Q,o) satisfies
the three identities

z° =1z,
(yz)z =y, and

z(yz) = y(zy).

For example, if a#b and (a,b,c,d,e) € P, then (boa)oca=eoa =b
and ao(boa)=aoe=d=boc=bo(aoch).

On the other hand let (Q, o) be quasigroup of order n satisfying
the three identities 2> = z, (yz)z =y, and z(yz) = y(zy). It is straight
forward to see that if a#b, then a,b, aob, boa, and bo(aob) =ao(hoa)
are five distinct elements. This is important in the following definition.
Now define a collection of pentagons P of K, (based on Q) by
P ={(a,b,a0b,bo(aob)=ao(boa)boa)l all azb €'Q}. The proof that
P is an edge disjoint collection of pentagons follows from the fact that
the pentagon (a, b,a0b,bo(acd) = ao(boa), boa) determined by the edge
{a, b} is uniquely determined by any edge belonging to it. For example,
consider the edge {aob,bo (acb)}. The pentagon defined by the edge
{aob,bo(aob)} is (aob,bo(aoh), (aob)o(bo(aob)) =bo((aobh)ob) =boa,
(bo(aob))o(boa) = (ac(boa))o(boa) = a, (bo(aob))o(ach) = b) = (aob, bo(aob),
boa,a,b) =(a,b,a0bbo(aocb)boa) Hence (K,,P) is a pentagon
system. Now (K., P) will be 2-perfect if and only if (K,, P(2)) is
a pentagon system, and this will be true if and only if each edge
of K, beloqgs to a pentagon of P(2). So, let {a,c} be any edge of
Kn. Since (Q,0) is a quasigroup a o b =c for some b € Q. But then
(@,b,c,boc,boa) € P and so (a,c,boa,b,boc) € P(2).

It follows that a 2-perfect pentagon system is equivalent to
a quasigroup satisfying the three identities 2z = z, (yz)z =y, and
z(yz) = y(zy).

We collect all of the above information in the following easy to
read table.
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Decomposition of K into pentagons=5 cycles
spectrum of alln=1or 5 (mod 10) [10]
5CSs Pentagon system
spectrum of alln=1or5 (mod 10)
2-perfect except n=135 [6]
5CSs ‘Steiner pentagon system
) a o a=a, and
uasigrou
PRI o b=c, iff eF
a b
equivalent x’=x,
_ (yx)x=y, and
quasigroup x(yx)=y(xy)

5. 6CSs =hexagon systems.

A 6-cycle system (6CS) or hexagon system is a pair (K,, H),
where H is an edge disjoint collection of 6-cycles (or hexagons) which
partition K,. The number n is called the order of the hexagon system
(Kn, H), and [H| =n(n— 1)/12. We will denote the hexagon



GRAPH DECOMPOSITIONS AND QUASIGROUP IDENTITIES 103

by any cyclic shift of (a,b,c,d, e, f) or (b,a, f,e,d,c).

EXAMPLE 5.1.
(1) (Ko, H)

1 9 2 4 5 7

2 7 3 5 6 8

g 3 8 1 6 4 9

1 2 6 9 8 4

2 3 4 7 9 5

31 5 8 7 6
(2) (K13, H1) (3) (K13, H)
5 911 8 13 12 1 213 3 12 7
6 10 12 9 1 13 2 3 1 4 13
711 13 10 2 1 3 4 25 19
8§ 12 1 11 3 2 4 5 3 6 210
913 212 4 3 5 6 4 7 311
H=10 1 3 13 5 4 H= 6 7 5 8 412
11 2 4 1 6 5 7 8 69 513
12 3 5 2 7 6 § 9 710 6 1
13 4 6 3 8 7 910 811 7 2
1 5 7 4 9 8 10 11 912 8 3
2 6 8 510 9 11 12 1013 9 4
3 7 9 611 10 12 13 11 1 10 5
4 8 10 7 12 11 13 112 2 11 6

It is trivial to see that a necessary condition for the existence of
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a hexagon system of order nis n=1 or 9 (mod 12). They are just as
easy to construct.

The n+ 12 Folk Construction. Let (K,, H) be a hexagon system
of order n based on {00} U X and (K3, H;) the hexagon system of
order 13 in Example 5.1 (2) based on {co} UY. In [12] Dominique
Sotteau has shown (among other things) that the complete bipartite
graph Kxy (based on X and Y) can be decomposed into hexagons.
Let B be such a decomposition and define a collection of hexagons
H* on {c0}UY UX by H*=H U H, U B.

It is immediate that (K .12, H*) is a hexagon system. Starting
with the hexagon systems of orders 9 and 13 (Example 5.1 (1) and
(2)) gives a hexagon system of every order n=1 or 9 (mod 12).

A hexagon system (K,,H) is said to be 2-perfect provi-
ded (K,, H(2)) is a triple system, where H(2) = {{a,c,e},{b,d, f}|
(a,b,c,d,e, f) € C}. (Put another way, if and only if the distance 2
graph covers the edges of K,).

EXAMPLE 5.2. We compute H(2) for each of the hexagon systems
in Example 5.1.

(1) (K9, H) is NOT 2-perfect since (Ko, H(2)) is NOT a triple
system.

H2)= uncovered edges=

<N O ® A~ O\ n
r—-\b.)[\)OO\]\O
O 00 00 ~d O
o NN ST S N N N
N 0O OO N

W W N N =

(S Y S Vs B T

5 S R VS T N e
N AN = W N
> ‘s e N T N

(2) (K13, Hy) is 2-perfect since (K3, H1(2)) is a triple system.
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5
6
7
8
9
10
HQm| 11
12
13
1
2
3
4

11 13
12
13

~N N D W e
O 00 3 O N A W RN

o}
ek
<o

9 11
10 12

9
10
11
12

[u—
W

0 3 N B W) e

8 12
9 13
10 1
11 2
12 3
13 4
5
6
7
8
9

10

1
2
3
4
5
6
7 11

Notice that the triple system
(K 5,H(2)) is the cyclic triple
system of order 13 in Example 1.1 (3).

(3) (K13, Ha) is NOT 2-perfect since (K13, H(2)) is NOT a triple

system.

H2)

11
12
13

1 13

O 0 1 N W
O 00 3 N L BA~WND

10
11 10
12 11

O 00 N3 N bW

10
11
12
13

et ek e
_— W N = O
[\ I

N RS B = WY, T OOV

10
11
12
13

AN U W N

1 471 7

2 512

3 6{3 9

4 714 10

5 815 11

6 96 12
uncovered edgess 7 10| 7 13

8 11| 8

9 12’9

[a—y
O

13

ey
o

ot
[\ I
(.}
—t
[\
A A W N

fum—
(W8]
Y
W
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As was the case with pentagon systems, if (K,, H) is a hexagon
system based on () we will define a binary operation «o» b on @ by:

(1)aoca=a,all a €@, and

(2) if a#b, aob=cand boa = f iff (a,b,c,d,e,f) € H.

Again, as was the case with pentagon systems, the groupoid
(Q,0) defined in this manner is a quasigroup if and only if (K,, H)
is 2-perfect.

EXAMPLE 5.3. The following groupoids are constructed from the
corresponding hexagon systems in Example 5.1. ((1) and (2) suffice
for illustrative purposes).

o|ll 2 3 4 5 6 7 8 9
116|588 [4|5[3]2
21412141 51919131611
3151 5131716171214
4121 9l2(a4l711]l9]9]3 NOT a quasigroup
s3] 3l7] 25 8]1]7]7|soce&HD
6lsl 11l 93 6 s 123 is NOT 2-perfect
719 85| 3413(7(15}5
8161 7191 111151686
91714181 61212141419}
ol1 2 3 4 5 6 7 8 9 10 11 12 13
111710131 21 7] 5111 121 41 31816
21l 7l 21111 11 3] 8] 61121101(13) 41 419
3110 8| 3(121 2| 4] 9] 7|13j11] 1|65
4l 6l111 9l 4113} 3] 510! 8} 1]1271 2
5181 71121101 51 1] 4] 61111 9] 211313 IS 2 quasigroup
61l 4] 9l 8113111 6} 2| 51 7112(10] 3 1since(K13,H1)is
71201 sl1ol 9l 1112l 71 3] 6] 813 11| 412 perfect
gl sl 3| 6111 (10] 2713 &1 41 71 9] 1112
9(13| 6| 4| 7112111} 3| 1| 9| 5| 8]10| 2
100 3] 11 7151 8113112 4] 2110} 6] 911
111121 41 21 8161 9] 1113] S| 3|11} 710
1211113 51 31 9| 7/10] 2] 11 6] 412 8
131 9/12] 11 6] 4110] 8111} 3] 2} 7] 5113
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The additional requirement that a hexagon system be 2-perfect
allows us to construct a quasigroup from the cycles of a hexagon
system. Unfortunately, the constructions of 2-perfect hexagon systems
are brutally difficult, tedious, and totally out of line with the types
of constructions in ‘this paper. Also extremely long! For this reason
we refer the interested reader to the original paper [5] for details.
We will content ourselves here with a statement of what is known
followed by a brief description of the method of attack.

THEOREM 5.4. (C. C. Lindner, K. T. Phelps, and C. A. Rodger
[5]). The spectrum for 2-perfect hexagon systems (=2 perfect 6CSs) is
the set of all n=1 or 9 (mod 12), except n=9 for which no such
system exists, and possibly n=45 and 57.

Outline of Proof. It is trivial to see that there does not exist
a 2-perfect hexagon system of order 9. The construction of 2-perfect
hexagon systems of orders n > 13 requires the construction of a triple
system (K,,T) of order n =1 or 9 (mod 12) with the additional
property that the triples in 7" can be partitioned into -partial parallel
classes of two triangles each and such that the two disjoint triangles
in each partial parallel class can be superimposed so that the resulting
hexagons partition K,. :

partial parallel class oriented and superimposed

This is not an easy undertaking. For one thing, a partition of
the triangles in T into partial parallel classes does not necessarily
guarantee that the triangles in each partial parallel class can be
oriented and superimposed so that the resulting collection of hexagons
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forms a hexagon system. A difficult procedure whose description is
somewhat out of keeping in an elementary survey paper (because of
space requirements if nothing else). O
Now let (K,, H) be a 2-perfect hexagon system based on
and (Q,o) the associated quasigroup; i.e., the quasigroup defined by
aoa=aq for all a € Q and if a#b,aob=c and boa = f if and only if
(a,b,c,d,e, f) € H. Then (Q, o) satisfies the three identities

z° =z,
(yx)z =y, and
(zy)(y(zy)) = z(yz).

For example, if a#b and (a,d,¢,d, ¢, f) € H, then

(aob)o(bo(aob))=co(boc)=cod=e=aof=ao(boa).

Unfortunately, a quasigroup satisfying the above three identities
does not necessarily come from a 2-perfect hexagon system. This
is easy to see. Let (Q,o) be the quasigroup associated with a
triple system (= 3CS). Then (Q,o) satisfies z? = z, zy = yz, and
(yz)z =y and therefore also satisfies the identity (zy)(y(zy)) = z(yz).
Since the spectrum for triple systems is different from the spectrum
for 2-perfect hexagon systems, a 2-perfect hexagon system is NOT
equivalent to a quasigroup satisfying the identities 22 = z, (yz)z = v,
and (zy)(y(zy)) = z(yz).

However if we throw in the property of being anti-symemtric
things are different. Anti-symmetric means a o b#bo q for all axb € Q.
Clearly the quasigroup (Q,o) associated with the 2-perfect hexagon
system (K,, H) is anti-symemtric. (If a#b and (a, b,¢,d, e, f) € H, then
aob=ctf =boa) On the other hand, if (Q,0) is a quasigroup
satisfying the three identities z? = z, (yz)z = y, and (zy)(y(zy) = z(yT)
and is also anti-symmetric then if a#b € Q, the six elements a,b,a0b,
bo(aob),(aob)o(bo(aob) =ao(boa), and boa are all distinct.
Therefore (just as for 2-perfect pentagon systems) we can construct a
2-perfect hexagon system (K,, H) by defining H to be:

H={(a,b,a0bbo(aob),ao(boa)boalahb € Q}.
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Hence a 2-perfect hexagon system is equivalent to an anti-
symmelric quasigroup satisfying the three identities z* = z, (yz)z = v,
and (zy)(y(zy)) = z(yz). Whether or not the property of being anti-
symmetric can be replaced with a finite collection of 2-variable
quasigroup identities I so that I* = {z? = z, (yz)z = v, (zy)(y(zy)) =
z(yx)} U I implies anti-symmetry but not z =y is an open( and so it
seems to the author) interesting problem.

We collect everything together in the following table.

Decomposition of K into hexagons=6 cycles

spectrum of alln=1or9 (mod 12)
6CSs (Folk Theorem) Hexagon system
spectrum of | alln=1or9 (mod 12) except
2-perfect n=9, and possible n=45
6CSs and 57 [5]
quasigroup c
a o a=a, and cH
a o b=c, iff b
a
. x*=x
equivalent ’
(yx)x=y, and
quasigroup (xy)(y(xy))=x(yx)
+ Anti-Symmetry
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6. 7CSs =heptagon systems.

A T-cycle system (7CS) or heptagon system is a pair (K,,O),
where C is an edge disjoint collection of 7-cycles (or heptagons) which
partition K,. As usual, the number = is called the order of the
heptagon system (K,,C) and |C| = n(n— 1)/14. In what follows we
will denote the heptagon

by any cyclic shift of (a,b,c,d, ¢, f,g) or (b,a,g, f,¢,d,c).
Some examples are in order.

EXAMPLE 6.1.
1) (K7,0)
1 2 3 4 5 6 7
C=1l1 3 5 7 2 4 6
1 4 7 3 6 2 5

(2) (K15,C) (Alex Rosa [11]).
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10 8 13
11 9 14
12 10 15
13 11
14 12
13
14
15

O 0 3 O

10
11
12 -
13 10
14 11
14 12
113
2 14
315
4
5

O o0 3 O N

—_
(¥,

3
4
5
6
7
8
9

10
11
12
10 13
11 14
12 15
13

14 2
15

1
2
3
4
5
6
7
8
9

O 0 N N B WD

Pk e
—_ O

B e AT V. T “U UG T NG R
~N O bR W D

—
(W]

It is immediate that a necessary condition for the existence of
a heptagon system of order nis n=1 or 7 (mod 14). Without any
additional properties, a heptagon system is quite easy to construct. The
following two constructions are just extrapolations of the constructions
used for triple systems and pentagon systems.

The 14k+7 Construction. Let (Q, o) be an idempotent commutative
_ quasigroup of order 2k +1 and set S =Qx{1,2,3,4,5,6,7}. Further let

J={1,1,2,4,7,4,2),(2,2,3,5,1,5,3),(3,3,4,6,2,6,4),(4,4,5,7,3,7,5),

5,5,6,1,4,1,6),(6,6,7,2,5,2,7), (7,7,1,3,6,3, 1)}
and define a collection of heptagons C of K447 (based on S) as
follows:

(1) For each z € Q construct a copy of the heptagon system
in Example 6.1 (1) on {z} x {1,2,3,4,5,6,7} and place these three
heptagons in C, and

(2) for each z#y in Q and each (4,4,7,k,t,k,j) € J place the
heptagon ((z,), (y,9), (z,/), (v, k), (w0 y, 1), (z, k), (y, 7)) in C.
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Then (Ki4x¢7,C) is a heptagon system. O

The 14k+1 Construction. Let Q = {1,2,...,2k}, H = {{1,2}, {3,4},
..., {2k —1,2k}}, and (Q,0) a commutative quasigroup with holes
H. (See the 6k + 1 Construction for triple systems in Section 2). Let
S ={oo} U@ x{1,2,3,4,5,6,7}) and define a collection of heptagons
C of K441 (based on S) as follows:

. (1) For each hole h € H, construct a copy of the heptagon system
of order 15 (Example 6.1(2)) on {co}U(h x {1,2,3,4,5,6,7}) and place
these heptagons in C, and

(2) if z and y belong to different holes of H and (1,7, 7,k,t,k,7) € J
(defined as above) place the heptagon

((z,9), (D), (x,7), W, k), (xoy,1), (=, k), (y, 7))

in C.
Then (K441, C) is a heptagon system. O

These two constructions produce heptagon systems of every order
except 29 and this can be handled with a finite field construction.

(See [7]). |
Folk Theorem 6.2. The spectrum for heptagon systems (= 7CSs)
is precisely the set of all n=1 or 7 (mod 14). 0]

Just as was the case for pentagon systems and hexagon systems
we will say that a heptagon system (K,,C) is 2-perfect provided
(K,,C(2)) is a heptagon system, where

0(2) = {a,c,e,g,b,d, f)](a,b,c, d,€,f,g) € G}

That is, if and only if, the collection of distance 2 graphs covers the
edges of K.

EXAMPLE 6.3. Both of the heptagon systems in Example 6.1 are
2-perfect.
(1) (K7,C) is 2-perfect since (K7,C(2)) is a heptagon system.
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1 3 5 7 2 4 6
C2=1 5 2 6 3 7 4

1 7 6 5 4 3 2

(2) (K15,C) is 2-perfect since (K1s5,C(2)) is a heptagon system.

10 13
11 14
12
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12 10
13 11
10 14 12
10 11 15 13
11 12 14
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[E—
N
[y
ot
[\

k.
om—
O© 0 I AN W A W R
N N B W N e
oA W N e

i
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Now let (K,,C) be a heptagon system based on () and define a
binary operation «o» on @ in the «usual» way by:

(1)aoca=aq, all a € Q, and
(2) if a#b,aob=c and boa =g iff

(a)bic)d)e)f7g)ec'
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Then the groupoid (Q,o) is a quasigroup if and only if the
heptagon system (K,,C) is 2-perfect. (How about that for a big
surprise!) By now, the interested reader should be able to construct
the groupoids associated with the 2-perfect heptagon systems in
Example 6.1 and see that are indeed quasigroups.

Unfortunately, except for the orders n =7, 15, and 29 the
‘constructions used in Folk Theorem 6.2 never produce a 2-perfect
heptagon system. This is obvious from looking at the 14k + 7 and
14k + 1 Constructions.

Quite recently (still unpublished) this situation was remedied by
Elizabetta Manduchi [7]. Part of the solution is a modification of the
14k +1 and 14k +7 Constructions and (the most difficult part) the
remainder consists of a large collection of ad hoc constructions. Not
too surprisingly we omit the large colection of ad hoc constructions
and concentrate on the modifications of the 14k +1 and 14k + 7
Constructions. The interested reader can consult the original paper
[7] for the ad hoc constructions. ‘

The 2-perfect 14k +7 Construction. In the 14k +7 Construction
replace the idempotent commutative quasigroup (Q,o) with a pair
of idempotent quasigroups (Q,o;) and (Q,o,) which are orthogonal.
‘Further, let (Q, 01) be commutative. Such a pair of quasigroups exists
for every 2k +1 > 5. (See the 2-perfect 10k +5 Construction in Section
4). In the 14k + 7 Construction replace (2) by

(2*%) for each z#y in Q and each (1,1,7,k,t,k,j) € J place the
heptagon

((z,9), (v, 1), (T 02y,7), (Y, k), (x 019,0),(z, k), (y 02 3, )

in C.
The proof that (Ki4447, C) is 2-perfect can be found in [7]. O

The 2-perfect 14k + 1 Construction. The 14k + 1 Construction
replace the commutative quasigroup (Q, o) with holes H by a pair of
quasigroups (Q,o;) and (Q,02) with holes H which are orthogonal.
Further, let (Q, 01) be commutative. Such a pair exists for all 2k with
40 exceptions. (See [9, 15]). In the 14k +1 Construction replace (2) by:

(2%) if = and y belong to different holes of H and (1,1,7, k,t,k,j) € J
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place the heptagon
((z,2), (y,9), (T 029,7),(y, k), (z 01 9, 1), (w, k), (W 02 7, /)
in C.
The proof that (K14z+1, C) is 2-perfect can be found in [7]. O

Theorem 6.4. (E. Manduchi [7]). The spectrum for 2-perfect
heptagon systems (=2 perfect TCSs) is the set of all n=1 or 7 (mod
14), except possibly n=21 and 85.

Proof. The 14k +7 Construction plus Example 6.1 (1) takes care
of everything = 7 (mod 14), except n = 21. The 14k + 1 Construction
plus Example 6.1 (2) takes care of everything = 1 (mod 14) with 40
exceptions. These 40 exceptions, with the exception of n = 85, are
handled by ad hoc constructions in [7]. The reader is refered to [7]
for the appropriate details. 0

Now, let (K,,C) be a 2-perfect heptagon system (based on Q)
and define the quasigroup (@), o) in the (by now) usual way:

aoa=a, alla € Q, and
if a#zb,aob=c and boa =g iff
(a,b,¢c,dye, f,9) € C.

A routine exercise shows that the quasigroup (Q, o) satisfies the

three identities
T° =1,

(yz)z =y, and

(zy)(y(zy)) = (Yz)(z(y ).

Now, let (Q,o) be a quasigroup satisfying the above three
identities. Then for each a#b € Q, the seven elements '

a,b,ao0b,bo(aobd) (@ob)o(bofaocb) =(boac(aoc(boa)),ao(boa),
and boa are distinct. If we define a collection of heptagons

C ={(a,b,a0b,bo(aob),(acb)o(bolach),ac(boa)boalall azb € Q},



116 CURT LINDNER

then (K,,C) is a 2-perfect heptagon system. The fact that (K,, Q) is
a heptagon system is a consequence of the fact that the heptagon
determined by the edge {a,b} is uniquely determined by any edge
belonging to it. The fact that (K,,C) is 2-perfect follows from the
fact that (Q, o) is a quasigroup.

Once again we collect everything together in a table.

|Decomposition of K into HEPTAGONS =7 cycles

spectrum of alln=1or7 (mod 14)

7CSs (Folk Theorem) HEPTAGON system
spectrum of alln =1 or7 (mod 14) except

2-perfect possibly n=21 and 85

7CSs Elizabetta Manduchi [7]

quasigroup | o a=a, and | eC
ao0 b=C, iff
c
a b
equivalent x’=x,
(yx)x=y, and

quasigroup (v y(x9))=(yx)(x(yx))
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7. Open problems.

The very first problem that comes to mind is the following. Does
there exist a finite collection of 2-variable quasigroup identities such
that a 2-perfect hexagon system is equivalent to a quasigroup satisfying
the identities {z* = x, (y2)z = y, (zy)(y(zy)) = z(yz)} U I? Not exactly
an earth-shattering problem, but never-the-less a problem of interest
to people in universal algebra. (Several prominent mathematicians in
universal algebra have expressed the opinion that no such collection
I exists. No proofs though! Just spectulation).

It is another Folk Theorem that the spectrum for 8CSs
(=decomposition of K, into 8-cycles) is precisely the set of all n= 1
(mod 16). An 8CS (K,,C) is 2-perfect provided the collection of
distance 2 graphs inside each 8-cycle cover the edges of K,. Now the
distance 2 graph inside of each octogon is a pair of disjoint 4-cycles.

Hence an 8CS (K,,C) is 2-perfect if and only if (K,,C(2)) is
a 4-cycle system. To date not a single example of a 2-perfect 8CS
is known. Not even for n = 17 (the first possible order). The author
has no doubt that the spectrum for 2-perfect 8CSs is the same
as for 8CSs. It remains only for someone to supply a proof. Once
the spectrum of 2-perfect 8CSs has been determined the problem
of whether or not a 2-perfect 8CS is equivalent to a quasigroup
satisfying a finite collection of 2-variable identities is immediate.

Once the problem of determing the spectrum of 2-perfect 8CS's
has been settled (forget about 2-variable quasigroup identities for the
moment) the next problem is the determination of the spectrum of 2
perfect 9-cycle systems and then 2 perfect 10-cycle systems etc. ect.

It never ends! However this paper must end. And now is as good
a place as any.
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Quite recently Elizabeth Billington and Peter Adame (University
of Queensland (Australia) have settled the existence problem for
2-perfect 8CSs; by showing that the spectrum for 2-perfect 8CS; is
precisely all n= 1 (mod. 16).
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