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GRAPH DECOMPOSITIONS
CHRIS A. RODGER (Auburn)

This paper surveys some recent results and new techniques concerning
edge-disjoint decompositions of I,, into copies of (G, where G may be
a cycle, a path, or just a small graph. Additional properties of such
a decomposition are considered, such as nestings, resolvability, ¢-perfect
decompositions and self-complementary decompositions. The use of skew
Room frames is demonstrated by obtaining some new results when G is

small.

1. Introduction.

In this paper, a survey is presented of some of the recents concerning
decompositions of the complete graph K, into edge-disjoint copies of a
graph G. In the process, two of the techniques which have led to these
advances are described: namely the use of graphs with holes; and the
utilisation of design theoretic structures. Furthermore, the use of these
techniques is then demonstrated by obtaining some new results for the
decomposition problem when G is a small graph.

When considering graph decompositions there are many quesitions
that may be asked (and not many have complete answers yet!), but
perhaps the most natural problem is to find the set of values of n for
which there exists a decomposition of K, into edge-disjoint copies of a
fixed graph G; we call this set of values the spectrum of G-decompositions
of K,. Surprisingly enough, the spectrum for a decomposition of K,
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into relatively uncomplicated graphs, such as for example cycles, has
yet to be determined. Discussing the spectrum problem for some obvious
choices of G, namely for cycles, paths, and small graphs, is the main
problem focussed on in this paper. However several other problems
are addressed, including: asking for some sort of resolvability in the
decomposition, and requiring that the decomposition gives rise to another
decomposition of I,, in some natural way (this includes nesting problems,
self-complementary decompositions, and when G is a cycle to require the
additional property of being i-perfect). These other problems are defined
later in the paper when they are discussed in detail.

To be more precise, we define a G-decomposition of H to be a
partition of E(H) (the edge set of H) that has the property that the
subgraph induced by each element of the partition is isomorphic to G.
(Any of the graph theoretical terms that are not defined here can be
found in [12].) For various choices of G and H, such a decomposition has
been given other names. For example, using this notation a balanced
incomplete block design with block size k, index 1 and on n symbols
is simply a Kj-decomposition of K,. For the sake of uniformity, this
notation is adopted throughout the paper, though the more common
name will be mentioned when the problem is first considered.

Finally in this section we define the design theoretic structures
that are used later in the paper, namely latin squares, orthogonal latin
squares, and skew Room squares, each of which may also have holes.
Introducing the concept of graphs with holes is delayed until Section 2.

A latin square of order n on the symbols {1,...,n} is an n x n
array, each cell of which contains exactly one symbol and each symbol
occurs exactly once in each row and in each column. Two latin squares
Ly and L» are orthogonal if for each ordered pair (z,y) of symbols there
is exactly one cell (r,c) which contains symbol z in L; and symbol y in
Ly. Ly is self-orthogonal if it is orthogonal to its transpose.

11 4213 o 1)1 3142

3121411 41 21113
L= L=

411312 214|311

213 114 31112 4

Fig. 1 - A pair of orthogonal latin squares of order 4. Since L3 is the transpose
of Ly, L is a self-orthogonal latin square.
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A skew Room square of order n on the symbols {0,1,...,n} is an
n x n array in which:
(1) each cell contains 0 or 2 symbols;

(2) each unordered pair of symbols occurs in exactly one cell, and each
symbol occurs exactly once in each row and in each column;

(3) for 1 <4 < n cell (¢,7) contains the symbols 0 and ¢; and

(4) for each z # y, exactly one of cells (z,y) and (y,z) contains 2
symbols (this is the skew property).

01] 45] 27 36
02| s6| 13 47
03| 67| 24 15
26 04 | 17 | 35
37 05 | 12| 46
57 14 06| 23
34| 16 25 07

Fig. 2 - A Skew Room square of
order 7.

Introducing holes into these structures in a very general way is
likely to cloud the ideas involved, so we restrict our attention to the case
where all holes have size 2 (it is then easy to see how holes of varying
sizes can be used). To this end, define h; = {2i — 1,2} for 1 < i< n, let
S ={1,...,2n} and let T(S) be the set of 2-element subsets of S. A latin
square with holes of size 2 and of order 2n is a 2n x 2n array in which

(1) for 1 < i < n, the cells of k; x h; contain no symbols, and each other
cell contains 1 symbol; and

(2) for 1 <7 < n each row and column in h; contains each symbol in

S — h; exactly once.

A latin square with holes of size 2 is symmetric if the symbol in
cell (z,y) is the symbol in cell (y,z) for all z and y (see Figure 3).
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Two latin squares L; and L. with holes of size 2 are orthogonal if
for all (z,y) € S xS but {z,y) € h; for all ¢, there is exactly one cell (r,c)
which contains symbol z in L; and symbol y in L, (see Figure 4).

A skew Room frame with holes of size 2 of order 2n is a 2n x 2n
array in which:

816 712151
517 1181 216
4 | 8] 7|1 31 2
713121 8 1] 4

6 |4 5123 ]|1

315] 116|214

Fig. 3 - A symmetric latin square of
order 8 with holes of size 2.

7018 14]3]|6]s5 51678 3| 4

51618 |7]4]3 8| 713 | 4| 6] s

8 | 6 71251 51| 8 117 2] 6

L=l 715 18| 2(6] L= 6|7 81 2] 5] 1

31782 1] 4 71 3] 1] 8 4] 2

4018 1] 7 3| 2 8| 4| 7] 2 13
503([6| 1214 362 5]4]1
642531 als5]6l1]2]3

Fig. 4 - A pair orthogonal latin squares of order 8 with holes of size 2, one of which
is symemtric.
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69 810 35 |47
6100 |79 45 38
510 27 19(68
59 18 210 67
89 17 410(23
710 28 39 14
46 29| B10 15
36 110 49 25
48 57 13 26
37 58 24 16

Fig. 5 - A skew Room frame of order 10 with
holes of size 2.

123

(1) the cells in A; x h; contain no symbols and each other cell contains
0 or 2 symbols;

(2) each unordered pair of symbols except for those in h; for some i
occurs in exactly one cell, and for 1 <7 < n, the symbols in h; each
occur exactly once in each row and each column except that they

do not occur in the rows and columns in k;; and

(3) for each unordered pair {z,y} except for those equal to h; for some
i, exactly one of cells (z,y) and (y, ) contains 2 symbols (this is the

skew property).

We now proceed to consider G-decomposition problems of H in
the cases where G is a cycle, a path and some small graphs in turn.
Throughout what follows, let C,, be a cycle of length m, and let P,, a
path of length m (so P, contains m edges).
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2. Cycle-decompositions.
2.1. The spectrum problem.

After block designs perhaps the next most natural decomposition
problem to be studied is to find the spectrum of cycle-decompositions
of K,. Indeed early results on this problem date back to 1965 and
1966 when the spectrum for m-cycle decompositions of Kazmy: was
found by Kotzig [22] when m = 0 (mod 4) and by Rosa [31] for the
remaining congruence classes; Rosa [32] also found decompositions into
troils of lenght m of Kozm+im when m is odd. However, almost certainly
the following necessary conditions for the existence of an m-cycle
decomposition of K, are also sufficient:

(N1) if n > 1 then n > m;

(N2) n is odd (each vertex has even degree); and

(N3) 2m divides n(n — 1) (m divides |E(K,)|).

Therefore when m is not a prime power, there are many values of
n which satisfy the necessary conditions but are not of the form of the
early results of Kotzig and Rosa. Notice that for a fixed value of m,
N1, N2 and N3 simply require that n lies in certain congruence classes
modulo 2m; call congruence classes modulo 2m that contain integers
which satisfy N1, N2 and N3 admissable congruence classes. For this
reason we will often express » as n = 2mz + a where a is an integer
satisfying 1 < a < 2m — 1 that lies in an admissable congruence class.

There is strong evidence now that indeed N1, N2 and N3 are
sufficient conditions for the existence of an m-cycle decomposition of
K, (these decompositions are also called balanced circuit designs and
m-cycle systems). In a series of paper from 1975 to 1980, several results
were published showing that these conditions are sufficient for some
small values of m and for m = 2p® where p is a prime [3, 9, 111].

However, one of the most useful results to emerge did not concern
cycle-decompositions of K,,, but cycle-decompositions of K, , the complete
bipartite graph. Sotteau in 1981 proved the following very neat result.

THEOREM 1. [33] There exists a Cy- decomposition of Ky if and
only if e > t, y>t, x and y are even, and 2t divides zy.
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Not only does this result completely solve the spectrum problem for
cycle-decompositions of K., for cycles of even length, but it also leads
to the following result for cycle-decompositions of K.

THEOREM 2. If there exists a Cy-decomposition of K, for some integer
a,2t < a < 6t then there exists a Co-decomposition of Komsia = Kateta
for all x > 1.

Proof. The proof is by induction on #, so assume that there exist a
Ca-decomposition of Kyp4q on the vertex set {0,...,4tz +a —1}. By the
results of Kotzig and Rosa quoted earlier, there exists a Cy;-decomposition
of K441 on the vertex set {0,4tz+a,4tz+a+1,...,4t(z+1)+a—1}. Also,
by the result of Sotteau, there exists a Cs;-decomposition of Katota—1,at
on the vertex sets {1,...,4tzx +a— 1} and {4tz +a,...,4t(z+ 1) +a— 1}.
Combining these three cycle decompositions gives a Co;-decomposition
of Kyy(o41) + @ as required. O

What Theorem 2 actually says is that if you can find a Cs-
decomposition on the smallest number of vertices in an admissible
congruence class (modulo 4t) then you can find a C;-decomposition on n
vertices for all n in that congruence class modulo 4¢. So for even cycles,
solving the spectrum problem becomes a job of finding the smallest
decomposition in each admissable congruence class.

The equivalent result to Theorem 2 for odd cycles (cycles of odd
length) did not appear until this year, but now we also have the following
result. ' "

THEOREM 3. [20] If there exists a Caiy1-decomposition of K, for
some integer a,2t < a < Gt then there exists a Coiy1-decomposition of

Kometa = Koai41)o4a for all z > 1.

Clearly a proof of Theorem 3 needs some new ideas, since the proof
of Theorem 2 relies heavily on Theorem 1. Of course there is no hope
of obtaining the result equivalent to Theorem 1 for odd cycles: bipartite
graphs have no odd cycles! In fact two ideas were needed.

The first idea was to use a symmetric latin square of order 2z with
holes of size 2 (see Figure 3) to obtain a Cs;y;-decomposition of the
complete z-partite graph with 4¢+ 2 vertices in each part (we shall denote
this graph by Kf;.,). This can be done as follows. Let L; be a latin
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square of order 2z with holes of size 2 on the symbols {1,...,2z}. Label
the vertices of Kf,, , with the elements of {0,1,...,2¢t} x {1,2,...,22}
so that for 1 < ¢ < z, the vertices in the ith part are the vertices in
{0,1,...,2t} x {2¢ — 1,2i}. Let ¢(y, z;%) denote the 2t + 1 cycle depicted in
Figure 6, where y - z in the symbol in cell (y, z) of L.

i+ ((=1'(2t+1) - 1)/4,y - 2)

(i - 1) y)
(4,9)
(i+1,y)

Fig. 6 - The (2t + 1) - cycle ¢(y, z; 7).

Formally ¢(y, ;i) = (co,c1,...,¢9;) where for 0 < j <t —1,
{ (i+37/2,9) if j is even,
Cj = ’ ’

(i—-(G+1)/2,2) ifjis odd,

(i—-(j+1)/2,y) ifjis odd, and
=0+ ((-D)'Qt+1)-1)/4,y-2).

(i+37/2,2) if j is even,
Ca—j =

It is natural to think of the vertices arranged in a (2t + 1) x 2z
array, the vertices on level ! being the vertices with first coordinate /,
the vertices in column y being the vertices with second coordinate y.
Then with this notation it is clear that for 0 <1< 2¢t, the (2t + 1)-cycles
c(y, z;1) partition almost all of the edges between vertices in column y
and vertices in column z, missing only the edges joining such vertices
that are exactly ¢ levels apart; these cycles also include the edges joining
vertices in column y and z to vertices in column y -z which are exactly ¢
levels apart. Now the reason that we choose L; to be a latin square with
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holes of size 2 becomes apparent: if we write y = 2w (or 2w — 1) then
as z ranges ever the elements of {1,...,2z} — {2w —1,2w},y - z ranges
over {1,...,2z} — {2w — 1,2w} as well and so the cycles c(y, ;1) include
all edges from each vertex in column y = 2w (or 2w — 1) to each other
vertex exactly ¢ levels apart except for those vertices in column 2w — 1
(or 2w); but of course vertices in columns 2w — 1 and 2w lie within one
part of K§,,, and so are not adjacent vertices anyway.

The second idea is to use graphs with a hole. In fact one could
describe K%,, as a complete graph with z holes of size 4t + 2,
corresponding to the = parts each containng 4¢ + 2 vertices. Since we
have just produced a C2t41-decomposition of K§,,,, in a sense we have
only the holes to fill with small decompositions. The one remaining
problem is that to prove Theorem 3 we have n = (4t + 2)z 4 a, so «
additional vertices are to be included. The remaining ingredient we need
is clearly to find a C3;41-decomposition of the graph formed from K424,
by removing the edges joining pairs of the a added vertices; one might
call this graph Kuii24a with a hole of size a, though for convenience
we denote this graph by Ksy24. — Ka. Once this ingredient is found,
Theorem 3 follows since we can add a vertices to a Cy:41-decomposition
of KJ,,5, then on the vertices in each of the z parts together with the
a new vertices place a Cy41-decomposition of Kaiyo1qa — Ka, the hole
being the a added vertices, and finally on the a new vertices place the
Cai+1-cycle decomposition of K, whose existence is postulated in the
theorem. It turns out that this ingredient can be found [20], mainly
using a complicated application of difference methods, a technique which
was used in the early Kotzig and Rosa papers and is by now well known.

We now summarize known results (at least to the author) concerning
the spectrum problem. The necessary conditions N1, N2 and N3 have
been shown to be sufficient for the existence of a C,,-decomposition of

K, when
(a) m = p" for some prime p,
(b) m = 2p” for some prime p,
(¢) m <31 and m is odd, and

(d) m <18 and m is even.

Furthermore, a C,,-decomposition of K,, is known to exist if
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(e) n =1 (mod 2m), and if

() n=m (mod 2m) and m is odd.

Of course this leaves many problems to be considered. However
since Theorems 2 and 3 show that increasing 31 in (¢) and 18 in
(d) simply requires finding a C,,-decomposition of K, for the smallest
value of n in each admissable congruence class, I think a much more
interesting problem is to find more results of the form of (e) and (f). I
would expect that such results would still heavily rely on Theorems 2

and 3.

2.2. Other problems.

Many other questions can be asked about C,,-decompositions of
K, by requiring the decomposition to have additional structure. For
example, one might ask that the m-cycles can be themselves partitioned
into 2-factors, in which case the decomposition is called resolvable, or
perhaps into 2-regular graphs on n — 1 vertices, in which case the
decomposition is called almost resolvable. The spectrum problem for
resolvable Cy,-decompositions of K, (otherwise known as the Oberwolfach
problem to those in this area of mathematics) has been completely
solved: since the vertices must have even degree, n must be odd, and
since each 2-factor contains say z m-cycles, em =n, so we have n=m
(mod 2m) is a necessary condition; it is also a sufficient condition [2,
28]. The spectrum problem for resolvable C;,-decompositions of K,, — F'
for some 1-factor F' has also been settled, the necessary and sufficient
conditions being n =0 (mod m) if m is even and n =0 (mod 2m) if m is
odd, but there is no resolvable Cs-decomposition of Ks or of K, [1, 2,
21, 23]. The spectrum problem for almost resolvable C,,-decompositions
of K, is easy to settle: » must be 1! However it is natural to consider
almost resolvable C,-decompositions of 2K, (in 2K, there are exactly
2 edges between each pair of vertices) in which case the spectrum has
been shown to be n =1 (mod m) whenever m is odd [18] and whenever
m is even [13]. '

A second additional structure that may be required of a C,,-
decomposition of K, is the property of being i-perfect. A C,,,-decomposition
of K, is i-perfect when: if each cycle C in the decomposition is replaced
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by the graph H formed by joining vertices that are distance 7 apart in
C then another cycle-decomposition of K, results. So if m =5 and i = 2
then H is also a 5-cycle. However if m = 6 and 7 = 2 then H is the union
of two vertex disjoint 3-cycles:

1 2
Ce 6 3
5 4
I 2
H =6<] 3
5 4

Clearly any C,-decomposition of K, is 1-perfect, and if it is i-perfect
then it is also (m —4)-perfect, so we can assume that 2 < ¢ < [(m—1)/2].
Cyn-decompositions of K, have been considered when m is 5, 6 and
7. When m is 5 or 6 we can assume that ¢ = 2 : 2-perfect Cs-
decompositions of K, exist for all » =1 or 5 (mod 10), n # 15 [26];
2-perfect Cs-decompositions of K, exist for all n =1 or 9 (mod 12),
n # 9 except possibly when n € {45,57} [24]. Also, there exist 2-perfect
Cr-decompositions of K, for all n =1 or 7 (mod 14) except possibly when
m € {21,85} [27]; this construction is a good example of using a pair of
orthogonal latin squares with holes of size 2, one of the squares also
being symmetric (see Figure 4). Notice that after replacing each cycle C
in a 2-perfect C7-decomposition of K, with the 7-cycle formed by joining
vertices distance 2 apart in C, the result is a 3-perfect C7-decomposition
of K., and vice versa; therefore the spectra for 2-perfect and 3-perfect
Cr-decompositions of K,, are equal.

One might also ask for a C7-decomposition of K, that is both
2-perfect and 3-perfect. More generally, a C,,-decomposition of K, that
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is i-perfect for 1 < ¢ < [(m —1)/2] is called a Steiner C,,-decomposition
of K,. The spectrum for Steiner C;-decompositions of K, is far from
settled as are the spectra for i-perfect C,, decompositions for m > 8, so
much work remains to be done!

3. Path-decompositions.
3.1. Various problems.

All the problems that were discussed in the previous section con- A
cerning cycle-decompositions have counterparts for path-decompositions.
For example, the spectrum problem for P,,-decompositions of AK, (AKX,
is the complete multigraph with exactly ‘A edges between each pair
of vertices) has been completely solved. Tarsi [36] has shown that
such a decomposition exists if and only if An(n—1) = 0 (mod 2m)
and n > m+ 1. As with cycle-decompositions, the spectrum problem
for resolvable P,-decompositions of AK, has been completely solved
(where, of course, a Pn,-decomposition of AK, is resolvable if the paths
themselves can be partitioned into sets of vertex-disjoint paths which
together span AK,): there exists a resolvable P,,-decomposition of AK,,
~ if and only if n = 0 (mod m +1) and A(m+ 1)(n —1) = 0 (mod 2m) [6, 19].

More recently, more general kinds of graph decompositions have been
considered in conjunction with the notion of resolvability. For example
Rees [29] has considered the problem of decomposing K, into copies of P;
and Cj3 in such a way that these graphs can be partitioned into sets, each
of which consists of vertex-disjoint P/s or of vertex-disjoint Cjs, which
span K,; a natural name for such a resolution is a (P, Cs)-factorization
of K,. Rees showed that (P, Cs)-factorizations of K, which contain ¢
1-factors exist if and only if »n =0 (mod 6), ¢ is odd, n—1>t > 1
and if ¢ =1 then n is not 6 or 12. Now Bermond, Heinrich and Yu
[7] have found necessary and sufficient conditions for the existence of
(P1, Pm)-factorizations of AK,. Many interesting problems of this type
remain unsolved, such as the generalization of Rees’ result, to find
(P1,Cm)-factorizations of K,; necessary and sufficient conditions have
been found when m is even [7].
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3.2. Self-complementary Ps-decompositions.

Finally in this section, we consider a problem that is similar
in nature to the 2-perfect C,,-decompositions considered in Section
2. Clearly, one could generalize 2-perfect C,,-decompositions of K, to
G-decompositions of K, with the added restriction that replacing each
copy of G with a closely related graph H results in an H -decomposition
of K,. This more general setting shows, for example, the similarity
of 2-perfect C,,-decompositions to the well-studied nesting problem for
Steiner triple systems [14, 34]: a nesting of a Steiner triple system fits
this description exactly with G = K3 and H being the complement of GG in
K, (so H = Ky 3). So now define a self-complementary Ps-decomposition
of K,, to be a Ps-decomposition of K, with the added restriction that
replacing each copy P of Ps with the complement of P in V(P) results
in another Ps-decomposition of I,.

EXAMPLE 3.1. For 0 < i < 6, the paths G; = (4,1 +¢,4+14,2+ 1),
reducing each element modulo 7, form a Ps;-decomposition of K7 on
the vertex set {0,1,...,6} The complement of G; in V(G;) is the path
H; = (1+4,2+11:,4+1i), and the paths H; for 0 <i <6 also form a
Ps-decomposition of K7. Therefore Go,...,Gs form a self-complementary
Ps-decomposition of K7.

It has been proved [17] that the spectrum for self-complementary
P;s-decompositions of K, is n = 1 (mod 3). This result can be
proved very neatly by making use of a self-orthogonal latin square
L (see Figure 1) of order t = (n — 1)/3. Let the vertex set of K,
be {o0}U({0,1,2} x {0,1,...,¢ —1}). Then the following paths form a
self-complementary Ps-decomposition of K3zi4.1:

{(0,(0,4), (1,4),(2,4),((0,4), (2,2),00,(1,8))|0 < i <t = 1}U

{(+1,0-5),,8),(L7),(1+1,7-D0<T1<2,0<i<j<t—1)

where i-j is the symbol in cell (i,j) of L, and all first and second
coordinates are to be reduced modulo 3 and ¢ respectively. As when
considering cycles, we should think of the vertices as arranged with ¢
vertices on each of 3 levels. Then using a latin square for our underlying
structure is exactly what is needed to include edges {({,z),({+1,%)} in a
Ps: simply find the cell in row z that contains symbol , say cell (¢, y); then
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one of the defined paths, namely ((I+ 1,z -y =), (L,z),(l,y),(+1,y- z)),
contains the required edge. The self-orthogonality of the underlying
structure is exactly what is needed to include edges {(/,4),({,v)} in the
complement of a Ps: there exist z and y such that z-y=v and y -z = v;
then one of the defined paths is ((I,z-y),({ - 1,2),(I—-1,v),(l,y - r)), SO
its complement is ((I - 1,y),(l,z -y = u), (l,y-2 = v), (I - 1,z)), which
contains the required edge.

This construction for self-complementary Ps-decompositions of K,
together with a self-orthogonal latin squares of order t, containing a
hole of size n (these are called incomplete self-orthogonal latin squares)
have been used to completely solve an embedding problem for such
decompositions [30].

Of course there still remain many interesting unsolved questions
that one might ask and are of this form, such as finding graph
decompositions of K, for other self-complementary graphs G, so that the
complements of each copy of G in the decomposition also form a graph
decomposition of K,,.

4. Graph decompositions for small graphs.

In the context of this survey, it is natural to ask for which small
graphs G do there exist G-decompositions of K,? This problem has been
completely settled for all graphs with at most 4 vertices [10]. Then a
major assualt was launched in 1980 on the graphs with 5 vertices where
the problem was very nearly solved. There remain several graphs for
which there are a few values of n for which it is not known whether
or not decompositions of K, exist (see [8] for details). However, more
interestingly, there are also three graphs which have infinitely many
values of n for which decompositions of K, have not yet been found (of
course, that’s not quite true since one can use Wilson’s result [38] to
show that such decompositions exist except for possibly finitely many
values of n). Those three graphs are
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1 3 1 3 1 3
5 5 5
2 4 2 4 2 4
G, G,, and G,,=K.-e

(the notation is borrowed from [8]).
It is known that [8]:

1. there exists a Gyo-decomposition of K, for n € {17, 33, 49,97, 113, 117}
and necessary conditions for such decompositions to exist are that
n =0 or 1 (mod 16);

2. there exists a G;-decomposition of K,, for all n =1 (mod 16) and for
n = 64, there is no such decomposition when n = 16, and necessary
conditions for such decompositions to exist are that n =0 or 1 (mod
16); and

3. there exists a G22-decomposition of K, for n = 19, there do not exist
such decompositions for n € {9,10, 18}, and necessary conditions for
such decompositions to exist are that n =0 or 1 (mod 9).

We now demonstrate the use of skew Room frames with holes
of size 2 (see Figure 5) in constructing graph decompositions. This
construction arose out of discussions with Dean Hoffman as we
constructed G-decompositions of K, where G has at most 6 edges.

THEOREM 4. There exists a Gyo-decomposition of‘ K, forall n=1
(mod 16) except possibly n = 65.

Proof. Let n = 8(2ac) + 1 and let the vertex set of Ki6p41 be
{oc}U({0,1,...,7} x {1,2, ..., 2z}). |

As in the proof of Theorem 2.3, we proceed as follows: first decompose
Kf{; (the complete z- partlte graph with 16 vertices in each part) into
copies of Gz, the vertices in the parts being {0,1,...,7} x {2¢ — 1,24} for
1 < i< z; then decompose the edges in these z holes together with the
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edges incident with co into copies of Gyo.

Clearly the second step is easy, since we know there exists a
(ia0-decomposition of Ki7: place a copy of such a decomposition on the
z copies of Ki7r with vertex sets {oco} U ({0,1,...,7} x {27 — 1,2¢}) for
1<1<z.

The first part is more complicated. We begin with our underlying
structure. Let R be a skew Room frame with holes of size 2 (see Figure
5). Let L be a symmetric latin square with holes of size 2 (see Figure 3).
Denote the vertex-labelled copy of Gao depicted earlier by g20(3,4;1,2;5).
Then the following set forms a Gyo-decomposition of K:

{920((1 + 57’), (I+1,¢); (la y): (L, 2);(1+2,y- Z))IO <

<I<7,1<r<2z,1<c< 2z}

where y and z are the symbols in cell (r,¢) of R, where y -z is the symbol
in cell (y,z) of L, and where the first coordinates are reduced modulo 8.
Less formally, if we again think of the vertices as being arranged on 8
levels with 2z vertices on each level, we can depict these copies of Gao
as in Figure 7. ‘

The interesting thing to note in this construction is how the skew
property is used (see (3) in the definition of skew Room frames). Suppose
we want to find the copy of Gy that contains a pair of vertices that are
4 levels apart, say (I,a) and (I + 4,b) (the number 4 is relevant since it
is exactly half the total number of levels used). By the skew property,
exactly one of the cells (a,b) or (b,a) contains a pair of symbols say =
and y. Then the edge (I,a) and (I +4,b) is in

g20((l;@), (1 +4,8);(1+ 3,2), (1 + 3,y); (1 + 5,z - y))
if (a,b) contains « and y, and in
gao((l,a),(I+4,0);({=1,2),(I—-1,y);(I+ 1,z - y))

if (b,a) contains z and y.
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o TN
(0, ¥) (0, 7)

Vi
)
\
V

(5, 1)

Fig. 7 - g20((5,7),(1,¢);(0,9),(0,2); (2, - 2))

Why do we use holes of size 2 in the underlying structure? These
holes of size 2 manifest themselves in the K, as holes of size 2 times the
number of levels, that is holes of size 16. On these 16 vertices together
with co we can place a Gao-decomposition of K. If we used underlying
structure with holes of size 4 then we would have 4 x 8 = 32 vertices
in each hole of the Kisz+1, so again with co we could place on the 33
vertices a Gso-decomposition of K33 which is also known to exist. Clearly
if the underlying structure is to contain holes of size s, then we need to
know the existence of a Gyp-decomposition of Kg,41. So choosing s =1
(that is, using a Room square for the underlying structure, see Figure
2) would not work since there is no Gao-decomposition of Kj.

Since there exist skew Room frames with holes of size 2 and/or
4 for all even orders except 6, 8 and 12 [25], and since there exist
Gla0-decompositions of Kg,41 for s € {2,4,6,12}, this construction produces
a Gqo-decomposition of K, for all n = 1 (mod 16) except perhaps n = 65.0

Clearly this construction also works when n =0 (mod 16) except
that at the moment, we have no Gazp-decomposition of Ks,41 for each
s € {2,4,6,8,12}; in fact we don’t have a Gao-decomposition for any
s € {2,4,6,8,12}! We can state this result in the following way.

LEMMA 1. If there exists a Gao-decomposition of Kss+1 for each
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5 €12,4,6,8,12} then there exists a Gqo-decomposition of K for all n = 0
(mod 16).

This result may not be as good as it seems, as it depends heavily
on the existence of a Gyo-decomposition of K4, which may not exist.

Finally in this section we note that we can make some progress
towards settling the spectrum problem for Giz; If we denote by
g22(a, b;c,d,e) the graph K5 — {a,b} on the vertex set {a,b,¢,d,e} and if
R is a skew Room frame with holes of size 2 and of order 2z, then

{g22((14+1,7),(1+5,7); (1, y), (,2),(I+3,))/0<1<8,1<r<2z,1< < 2z}

where y and z are the symbols in cell (r, c) of R and where the first
coordinates are reduced modulo 9, is a Gaz-decomposition of K% on the
vertex set {0,1,...,8} x {1,2,...,2z} (see Figure 8).

©.) M)
Ava
N
A\

(5, 1)

Fig. 8 - g22((1,7),(5,7);(0,¥),(0,2),(3,¢)).

Again the holes of K{; together with oo can each be filled with
a (Gaz-decomposition of Ki9 (which is known to exist) to produce a
G22-decomposition of K, for all n =1 (mod 18) except possibly when
n=29s+1 and s € {4,6,8,12,44, 46,52, 54,56, 60, 68, 76} (that is, s is an
order for which no skew Room frame with holes of size 2 is known).
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5. Conclusion.

In this survey, we have touched upon some of the recent
results concerning graph decompositions. However, this is by no
means an exhaustive coverage. For example, after much activity the
spectrum problem for K ,,-decompositions (also known as star or claw
decompositions) of AKX, [35] and of KZ [37] have now been completely
settled. Also, we have dealt exclusively with undirected graphs, though
the equivalent questions for directed graph decompositions, naturally
enough, have also been asked and answered with some success. For
example, the spectrum problem for decomposing the complete directed
multigraph into directed stars has been solved [15, 16]. There are
several results concerning directed cycle decompositions [9, 11],and
concerning the equivalent directed graph problem to that of Steiner
Cm-decompositions (such directed cycle decompositions are called perfect
Mendelsohn designs [4, 5]). Also, a good application of using the cycle
in Figure 6 is to direct the cycle and then, using a pair of orthogonal
latin squares as underlying structure, produce directed cycle systems
that have a directed nesting [25]. There are many more such results,
but they are beyond the scope of this paper.

The two techniques described here will undoubtedly bring further
advances. Using holes in graphs is very powerful; I expect that, for
example finding a G2z-decomposition of Ky7 — Ky (that is K, with a
hole of size 9) or of Kss — K10 would essentially settle the existence
problem of G2z-decompositions of K, when n =9 (mod 18) or n = 10
(mod 18) respectively, though perhaps finding such decompositions may
be difficult. Using latin squares and related design theoretic structures
has a wide range of applications, mainly because of the flexibility one
has in finding the additional properties of such structures that each

problem demands.
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