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MAXIMAL PARTIAL DESIGNS AND CONFIGURATIONS
ALEXANDER ROSA (Hamilton)

The purpose of this lecture is to survey and bring together
several old and new results concerning a wide variety of combinatorial
problems having a common underlying feature.

Typically, the situation is as follows. We are given a finite set F
of objects called figures, and a symmetric irreflexive relation R on F
(the compatibility rule) which says when are two figures compatible.
An (F, R)-configuration or simply a configuration is a set of pairwise
compatible figures. A configuration C is maximal if there is no f € F,
f ¢ C such that fUC is also a configuration (i.e. maximality is here
with respect to set inclusion).

(More generally, the compatibility rule R is a function from a
subset of the power set of F' into {0, 1} but all our examples will be
of the simpler type above.)

The size of a configuration is the number of its figures.

We will be interested mainly in the possible sizes of maximal
(F, R) configurations, i.e. in the spectrum Sp(F, R) defined by

Sp(F, R) = {m: there exists a maximal (F,R)-configuration of
size m}.
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We may imagine a procedure under which one tries to build
maximal configurations of given type in a naive way: given any
configuration, enlarge it by adjoining to it another figure if possible,
and so on, until you get stuck. The elements of the spectrum represent
sizes of all possible outcomes of such a process. Naive as it is, there
are several «real-life» situations in which procedures of this sort are

actually used!
Our first example is a problem that has recently been solved
completely.

1. Maximal sets of 1-factors.

The figures here are 1-factors of the complete graph K, on a
given set of vertices; two such 1-factors are compatible if they are
edge-disjoint.

Let M (2n) be the spectrum for maximal sets of 1-factors of Ko,
i.e.

M (2n) = {m: there exists a maximal set of (edge-disjoint) 1-factors
in Kj,}. One gets as a corollary of Dirac’s theorem (cf. [3]) that

MQ@2n) C {n,n+1,...,2n—1}.
Trivially, 2n — 2 ¢ M(2n) since the complement of the union of
2n — 2 1-factors is itself a 1-factor. Furthermore, n ¢ M(2n) if n is

even [9]. On the other hand, if k£ is odd and k € {n,n+1,...,2n— 1}
then k& € M(2n), as shown by the following simple direct construction.

Take the set Zy U {a; :i=1,2,...,2n— k} as the set of vertices
of K»,, and define the following 1-factor F:
_F=={{ah(ﬂ,{aml},{a3,k-1},“.,{a%kk_1,%(2n——k——1)},
{aznp b~ +@n—k -1},

{(3@rn—k-D+1,k—-L2n—k-1D},
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{(f@n—k-D+2,k—3Qn—k—-1) -2} ,...,

{Fk -1, $k+1)} |
(the edges in the second row are used only when k#n). Developing
F modulo k yields a maximal set of 1-factors, since the complement
of the union of these 1-factors contains an odd component K, .

It turns out that the case of k£ even is much more difficult.
It is shown in [29] that for k£ even, k € M(2n) if and only if
(An+4)/3 < k < 2n— 4. Explicitly, we have for small values of
n: M@4)={3}, M©)={3,5}, M®)={5,7}, M(10)={5,7,9}, M(12) =
{7,9,11}, M(14) = {7,9,11,13}, M(16) = {9,11,12,13,15},..., M(30) =
{15,17,19,21,22,23,24,25,27} and so on.

Thus the spectrum for maximal sets of 1-factors is completely
determined. This is certainly not the case for maximal perfect sets of
1-factors. In this variation of the above problem, two 1-factors are
compatible if they are edge-disjoint and their union is a hamiltonian
cycle. Let Mpe,s(2n) be the spectrum of maximal perfect sets of
1-factors. It is not even known whether 2n — 1 € Mp.,(2n) for all
n. To determine this is equivalent to determining whether there
exists a perfect 1-factorization of K», for every =, a difficult unsolved
problem. It is easily verified that Mp..s(4) = {3}, My s(6) = {3,5},
Mper£(8) = {5,7}. Further, Mp.;(10) D {5,9}; examining the list of
all perfect sets of three 1-factors of Kjp from [27], one sees that
none of these sets is maximal, thus 3 ¢ Mp.,(10). Also, n € Mpe,r(2n)
whenever n is an odd prime but not much else seems to be known
about Mp.,s(2n).

The following problem is a natural continuation of the previous
one.

2. Maximal sets of 2-factors.

The figures are 2-factors of the complete graph on a given set of
n vertices; two 2-factors are compatible if they are edge-disjoint.

Let M®(n) = {m : there exists a maximal set of m (edge-disjoint)
2-factors of K,}. It follows directly from Petersen’s theorem (cf. [3])
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that for n odd,
1
MP(n) = {—é—(n — 1)} .

The situation is somewhat more involved for n even. This is due to
the fact that for odd d, there exist regular graphs of degree d without
proper regular factors. Konig [24] calls such graphs primitive. An
obvious extension of Kénig’s example for d = 3 yields a primitive graph
of odd degree d(d > 1) with (d+ 1)® vertices. This is the minimum
number of vertices a primitive graph of odd degree d can have as
shown recently by Dean Hoffman [20]. This implies that the spectrum
M®)(n) for n even is the following interval:

M<2>(n)={[”_\/"—l},[“_\/’7]“,...,—;—@—2)}.

2 2

In the next two examples figures are still 2-factors but of a
restricted type.

3. Maximal sets of Hamiltonian cycles.

The ﬁgu‘res are connected 2-factors of K, i.e. Hamiltonian cycles;
two Hamiltonian cycles are compatible if they are edge-disjoint.

Let M H(n) = {m : there exists a maximal set of Hamiltonian
cycles of K,}. Denote

Dir(n) = {[%(n+ 3)} : [%(n+ 3)] +1,..., [%—(n~ 1)} } .

It follows directly from Dirac’s theorem and a result of Nash-Williams
(cf. [3]) that M H(n) C Dir(n). We would like to show that, actually,
equality takes place here. Consider the following.

Let n be even, n=2k, and let m be a positive integer, 2m < k.
Let G be a regular graph of degree 2k — 4m with 2k — 2m vertices,
and let H = K,,,VQ. ‘

Similarly, let n be odd, n=2k+1, m be a positive integer,
2m+1 < k, and let G be a regular graph of degree 2k — 4m — 1 with
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2k — 2m vertices, and let H = K,,,.1 VG (here V denotes the join, cf.
[3D.

In order to show that M H(n) = Dir(n), it clearly suffices to
show that the graph H, with G suitably chosen, has a Hamiltonian
decomposition. Inded, the complement  of H is disconnected, and
so the set of Hamiltonian cycles in any Hamiltonian decomposition
of H is maximal. The corresponding proof that # has a Hamiltonian
decomposition for G suitably chosen is given in [20]. Thus here we
have another example of a completely determined spectrum.

4. Maximal sets of A-faétors.

The figures are A-factors of K, (i.e. 2-factors whose each
component is a triangle); two A-factors are compatible if they are
edge-disjoint. Of course, this requires n = 0 (mod 8).

Let A(n) = {m : there exists a maximal set of A-factors of K,}.

It follows from a theorem of Corradi and Hajnal [8] that

A(n) C {[n/é], (/6] +1,..., B-(n_ 1)” .

A forthcoming paper by R. Rees, W.D. Wallis and myself [28]
contains several results towards determining the spectrum A(n) of
maximal sets of A-factors. At present, however, A(n) is far from being
determined completely.

The next four problems deal with latin squares and rectangles.

5. Maximal partial latin squares.

The figures are elements of N x N x N, i.e. ordered triples from
a set N of n elements; two such triples are compatible if they agree
in at most one coordinate. We can take for N = {L,2,...,n}. It is
somewhat more convenient to think of a partial latin square as an
n X n array whose cells are either empty or contain an element of
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N such that each element occurs in at most one cell of each row
or column. A partial latin square is then maximal if no further
nonempty cells can be filled without violating this condition.

Let M L(n) be the spectrum of maximal partial latin squares of
order nm, i.e.

ML(n) = {m : there exists a maximal partial latin square of
order n with exactly m nonempty cells}.

1
It is easily seen that if m € M L(n) then m > lr—z—n?'-l. Trivially,

n* —1 ¢ ML(n) since a partial latin square whose all cells but
one are filled cannot be maximal. Horédk, Sirafi and myself have

shown that if m ¢ {[%nzl,...,nz} and m = n* (mod 2), or if

1
S mE —2—n2 +n+1,...,n*+ and m % n* (mod 2), then m € M L(n).

. R
Moroever, if m € {Irinzl,..., {—;—nﬂ + l»% ‘l -1} , and m % n?

(mod 2) then m ¢ ML(n). Thus the spectrum M L(n) for maximal
partial latin squares would be completely determined if the case of

m € {{%—n{ + (%w{ +1,..., [%nz[ +n—1}, m # n? (mod 2) could

be settled. We conjecture that in this case actually m ¢ M L(n) but
have so far been unable to prove it.

6. Row-maximal latin rectangles.

Here the figures are permutations of degree =; two such
permutations are compatible if they are discordant (i.e. do not agree
in any position). In 1945, M. Hall proved [19] that for r < m, any
r x n latin rectangle can be extended to an (r+ 1) x n latin rectangle.
It follows that the spectrum of row-maximal latin rectangles, i.e.

MLR(n) = {r : there exists a row-maximal r x n latin rectangle}
consists of a single element, namely .

No such simple answer can be expected in any of the next two
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examples.

7. Row-maximal orthogonal latin rectangles.
The figures are pairs of permutations of degree n. Two pairs
(P1, P)), (P, P;) are compatible if (P;,P,) and (P}, P;) are both
!
discordant, and the two 2 x n latin rectangles (?) and (?) are
2 2
orthogonal. |
Denote by MOR(r,n) a pair of row-maximal orthogonal latin
r X n rectangles. Let MOR(n) = {r : there exists a MOR(r,n)}. For
small values of n, we have

MOR(1)= MOR(2) = {1}, MOR(3) = {3}, MOR(4) = {3,4},

MOR(5) = {3,5}, MOR(6) = {3,4,5}, MOR(7) = {3,4,5,6,7},
MOR@®) = {3,4,5,6,7,8}.

Horak, Kreher, Sirafi and myself [21] have obtained several
partial results towards settling the following conjecture.

Conjecture. For n>7, MOR(n) = {r : n/3 < r < n}.
In particular, it is shown in [21] that MOR(r, n) exists if n > 7
and

1
i) n/3<r< D except possibly when (r,n) = (6, 12)

i) 7/I9n<r<n

(i) @n—-1/3<r<n—-1,r odd

(iv) @/Nn<r<@/5nr=3 (mod 6), n=1 (mod 2)
V) @3/Sm<r<B3/4n,r=3 (mod 6), n=0 (mod 2)

(vi) —;—ng r<(Bn+2)/4,r =0 (mod 2), n=0 (mod 2).

On the other hand, there exists no MOR(r,n) for r < —i—n



156 S ALEXANDER ROSA

Several recursive constructions were also found. These, together
with the above results, suffice to show, for instance, that {r : 11 < r <
30} C MOR(30); the set on the left coincides with the conjectured
spectrum. But in general, quite a few unsettled cases remain.

8. Maximal sets of mutually orthogonal latin squares.

The figures are latin squares of order n on N; two latin squares
are compatible if they are orthogonal. Let L(n) be the spectrum of
maximal sets of mutually orthogonal latin squares (M OLS), i.e.

L(n) = {r : there exists a maximal set of r M OLS of order n}.

To determine L(n) in its entirety is, of course, hopeless at
present, as this would include solving several famous open problems,
such as the one about the existence of finite projective planes order
n. Even max L(n) remains undetermined for all values of n other
than prime powers or n = 6. Nevertheless, progress on this question
is very desirable.

Clearly, L(n) C {1,2,...,n— 1}. A theorem of Bruck [4] implies
that for n >4, n—2 ¢ L(n), n—3 ¢ L(n). On the other hand, 1 € L(n)
for n% 3 (mod 4). If ¢ is a prime power then ¢> — ¢ — 1 € L(¢?) [111.
Drake [14] has determined L(n) for small values of =n:

L3)={2},L4)={1,3}, L(5) = {1,4}, L(6) = {1}, L(7) = {1, 2, 6}.

He also showed {1,2,3,7} C L(8) but it is still an open question
whether 4 € L(8). For many additional results on maximal sets of
MOLS see [10] and [14] and the references therein.

For many problems of this kind that can be formulated for block
designs, consider just the following two.

9. Maximal partial Steiner triple systems.

The figures are 3-subsets (triples) of a given v-set; two triples
are compatible if they intersect in at most one element.
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Let P(v) be the spectrum for maximal partial Steiner triple
systems (ST'S), i.e.

P(v) = {m: there exists a maximal partial STS of order v with
exactly m triples}.

The largest element of P(v) was determined already in 1840’s
by Kirkman [23] (and since then repeatedly by many others):

v(v —1)/6 if v=1 or 3 (mod 6)
[vi(v —1)—8]/6 if v =5 (mod 6)

max P(v) =
v(v —2)/6 if v =0 or 2 (mod 6)
[viv —2)—2]/6 if v =4 (mod 6)

But it was only in 1974 that the smallest element of Pw) was
determined by Novék [26]: min P(v) = (v? + 6y)/12 where

( —2v+36 ifv=0or 8 (mod 12)

—1 ifv=1o0r5 (mod 12)
—2v ifv=2or 6 (mod 12)
. 3 if v =3 (mod 12)
Oy = 3
—-2v+4  if v =4 (mod 12)
11 if v =7 or 11 (mod 12)
15 if v =9 (mod 12)

( —2v+16 if v = 10 (mod 12)

The spectrum P(v) for odd v was completely determined by
Severn [30].
Let R(v) be the interval {min P(v), max P(v)}. Severn has shown

that
P(v) = R)\{max P(v) — 1} ifv=1 or 3 (mod 6)
[ RW) . ifv=5 (mod 6).

For even v, the spectrum P(v) has «almost» been determined
by Severn [30] but some open cases remain. More precisely, Severn
proved that

(1) if v is even, and if m € R(v) is such that m = —;—(v —2) (mod 2)
then m € P(v)
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1
(i) if m € R(v) and m # 5—(v—2) and m < min P(v)+h(v) or m > min
P() +s() (where h(v) and s(v) are given below) then m € P(v).

1 .
Butif m € R(v), m # —2—(1) —2) (mod 2) and min P(v)+h(v) < m <
min P(v) + s(v) then it is still undecided whether m € P(v). Severn
conjectured that in this case actually m ¢ P(v).

v =1t (mod 12)
t A s(v) t  h@®) s@)
0 (—18)/6 (2v—18)/6 6 /6 (2v+6)/6
2 w+4)/6  (20+2)/6 8§ (v—14)/6 (2v—10)/6
4 Ww+2)/6  (2v—2)/6 0 (- 4/6  (Qu—2)/6

10. Maximal sets of disjoint Steiner triple systems.

The figures are Steiner triple systems on a given v-set; they are
compatible if they are disjoint, i.e. have no triple in common. Here,
of course, v =1 or 3 (mod 6).

Let DS (v) = {m: there exists a maximal set of m pairwise disjoint
STS()s}. It is well known that DS(7) = {2}. Lu [25] has shown
that for v > 7, max DS(v) = v — 2, except possibly for the six orders
v = 141, 283, 501, 789, 1501, 2365. The only other general results
are: (1) for v > 7, 1 ¢ DS(v) [32]; (2) v—4 € DS(v) for v =52 —1,
i>1;B8) v—5€DSW) for v=2"_1,52—-1,7>1[6]

Cooper has determined DS(9) [7] (follows also from [6]):
DS(9) = {4,5,7}. He also determined the isomorphism classes of all
maximal sets of disjoint ST'S(9)’s.

Let us conclude our examples with one of a different kind.

11. Row-maximal Room rectangles.

The figures are pairs (f, «) where f is a 1-factor of Ky, on a given
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(2n)-set N and « is an injection from f into {1,2,...,2n— 1}. Two
figures (fi, 1), (f2, 02) are compatible if o '(5) N @3 '(i) = ¢ whenever
ozl_l(z')¢¢ and o, 1(z');aéqﬁ. Less formally, the figures are rows with 2n— 1
cells of which n—1 are empty such that the n nonempty cells contain
a partition of N into 2-subsets, and two such rows are compatible if
no element occurs in any of the 2n— 1 columns more than once.

Here we have the following result:

A row-maximal Room (r,2n)-rectangle (i.e. one with r rows and
2n elements) exists if

() (r,2n) = (1,4)
(ii) n < r < 2n except when (r,2n) = (2,4), (3,4) or (5, 6).

Indeed, (i) is trivial while (ii) follows directly from the existence
result for Howell designs H(r,2n) [1,31]. The only difference is that
although H(5,8) does not exist, a row-maximal Room (5,8)-rectangle
does:

12 34 56 78 — — -
67 - 14 — 58 23 —

38 —- 27— 16 — 45

Examples of other problems of this kind that have been discussed
in the literature include maximal sets of orthogonal Hamiltonian
circuits [22], maximal sets of orthogonal Hamiltonian decompositions
[22], maximal sets of disjoint 1-factorizations [2,5], maximal sets of
orthogonal l-factorizations [2], maximal k-cliques [13, 15, 16, 17],
maximal partial projective planes [11], maximal sets of orthogonal
Steiner triple systems [18] - this list is by no means exhaustive, and
could easily be extended further.
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