EVEN TYPE AND ODD TYPE SETS IN A STEINER SYSTEM AND LINEAR CODES

GIUSEPPE TALLINI (Roma)

1. General properties of even type and odd type sets in S(2, k, v).

Let (S, \mathcal{L}) be a Steiner system S(2, k, v), that is a linear space in which every line has k points and |S| = v. It is:

$$r = n^{\circ}$$
 lines through a point $= (v - 1)/(k - 1)$

$$b = |\mathcal{L}| = v(v - 1)/k(k - 1).$$

In $(S, \mathcal{L}) = S(2, k, v)$ a subset P is an *even type set* iff every line meets it in an even number of points. We denote by \mathcal{P} the family of even type sets of (S, \mathcal{L}) . A subset D of (S, \mathcal{L}) is an *odd type set* iff every line meets it in an odd number of points.

We denote by \mathcal{D} the family of odd type sets of (S, \mathcal{L}) . We set:

$$\mathcal{H} = \mathcal{P} \cup \mathcal{D}$$

It is:

$$(1.2) \emptyset \in \mathcal{P}; k \text{ even } \mapsto S \in \mathcal{P}; k \text{ odd } \mapsto S \in \mathcal{D}.$$

Moreover it is:

(1.3)
$$\begin{cases} k \text{ even } \mapsto [X \in \mathcal{P} \mapsto X' = S - X \in \mathcal{P}; \\ X \in \mathcal{D} \mapsto X' = S - X \in \mathcal{D}] \\ k \text{ odd } \mapsto [X \in \mathcal{P} \leftrightarrow X' = S - X \in \mathcal{D}] \end{cases}$$

Since for any $l \in \mathcal{L}$ it is:

$$X,Y\subseteq S\mapsto |(X\cup Y-X\cap Y)\cap l|=|X\cap l|+|Y\cap l|-2|X\cap Y\cap l|,$$
 we get:

(1.4)
$$\begin{cases} X, Y \in \mathcal{P} \mapsto (X \cup Y - X \cap Y) \in \mathcal{P}, \\ X, Y \in \mathcal{D} \mapsto (X \cup Y - X \cap Y) \in \mathcal{P}, \\ X \in \mathcal{P}, Y \in \mathcal{D} \mapsto (X \cup Y - X \cap Y) \in \mathcal{D}. \end{cases}$$

It is known that the power set of S, with respect to the symmetric difference:

$$(1.5) X, Y \subseteq S, \quad X \oplus Y = X \cup Y - X \cap Y$$

and to the product times a scalar in \mathbb{Z}_2 :

$$(1.5')$$
 $0 \cdot X = \emptyset, \quad 1 \cdot X = X, \quad 0, 1 \in \mathbb{Z}_2$

is a vector space over Z_2 , $(\mathbb{P}(S), \oplus, \cdot, Z_2)$ isomorphic to $Z_2^{v}(v = |S|)$. By (1.4) we get that $(\mathcal{H}, \oplus, \cdot, Z_2)$ is a subspace of $(\mathbb{P}(S), +, \cdot, Z_2)$, such that, if $\mathcal{D} \neq \emptyset, \mathcal{P}$ is an index two subspace.

We easily prove:

(1.6)
$$\begin{cases} X \in \mathcal{P}, \ X \neq S \mapsto |X| \equiv 0 \mod 2, \\ X \in \mathcal{P}, \ X \neq \emptyset \mapsto |X| \equiv 1 + r \mod 2, \end{cases}$$

Moreover:

(1.7)
$$\begin{cases} X \in \mathcal{D}, \ X \neq S \mapsto |X| \equiv r \mod 2, \\ X \in \mathcal{D}, \ X \neq \emptyset \mapsto |X| \equiv 1 \mod 2. \end{cases}$$

It follows:

I. If r is even the only either even type sets or odd type sets are the trivial ones, that is \emptyset , S. Moreover if r is odd:

(1.8)
$$\begin{cases} X \in \mathcal{P}, \ X \neq \emptyset, S \mapsto |X| \text{ even,} \\ X \in \mathcal{D}, \ X \neq \emptyset, S \mapsto |X| \text{ odd.} \end{cases}$$

From now on we assume r odd:

$$(1.9) r = 2\rho + 1.$$

We easily prove:

$$(1.10) D \in \mathcal{D} \mapsto [|D| \ge r; |D| = r \leftrightarrow k \text{ odd, } D \text{ is of type } (1, k)]$$

$$(1.11) \quad P \in \mathcal{P}, P \neq \emptyset \mapsto [|P| \geq r+1; |P| = r+1 \leftrightarrow P \text{ is of type } (0,2)].$$

By (1.10), (1.8) we get

$$(1.12) k \text{ even } \mapsto |D| \ge r + 2, \ D \in \mathcal{D}.$$

By (1.10), (1.11), (1.12) we have:

II. Every non-zero vector of $(\mathcal{H},+,\cdot,Z_2)$ has weight $w \geq r$ if k is odd, $w \geq r+1$ if k is even (we recall that the weight of $U \in \mathcal{H}$ is the number of non-zero components of the vector U, that is the number of points of U). It follows that \mathcal{H} is a linear code of Z_2^v correcting $e \geq (r-1)/2$ errors.

Assume now $\mathcal{D} \neq \emptyset$ and let be $D \in \mathcal{D}$. Set |D| = 2n + 1. The equation of characters, [2], with respect to D provides:

(1.13)
$$\sum t_{2s+1} = b, \sum (2s+1)t_{2s+1} = (2n+1)r,$$
$$\sum (2s+1)2st_{2s+1} = (2n+1)2n.$$

By $(1.13)_1$, $(1.13)_2$ we get:

$$2\sum s\cdot t_{2s+1}+b=2nr+r\mapsto b=r+2\sigma,\quad \sigma\in N.$$

Therefore:

(1.14)
$$\sum st_{2s+1} = nr - \sigma, \ b = r + 2\sigma.$$

By $(1.13)_3$, (1.14) we get:

$$2\sum_{s} s^2 t_{2s+1} + nr - \sigma = 2n^2 + n$$

and then, since r is odd, it is:

$$\sigma = 2\tau$$
, $b = r + 4\tau$.

Since it is vr = kb, we have:

$$vr = k(r+4\tau) \mapsto r(v-k) = 4\tau k \mapsto \begin{cases} v \equiv k \mod 4 \\ v \equiv k \mod 8 \text{ if } k \text{ is even.} \end{cases}$$

So we prove:

III. If \mathcal{D} is non empty, it is $b \equiv r \mod 4$ and $v \equiv k \mod 4$; it is $v \equiv k \mod 8$ if k is even. Moreover for any $D \in \mathcal{D}$, |D| = 2n + 1, set $b = r + 4\tau$, it is $(r = 2\rho + 1)$:

(1.15)
$$\sum st_{2s+1} = nr - 2\tau, \sum s^2t_{2s+1} = n^2 + \tau - n\rho.$$

By (1.15) we get $(r = 2\rho + 1)$:

(1.16)
$$\sum (s^2 - s)t_{2s+1} = n(n-1) - 3n\rho + 3\tau.$$

Since the left hand side in (1.16) is even, by (1.16) we get:

(1.17)
$$n\rho \equiv \tau \mod 2 \quad (b = r + 4\tau, r(v - k) = 4\tau k).$$

If ρ is even, that is $r \equiv 1 \mod 4$, by (1.17) we obtain that τ is even, that is $b \equiv r \mod 8$, whence $v \equiv k \mod 8$, $v \equiv k \mod 16$ if k is even, that is:

IV. If \mathcal{D} is non empty and $r \equiv 1 \mod 4$, it is $b \equiv r \mod 8$, $v \equiv k \mod 8$ and $v \equiv k \mod 16$ if k is even.

If ρ is odd (that is $r \equiv 3 \mod 4$) and τ is even, that is $b \equiv r \mod 8$, then n is even, that is $|D| = 2n + 1 \equiv 1 \mod 4$. If τ is odd, that is $b \not\equiv r \mod 8$, then n is odd, that is $|D| = 2n + 1 \equiv 3 \mod 4$. So we prove:

V. If \mathcal{D} is non empty and $r \equiv 3 \mod 4$, it is:

(1.18)
$$\begin{cases} b \equiv r \mod 8 \mapsto \forall D \in \mathcal{D}, |D| \equiv 1 \mod 4, \\ b \not\equiv r \mod 8 \mapsto \forall D \in \mathcal{D}, |D| \equiv 3 \mod 4. \end{cases}$$

As corollaries of I, III, IV we get:

VI. In $S(2, q, q^m)$, q even and $m \ge 2$ (for istance in an affine plane of order q even) it is $\mathcal{D} = \emptyset$.

VII. In $S(2, a+1, a^3+1)$ (abstract unital) if a is even, it is $\mathcal{D} = \{S\}$. If a is odd and $a \not\equiv 1 \mod 8$ it is $\mathcal{D} = \emptyset$.

VIII. In S(2, n, n(cn - c + 1)) (maximal arc) it is:

$$\begin{cases} c, n \text{ odd } \to \mathcal{D} = \{S\}, \\ c \text{ odd } n \text{ even } \mapsto \mathcal{D} = \emptyset, \\ c, n \text{ even, } c \not\equiv 0 \text{ mod } 8 \mapsto \mathcal{D} = \emptyset. \end{cases}$$

Assume now that in S(2,k,v) a non-empty even type set P exists and let k be odd. Then $D=S-P\in\mathcal{D}$ (see (1.3)) and by Theorems III, IV, V we get:

IX. S(2, k, v), k odd and $\mathcal{P} \neq \{\emptyset\}$, it is $b \equiv r \mod 4$ and $v \equiv k \mod 4$. If $r \equiv 1 \mod 4$ it is $b \equiv r \mod 8$ and $v \equiv k \mod 8$. If $r \equiv 3 \mod 4$ it is

(1.19)
$$\begin{cases} b \equiv r \mod 8 \mapsto \forall P \in \mathcal{P} - \{\emptyset\}, |P| \equiv v - 1 \mod 4, \\ b \not\equiv r \mod 8 \mapsto \forall P \in \mathcal{P} - \{\emptyset\}, |P| \equiv v - 3 \mod 4. \end{cases}$$

Let be $P \in \mathcal{P}$ and |P| = 2n. By the equations of characters referred to P, we get:

$$|P| = 2n, \sum st_{2s} = nr, \sum s(2s-1)t_{2s} = n(2n-1)$$

whence (since $r = 2\rho + 1$):

$$\sum s^2 t_{2s} = n(n+\rho), \sum st_{2s} = n(2\rho+1),$$

so that:

$$\sum (s^2 - s)t_{2s} = n(n - \rho - 1).$$

If ρ is odd, that is $r \equiv 3 \mod 4$, since the left hand side of the previous equation is even, we get: $n \equiv 0 \mod 2$, that is $|P| \equiv 0 \mod 4$. So we state:

X. In S(2, k, v), $r \equiv 3 \mod 4$, for any $P \in \mathcal{P}$, it is $|P| \equiv 0 \mod 4$.

If $r \equiv 3 \mod 4$ and k is odd, by prop X and (1.3) we get (see prop. V):

XI. In S(2, k, v), $r \equiv 3 \mod 4$ and k odd, if $\mathcal{D} \neq \emptyset$, for any $D \in \mathcal{D}$ it is $|D| = v \mod 4$, whence:

(1.20)
$$\begin{cases} b \equiv r \mod 8 \mapsto v \equiv 1 \mod 4, \\ b \not\equiv r \mod 8 \mapsto v \equiv 3 \mod 4. \end{cases}$$

2. Linear codes related to a S(2, k, v), $r \equiv 3 \mod 4$.

Let $S(2, k, v) = (S, \mathcal{L})$ be a Steiner system with $r \equiv 3 \mod 4$. As we previously considered we associated to it the subspace $\mathcal{H} = \mathcal{P} \cup \mathcal{D}$ of the vector space $\mathbb{P}(S) = (\mathbb{P}(S), \oplus, \cdot, Z_2)$ that is a $linear\ (v, w, d)$ -code, where $v = \dim \mathbb{P}(S) = |S|$, w=weight of $\mathcal{H} \geq r$, $d = \dim \mathcal{H}$. Our aim is now to calculate d.

In $\mathcal{P}(S)$ we define a scalar product in the classical way:

$$X, Y \in \mathbb{P}(S), X(x_i), Y = (y_i), X \cdot Y = \sum x_i y_i (\in \mathbb{Z}_2).$$

We easily prove:

$$X,Y,\in \mathbb{P}(S),\ X\cdot Y=|X\cap Y|_2=\left\{ egin{array}{ll} =0 \ \mbox{if} \ |X\cap Y| \ \mbox{is even} \\ =1 \ \mbox{if} \ |X\cap Y| \ \mbox{is odd}. \end{array}
ight.$$

So in $\mathbb{P}(S)$ the following orthogonality is defined:

(2.1)
$$X \perp Y \leftrightarrow |X \cap Y|_2 = 0, \quad X, Y \in \mathbb{P}(S).$$

If T is a subspace of $\mathbb{P}(S)$ we set:

(2.2)
$$T^{\perp} = \{ X \in \mathcal{P}(S) : X \perp Y, \forall Y \in T \}.$$

We easily prove:

(2.3)
$$\dim T + \dim T^{\perp} = \dim \mathbb{P}(S) = v.$$

By proposition X we get:

(2.4)
$$\begin{cases} X \in \mathcal{P} \mapsto \forall Y \in \mathcal{P}, |X \oplus Y| = |X \cup Y - X \cap Y| = \\ = |X| + |Y| - 2|X \cap Y| \equiv 0 \operatorname{mod} 4, \\ |X| \equiv 0 \operatorname{mod} 4, |Y| \equiv 0 \operatorname{mod} 4 \mapsto |X \cap Y| \equiv \\ \equiv 0 \operatorname{mod} 2 \mapsto X \perp Y, \forall Y \in \mathcal{P} \end{cases}$$

Set a = 1 if $b \equiv r \mod 8$, a = 3 if $b \not\equiv r \mod 8$. By prop. V we get:

$$\begin{cases} X \in \mathcal{P} \mapsto \forall Y \in \mathcal{D}, |X \oplus Y| = |X| + |Y| - 2|X \cap Y| \equiv a \mod 4, \\ |X| \equiv 0 \mod 4, |Y| \equiv a \mod 4 \mapsto |X \cap Y| \equiv 0 \mod 2 \mapsto X \perp Y, \\ \forall Y \in \mathcal{D}. \end{cases}$$

By (2.4), (2.5) we get:

$$(2.6) X \in \mathcal{P} \mapsto \forall Y \in \mathcal{H}, \ X \perp Y \leftrightarrow X \in \mathcal{H}^{\perp}$$

that is:

$$(2.7) \mathcal{P} \subseteq \mathcal{H}^{\perp} \mapsto \dim \mathcal{P} \leq \dim \mathcal{H}^{\perp}.$$

If $\mathcal{D}=\emptyset$, that is $\mathcal{P}=\mathcal{H}$, by (2.7) and (2.3) we get: $2\dim\mathcal{P}\leq\dim\mathcal{P}+\dim\mathcal{P}^{\perp}=v$, that is

$$(2.8) \mathcal{D} = \emptyset \mapsto d \le v/2.$$

If $\mathcal{D} \neq \emptyset$, whence $\dim \mathcal{P} = d - 1$, by (2.7) and (2.3) we get: $2d - 1 = \dim \mathcal{H} + \dim \mathcal{P} \leq \dim \mathcal{H} + \dim \mathcal{H}^{\perp} = v$, that is:

$$(2.9) \mathcal{D} \neq \emptyset \mapsto d < (v+1)/2.$$

Assume now $\mathcal{L} \subset \mathcal{H}$, whence $\mathcal{L} \subset \mathcal{D}$ and k is odd, moreover S(2,k,v) is a projective plane of order q=k-1, that is a $S(2,q+1,q^2+q+1)$, with $q\equiv 2 \operatorname{mod} 4$ (since $r=q+1\equiv 3\operatorname{mod} 4$). We have:

$$X \in \mathcal{H}^{\perp} \leftrightarrow \forall Y \in \mathcal{H}, X \perp Y \leftrightarrow |X \cap Y| \equiv 0 \mod 2, \forall Y \in \mathcal{H} \mapsto \forall l \in \mathcal{L}, |X \cap l| \text{ is even } \leftrightarrow X \in \mathcal{P},$$

that is:

$$(2.10) \mathcal{H}^{\perp} \subseteq \mathcal{P} \mapsto \dim \mathcal{H}^{\perp} \leq \dim \mathcal{P}.$$

By (2.10) and (2.3) we get: $v = \dim \mathcal{H} + \dim \mathcal{H}^{\perp} \leq \dim \mathcal{H} + \dim \mathcal{P} = 2d - 1 \mapsto d \geq (v + 1)/2$, that is:

$$(2.11) \mathcal{L} \subset \mathcal{D} \mapsto d > (v+1)/2.$$

By (2.9) and (2.11) we obtain:

I. In a projective plane $S(2, q+1, q^2+q+1)$ with $q \equiv 2 \mod 4$, it is $d = (q^2+q+2)/2$ and \mathcal{H} is a linear $(v = q^2+q+1, w = q+1, d = (q^2+q+2)/2)$ -code.

At last we prove:

II. In $PG(m, 2) = S(2, 3, \theta_m)$, \mathcal{H} is a linear $(v = \theta_m, w = \theta_{m-1}, m+2)$ -code (where $\theta_m = 2^{m+1} - 1$).

Proof. In PG(m,2) every odd type set is either PG(m,2) or a hyperplane (since it is of class [1,3]). Then every even type set is either \emptyset or the complement of hyperplane. It follows $w = \theta_{m-1}$, $|\mathcal{H}| = 2\theta_m + 2 = 2^{m+2}$ and then d = m + 2.

Theorems I and II are well known but here they follows as particular cases of the general geometric theory previously explained.

REFERENCES

- [1] Cameron P.J., van Lint J.H., Graph Theory and Block Designs, LMS Lecture Note Series 19, (1975).
- [2] Tallini G., Graphic characterizations of algebraic varieties in a Galois Space, Atti Convegno «Teorie Combinatorie» Roma Sett. 1973, Acc. Naz. Lincei, Roma, Tomo II, 153-165.
- [3] Tallini G., Spazi parziali di rette e codici Correttori, Rivista di Mat. pura ed appl. Univ. Udine, (1987) 43-69.
- [4] Tallini G., Linear codes associated with geometric structures, Results in Math., Birkhäuser Verlag, Basel, (1987) 411-422.

Dipartimento di Matematica "Guido Castelnuovo" Università "La Sapienza" P.le A. Moro, 2 00185 Roma (Italy)