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ON THE USE OF PAIRWISE BALANCED DESIGNS
AND CLOSURE SPACES IN THE CONSTRUCTION
OF STRUCTURES OF DEGREE AT LEAST 3 (*)

LUC TEIRLINCK (Auburn)

We prove that a set of v — 2 symmetric idempotent latin squares
of order v, such that no two of them agree in an off-diagonal position,
exists for all sufficiently large odd v. We describe how the techniques
used in the proof relate to techniques used in [17] to construct
generalised idempotent ternary quasigroups whose conjugate invariant
group contains some specified subgroup. We also show how these
techniques fit into the more general context of trying to extend group
divisible design methods to combinatorial structures with ¢ > 3, using
closure spaces.

1. Introduction.

Notions used, but not defined, in this introduction will be defined
in later sections.

It is well known that PBD-constructions and more general
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group divisible design constructions are among the most important
constructive tools for many types of combinatorial structures «with
t = 2». For analogous structures with t > 3, there usually are obvious
t-wise balanced design constructions, but these are somewhat limited
in applicability by the relative scarcity of constructions for t-wise
balanced designs with ¢ > 3.

In [17], we found PBD-constructions for certain structures with
t = 3. In section 2 of this paper, we give some examples of these
constructions. However, we do not go into concrete applications,
because such applications are already given in [17].

A naive application of PBD-constructions and group divisible
design methods for large sets of disjoint structures with t =2 does
not work. However, in section 3 of this paper, we nevertheless use
P B D-constructions for large sets of certain structures with ¢ = 2. For
instance, we describe P B D-constructions for golf designs and related
structures. A golf design for v clubs is a collection of v — 2 symmetric
idempotent latin squares of order v such that no two of them agree
in an off-diagonal position. (Golf designs are equivalent to large sets
of certain structures with t =2, as we will explain in section 3).
Golf designs were introduced in [12] and further studied in [18]. As
noticed in [18], any large set of disjoint S(2,3,v) yields a golf design
for v clubs. Such large sets exist for all v =1 or 3 (mod 6) with v=7
[6, 7, 8]. (However, as reference [8] is unfinished, due to the death
of the author, part of the proof for v € {141,283,501,789, 1501, 2365}
is missing). No golf design for 5 clubs exists [12]. In [12] a golf
design for 7 clubs is given and in [18] a golf design for 17 clubs is
constructed. However, the problem remained open for al v =5 (mod
6), v & {5,17}. In section 3, we prove that a golf design for v clubs
exists for all sufficiently large odd v. In section 4, we show that if
a golf design for 11 clubs would exist, then they would exist for all

= 5 (mod 6), except 5 and possibly 41. The existence of a golf design
for 11 clubs remains open, however.

One of the most natural generalizations of PBD-constructions
and group divisible design techniques to t > 3 involves matroids or,
more generally, closure spaces. Trying to make this idea yield concrete
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results for t > 4 seems very difficult, but may have great potential,
because of the fundamental importance of the technique for t =2. In
section 5, we explain how the techniques of [17] and sections 2, 3 and
4 of the present paper fit into the general context of trying to extend
group divisible design constructions to higher t, using closure spaces.

In this paper, we assume that sets are finite unless they are
infinite for obvious reasons.

2. Orthogonal arrays and ordered designs.

A k — S-array, S a set, k a positive integer, will be subset of
S*. The elements of the array are called rows. If we do not want
to specify k£ or S, we use terms such as k-array, S-array, or simply
array. The conjugate invariant group H(q) of a k — S-array q will be
the set of all o € S; such that (z1,...,z¢) € ¢ iff (zoq),..., Tow) € q.
We call ¢ totally symmetric if H(q) = S;. A t-subspace of a k — S-
array q will be a subset D of S such that if (z1,...,%) € q
and |{s € {1,...,k};z; € D}| > t, then {z1,...,z4} C D. If ¢ is a
k — S-array and E C S, we denote by q|E the k — E-array consisting
of all (zy,...,xx) € ¢ with {z1,..., 7z} C E. If ¢ is a k — S-grray and
if go is a k — D-array with D C S, then we say that ¢ contains
(D, qo) as a t-subspace if D is a t-subspace of ¢ and ¢|D = ¢p. An
orthogonal array OA(t, lc,v),t, k,veNk>t+1,is a k— S-array ¢, S
a v-set, such that for any ¢-subset {i1,...,15;} of {1,...,k} and for any
t-tuple z;,...,z; of (not necessarily distinct) elements of S, there is
exactly one row (y1,...,yx) of ¢ with y;, = z;,,..., v, = T;,. A subspace
of an OA(t, k,v)g will be a t-subspace of the array ¢. If § is a set
of subsets of a set S, then a § — OA(t,k,S) will be a k& — S-array
g such that, for any (zi,...,2¢) € ¢ and for any C € §, we have
I{i € {1,...,k}; z; € C}| < t and such that for any t-subset {i1,..., i}
of {1,...,k} and any t-tuple z;,...,s; of (not necessarily distinct)
elements of S, not entirely contained in an element of §, there is
exactly one row (y1,...,yx) of ¢ with y; ==z;,... s, =z;,. If ¢ is
an OA(t,k,v) on a set § and if § is a set of subspaces of ¢, then
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¢— | J@ID)is a § — OA(t, k, S). However, not every 6 — OA(t, k, S) can

Desé
be completed into an OA(t, k, |S|) on S. An ordered design OD(t,k,v)
is defined in the same way as an QA(t, k,v) except thatz;,,..., z;

are assumed to be pairwise distinct and that all rows of the array
are assumed to contain & distinct elements of S. If S is a set, we
denote by P(S) the set of all subsets of S and by P.(S) the set
of all k-subsets of S. If S is a v-set, v >t —1, and if t > 2, then
an OD(t, k,v) on § is the same thing as a P,_(S) — OA(,k,S). A
subspace of an OD(t, k,v) is defined to be a t-subspace of the array.
- An OA(t, k,v)q on a set S is called idempotent if (z,...,z) € ¢ for all
z € §, ie. if {z} is a subspace for all x € S. Obviously, if ¢ is an
idempotent OA(2, k,v) on a set S, then ¢’ =¢—{(z,...,z);x € S} is an
OD(2,k,v) with H(g) = H(q'). Conversely, if ¢ is an OD(2,k,v) on a
set S, then ¢’ = qU{(z,...,z);z € S} is an idempotent OA(2, k, v) with
H(q) = H(¢'). Thus, there is a one-to-one correspondence, preserving
conjugate invariant groups and subspaces, between idempotent
OAQ,k,v) and "ODQ2,k,v). An OAG3,4,v)g on a set S is called
2-idempotent if it is idempotent and if (z,z,y,y), (z,y,7,v) and
(z,y,y,%) are in ¢ for all z,y € S. In other words, an OA(3,4,v)q on
a set S is 2-idempotent iff A4 is a subspace for all A C § with |4] < 2.
Again, there is an obvious one-to-one correspondence, preserving
conjugate invariant groups and subspaces, between 2-idempotent
OAQ3,4,v) and OD(3,4,v).

, A 3 — S-array q is called commutative if (12) € H (qv). An
OA(2,3,v) on a v-set S can also be considered as a latin square
with rows and columns indexed by S and with entries in S.
The entry in row z and column y is given by 2, where z is
the unique element of S with (z,y,2) € ¢q. Conversely, every latin
square with rows and columns indexed by § and entries in S
can be obtained in this way from a unique OA(2,3,v) on S. The
OA2,3,v) is idempotent (commutative, respectively) iff the latin
square is idempotent (symmetric, respectively). It is well known
that idempotent latin squares of order v exist for all v#2 and that
symmetric idempotent latin squares of order v, v#0, exist iff v is odd.
The OA(2,3,v) on a v-set S are also in one-to-one correspondence
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with the quasigroups on S. Indeed, we can identify the OA(2, 3, v)q on
S with the quasigroup (S, ) defined by z -y = 2, where again z is the
unique element of § with (z,y, 2) € q. The quasigroup is idempotent
(commutative) iff the OA(2,3,v) is idempotent (commutative).

A t-wise balanced design S(t, K,v),t,v € NJK C N, is a pair
(5,B), where S is a v-set and B C P(S) such that |B| € K for
all B € B and such that any ¢-subset of S is contained in exactly
one element of 8. The elements of S are often called points and
the elements of § are called blocks. If t = 2, the elements of 8 are
sometimes called lines. If t =2, and z,y € S,z#y, we denote the
unique line through z and y by zy. We write S(¢,k,v) instead of
S(t,{k},v). An S(t, k,v) is called a Steiner system. There is an obvious
one-to-one correspondence between S(t,t+1,v) and totally symmetric
OD(,t+1,v). If (S§,8) is an S(t,K,v) and if for every B € 8 an
OD(,k,|B|)gg on B is given, then it is easy to check that U gg is

. Bep
an OD(t, k,v). Similar constructions can be given for a wide variety of

combinatorial structures. We call a construction of this type a t-wise
balanced design construction. As 2-wise balanced designs are often
called pairwise balanced designs or PBD’s, the special case t =2 of
the construction is called a PBD-construction. The following type of
construction is very well known. Again, we state it for OD(2, k, v),
but it has analogues for a wide variety of structures «with t = 2».

Construction 1. Let (S,8) be an S(2, K,v), |S| > 1. Let X and
Y be sets, XN(S xY)=0, |X|=w, [V|=u. If gx is an OD(2, k, w)
on X, if, for each s € S,q, is an ODQ2,k,w+u) on X U{s} xY)
containing (X,qx) as a subspace and if for each B € 3, there is an
OD@,k,w+u|B|)gp on X U(B xY') containing (X U({s} xY), ¢,) as a
subspace for all s € B, then-q = U gp is an OD(2, k, w+uv). We have

Beg :

H(g) D (] H(gr)- The sets X, X U({s} xY), s€ S, and X U(B x V),

Bep
B € 3, are subspaces of g.

Choosing, in Construction 1, X =@ and || = 1, yields the PBD-
construction described above. Construction 1 has a generalization
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using ordered designs with holes, which results in OD(2,k,w +uv) in
which not all of the sets listed in the last sentence of the construction
wind up as subspaces. We will describe this generalization, in the
more general context of closure spaces, in section 5. Using closur(:,
spaces, Construction 1 can be generalized to arbitrary t, but the
resulting construction technique is not exactly easy to use for ¢t > 3.
However, in [17] 2-wise balanced design type constructions and
analogues of Construction 1 are used for OD(3, 4, v). Potentially, these
constructions could also be used to construct OA(3, 4, v) with all kinds
of prescribed properties. The key ingredient for these constructions is
the following proposition and special cases of it.

PROPOSITIONL. [17, Construction 3]: Let (S,3) be an S(2, K,v),
Kn{0,1,2} =0, B#0. Let Y be a u-set. Let § ={B xY; B € B}. Then
thereis a § — OA®B,4,S xY)q with (13) 24)c H(q). If either k is odd
for all k € K or u is even (or both), then we can choose q such that
H(q) D D4, where Dy = {c € Ss4;0({{1,2},{3,4}}) = {{1,2},{3,4}}}
(It is easy to see that the group Ds, as defined here, is conjugate to
the dihedral group on 4 elements. Note that the complement of the
graph {{1,2},{3,4}} on {1,2,3,4} is a 4-cycle).

To make this paper more self-contained, we include a proof
of those cases of Proposition 1 that will actually be needed in
concrete applications in sections 3 and 4. For each B € 3, put
an idempotent quasigroup (B,op) on B. As we are assuming
2 ¢ K, such an idempotent quasigroup exists. If k£ is odd for
all £k € K, then we can choose all (B,op) to be commutative.
Choose Y =Z,. Put g = {((z1,%1), (2, %2), (33, 13), (T4,14)) € (S XZ)*;
{z1, 2, 3,24 }| =4, |BN{z1, 22, 3, :1:4}| < 2forall B € B, 11412 = 13+14
and {z104,4,72} = {2304,2,Z4} = 122 N 2324 }. It is easy to check taht ¢
is a 8§ —0AQB,4,S xzZ,) with (13) (24)€ H(g) and that, if all (B, op)
are commutative, then Ds C H(q). The claim about even u can be
proved in a similar way, using commutative quasigroups with holes.
As, in this paper, we will not use this claim in concrete applications,
we refer to [17] for the details.

Proposition 1 makes the following adaptation of Construction 1
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easy to use for OD(3,4,v).

Construction 2. Let (S, ) be an S(2, K,v), |S| > 1, KN{0,1} = 0.
Let X and ¥V be sets, X NS xY) =0, |[X| =w, |Y| =u. Put
§ ={BxY;Bep} If go is a 6§ —0OAQB,4,S xY), if gx is an
OD@3,4,w) on X, if, for each s € S,q;, is an OD@3,4,w +u) on
X U({s} xY) containing (X,qx) as a subspace and if, for each
B € B, there is an OD(@3,4,w +u|B|)gp on X U (B x Y) containing

(X U({s} xY),gs) as a subspace for all s € B, then ¢ = U g8 | Ugo
Bep

is an OD@3,4, w+uv). We have H(g) D ﬂ H(qp) | N H(gy). The sets
Bep
X, XU({s}xY),s€S, and XU (B xY),B € S, are subspaces of g.
Checking the claims in Construction 2 is straightforward.
Construction 2 has an obvious generalization to arbitrary k. Also,
there are generalizations of Construction 2 in which not all of the
listed sets wind up as subspaces. However, we are not trying to
maximize generality here, but will defer this to section 5. Applications
of Construction 2 are given in [17]. The relevance of Proposition
1 is that if 2 ¢ K and if we are not interested in H(g) or if we
only want H(q) to contain (13) (24) or a conjugate permutation,
then the gy required in Construction 2 always exists. Proposition 1
also makes Construction 2 very powerful as long as one only wants
H(q) to contain some group GG conjugate to a subgroup of D4. Even
for groups G not conjugate to a subgroup of D, and in fact even
for G = S;, a qo satisfying the properties required in Construction 2
and H(qp) D G can be found for plenty of choices of the S(2, K, v)
(S,8) and the cardinality v of Y. Nevertheless, the lack of a very
general theorem seems to make Construction 2 less easy to apply for
such groups. To get some feeling for the problem of constructing the
required qo for these groups, it may be useful to look at the special
case G =84 and [V|=1. If (S,8) is an S(2, K, v), v > 1, then a totally
symmetric 8 — OA(3,4,v) on § is easily seen to be equivalent with
an S, {k+1L;ke K}U {4}, v+1)(SU{o0},s), oo ¢ S, such that the
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elements of 8’ containing oo are exactly the sets BU {0}, B € B, and
such that any block of 8 not containing co has exactly 4 elements.
It is conjectured that if (S,8) is an S(2,3,v), then such a §' always
exists. This conjecture is known to be true for all v < 15 [3], but
finding a general proof seems to be exceedingly difficult. (We refer to
[9] for a survey of results on this problem).

Of course, if we want to use Construction 2 to construct totally
symmetric OD(3,4,v), or equivalently S(3,4,v), then the special case
K ={3},|Y|=1 and |X| =1 of the construction becomes trivial.

3. Large sets.

We denote by DS* the set of all k-tuples of distinct elements of
S. A.large set of disjoint OA(,k,v), OD(t, k,v) or S(t, k,v), briefly
LA(t, k,v), LD(t, k,v) or LS(t, k,v), is a partition of S*¥, DS* or P,(S)
into OA(t, k,v), OD(t, k,v) or S(t, k,v). When we say that a collection
(Ar)rer 1s a partition of a set X, we mean that {A,;7r € R} is a
partition of X and that A, #A,, for ri#r;. In particular, when we
denote a large set by a collection (qT),E R, We are assuming that g, #q,,
for r1#r;. When denoting the large set by a set {g,; € R} we are not
making this assumptions. '

For a survey of known results about S(t,k,v), we refer to [1].
For a review of results about OA(t, k, v) we refer to [1] for ¢t =2 and to
[10] for t > 2. An LA(t, k,v) exists iff an OA(t, k,v) exists [15]. For a
survey of results about LS(t, k,v), OD(, k,v) and LD(t, k,v) we refer
to [15]. Moreover, in [17] some additional results about OD(@3,4,v)
are proved.

If § is a set of subsets of a set S, then a large set of disjoint
6 — OA(t,k,S), or briefly L6 — OA(t,k,S), is a partition of the set
of all (z1,...,z) € S* satisfying [{i € {1,...,k};z; € D}| < t for all
Debé,into § — QA k,S). Ift>2and v >t—1, an LD(t, k,v) on a
set S is the same thing as an LP;_1(S)— OA(t, k,S).

For LD(2,3,v), a naive application of PBD-type constructions
or analogues of Construction 1 does not work. However, Proposition 1
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will help us out again. We first need some further observations and
definitions.

An LA(,k,v) has v*! elements. A subspace of an LA(, k,v)
(gr)rer Oon a v-set S is a subset D of S for which there is an Ry C R
such that D is a subspace of all ¢, with r € Ry and such that
(¢r|D)ren, is an LA(t, k,|D|) on D. We will call a collection (A4,),cp of

subsets of a set X a quasipartition of X if U Ar=X and A, NA,, =0

. TER
whenever ri#r;. Thus, (4,).egp is a quasipartition of X iff (Arrer,

is a partition of X, where Ry = {r € R; A,#0}. If S is a set and
6 C P(S), a 6 — LA(t,k,S) will be a collection (g, 6,),cr, Where, for
each r € R, 6, C 6 and ¢, is a §, — OA(, k,S) such that (¢,),cp is a
quasipartition of the set {(z1,...,z) € S*; there is no D € § with
{z1,...,3¢} C D} and such that, for each D € &, there are exactly
|D|¥~? elements r of R with D € §,. Note that if (g,,8,)rep is 2 6§ — LA

(t, k,S), then we must have § = U 6 or 6 = U 6,) U {0} and that
r€R r€ER
a §— LA(t,k,S) is exactly the same thing as a (§ U {0}) — LA(t, k, S).

(We are assuming k£ > t+1). We call a collection (¢,),cp of k-S-arrays a
(6r)rer— LA, k,S) if (ar,6)rer is a § —LA(, k, ), where § = | ] §,. If ¢

isad—0A(+1,t+2,5), then we can define a § — LA(E, t+1, S)(;Ejéz)meg,
where ¢, = {(z1,...,%t1) € S (21, ..., 2441, 2) € ¢} and 6, = {D €
8;z € D}. For all z € S, H(gs) O (H(q))i+2, where (H(q))i42 denotes the
stabilizer of t+2 in H (¢)- (We consider (H(g))+2 as a permutation group
on {1,...,t+1}.) Note that (12) € (Ds)s. The following proposition is an
immediate corollary of Proposition 1 and the preceding observations.

PROPOSITION 2. Let (S,8) be an S(2,K,v), KN{0,1,2} = ¢, B=0.
Let Y be a u-set. For each (z,y) € S x Y, put 844 ={BxYV;z €
B € B}. (Of course, 64, is idependent of y). Then there is a

O@y)@mesxy — LAR,3,5 X V)G wynesxy- If either k is odd for
all k € K or u is even (or both), then we can choose all g, to be

commutative.

Proposition 2 could potentially be used to construct LA(2,3,v)
with all kinds of prescribed properties. In the following, we will only
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emphasize applications to the construction of LD(2,3,v).
The following construction provides a PB D-type construction for
LD, 3,v). ’

Construction 3. Let (S,B) be an S(2, K,v),K N{0,1,2} =0, 0.
Let coj#003, {001,002} NS = §. Assume that for each B € 3, there is
an LD(2,3,|B| + 2)(qu B))zen on B U {001,002} such that, for all

T e Ba {(001, 02, .’13), (001, z, 002); ((E, o1, 002))

(002, 001, T), (002, T, 001), (T, 002, 001)} C ¢(,B)-

Let (qos)ses be a (Bo)ses — LA2,3,S), where B, = {B € B8;z € B}.

Put ¢, = U 48 | Udqog. Then (gz)ses is an LD(2,3,v+2) on
| BEB,
S U {001,002} and, for each

(

5 €8, H(ga) Dt (] Hws) | N H(Goo).

\5es.

In [5] it is proved that LD(2,3,v) exist for all v-€ N,
v>3,v¢ {6,14,62}. No LD(2,3,6) exists. The existence problem for
LD(@2,3,14) and LD(2,3,62) remains open. Construction 3 provides a
construction for L D(2,3,v) not contained in [5], but fails to take care
of 14 and 62. Generalizations of Construction 3, of the type we will
consider in section 4, do not yield 14 or 62 either. |

Robinson [12] asked for which v € IN there is a collection of
v — 2 symmetric idempotent latin squares of order v such that no
two squares in the collection agree in an off-diagonal position. Such
a collection is called a golf design for v clubs. It is easy to see that a
golf design for v clubs is equivalent to a commutative L D(2,3,v). (We
call a collection of arrays commutative or totally symmetric if all its
elements are commutative or totally symmetric). Totally symmetric
LD(2,3,v) are equivalent with LS(2,3,v). A necessary and sufficient
condition for the existence of an S(2,3,v),v € N,is v = 1 or 3 (mod 6)
or v =0[4]. An LS(2,3,7) does not exist [2]. Lu constructed LS (2,3, v)
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for all v =1 or 3 (mod 6), v > 7 [6,7,8]. However, as reference [8] is

unfinished, due to the death of the author, part of the proof for the

cases v € {141,283,501,789,1501,2365} is missing. No commutative

LD(2,3,5) exists [12]. In [12]), a commutative LD(2,3,7) is given

and in [18] a commutative LD(2,3,17) is constructed. However, the

existence problem for commutative L D(2,3,v) remained open for all
= 5 (mod 6), v ¢ {5,17}.

Next, we will give a short proof of the fact that commutative
LD(2,3,v) exist for all sufficiently large odd v. In section 4, we
will show that if a commutative LD(2,3,11) would exist, then a
commutative LD(2,3,v) would exist for all v =5 (mod 6), except 5
and possibly 41. The existence of a commutative LD(2,3,11) is still
in doubt, however.

If (g)rer 1is a totally symmetric LD®2,3,v+2) on a set
B U {c01,002}, {001,002} N B =@, ocoj#00y, then, for each r € R,
we can change the index r to z, where (co01,002,7) € ¢,. Thus,
we obtain a collection (g.);cp of the type required in Construction
3. In particular, a commutative LD(2,3,2+7) and a commutative
LD(2,3,2+11) of the type required in Construction 3 both exist. By
a famous result of Wilson [19], there is a constant vy such that an
S(2,{7,11},v)(S, B) exists for all odd v > vg. By Proposition 2, the
commutative (8;)zes — LAR, 3, S)Gos)ces required in Construction 3
exists. Construction 3 then guarantees the existence of a commutative
LD(2,3,v+2). Thus, there is an integer v; such that commutative
LD(2,3,v) exist for all odd v > v;.

We close this section by defining and discussing the analogues
for LD(t, k,v) of some of the notions defined above for L A(t, k, v). An
LD(t,k,v) with v >t has (v—t)(v —t —1)...(v — k+ 1) elements. A
subspace of an LD(t, k,v)(¢,)reg ON a v-set S is a subset D of S for
which there is an Ry C R such that D is a subspace of all ¢, with
r € Ry and such that (¢,[D),cp, is an LD(t,k,|D|) on D. Note that
the definition of LD(t,k,v) implies that the empty collection is an
LD(t,k,v) for all v < k—1. (Indeed, if |S| < k—1, then DS* is empty
and the empty collection partitions it). Thus, if (¢,),cr is an LD(t, k, v)
on a set S, then any subset D of S with |D| < k—1 is a subspace of
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(g-)rer. (We only have to choose, in the definition of subspace, Ry = 0).
If t1,t, € N and S is a set, we put P, ;,(S)={A C S;t1 < |4]| < t2}.
A §—-0D(E,k,S) will be a (6 U Py;_1(S)) — OAQR, k,S)g such that
q C DSk. (Ift > 2, every (bUPy-1(S)—OA(t, k,S)q satisfies ¢ C DS*,
so that this condition is only relevant for t =0 or t =1). If S is a
set and 6 C P(S), then a 6 — LD(t, k,S) will be a collection (q,, 6,),¢r
where, for each r€ R, 6, C 6 and ¢, is a 6, — OD(t, k,S) such that
(¢-)rer is a quasipartition of the set {(z1,...,sr) € DS¥; there is
no D e § with {z;,...,zx} C D} and such that, for each D € §
with |D| > t, there are exactly (|[D| —t)(|D|—-t—1)...(|D| - k+1)
elements r of R with D € 6,. If (¢,,8.)rep is @ § — LD(t, k,S) then

U 6, C 6 C (U 6,> U Py k-1(S). Moreover, elements of P, _1(S) do

reR r€ER
not play any really essential role in the definition of § — LD(t, k, v).

We call a collection (g,),eg of kK — S-arrays a (6,)regp — LD, k,S) if
(4r,8:)rer is a 8§ — LD(t, k,S) where § = |_] 6,. Obviously, if, for each

r€ER
r€ R,A, C P,;_1(S), then a (6,),eg — LD(t, k,S) is the same thing as
a (57 U AT)TER - LD(ta k) S)

4. Some further constructions for commutative L D(2,3,v).

A construction of Rosa [13] produces an LS(2,3,2v + 1) from
an LS(2,3,v) with v > 7. This construction can be recopied
almost literally, replacing unordered triples by ordered triples, for
commutative LD(2, 3, v). The only change is that, for v = 5 (mod 6), the
S(3,4,v+1)(N’, B) used in [13] has to be replaced by an OD(3,4, v+1)g on
N'with (12) € H(g) and the S(2,3,v)(N'—{1}, B;) used in [13] have to be
replaced by the commutative OD(2, 3, v)g; = {(i1, 12, 93); (41, 92, 13,1) € q}.
An OD(@3,4,v) with (12) € H(g) and, in fact, an OD(3,4,v) with
D4 C H(q) exists for all even v [17]. Thus, the existence of a
commutative LD(2,3,v),v > 7, implies the existence of a commutative

LD(2,3,2v+1).
Next, we construct a totally symmetric (§¢;,4)); )z :—LD(2, 323U
{oco1,002}), where oo1#002, {001, 002} NZ2% =¢ and 8.y = {{o01, 002,
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(z,0),(z,1),(z,2)}}. For each (z,y) €Z%, put Auy = {{(0,2),(1,i+
y), 2,1+ 2y +z)};i €EZ3}. Put

B(:):,y) = {{(7';.71); (7:7.7.2)) (z,]4)},1: EZB - {m}yjl'—’ﬁj% {(7’.;.7.3)) (xs]4>}
is contained in an element of A ), where {j3} =Z3 — {j1,j2}}. Put
Cioyy = {{oo, (z+1,71), (@ +2, 2+ D} 1 € {1,2}, {(z + 1,71),(z + 2, /2)}

is contained in an element of Ay )} Put Dy = Ay U By UCy .y
and

Ay = {(G1,71), G2, J2), (i3, 73)); { (i1, J1), (42, J2), (43, J3)} € Dz }-

Then (g )@ ez? is @ totally symmetric (8¢ ) yezz — LD(2,3 25U
{oc01,002}).

A group divisible design with block size 3 on a set S will be
a triple (S,&, B), where the elements of S are called points, the
elements of G groups and the elements of 3 blocks, such that G is a
partition of S, such that |B| =3 for all B € 3, such that [BNA4| <1
for all B € 8 and A € G and such that any two points not contained
in.a common group are contained in exactly one block.

Construction 4. Let (S,G,3) be a group divisible design with
block size 3,5 a v-set, and let coi#00,, (S XZ3)N {001,002} = . Assume
that, for each A € G there is an LD(2,3,3|A| + 2)(q@ y)A) = y)cAxZ 5
~on (A xZ3)U {oco01,002}. For each B € B, let (quyB)wyensz, be a
(V)@ yeBxz s —LD(2,3, (B xZ3)U{oo1, 002}) where () = ({x} xZ3)U
{oo1,002}. Let (¢ yyodzyesszs be a (8y))@nessz; — LAR,3,8 xZ3),
where 8, ) = {B XZ3;z € B € GUB}. For each (z,y) € § xZ3, put

Q(m,y) = U Q(a:,y)B U (q(m:y)O)'
Tz€BEPUG

Then (ge.g))@gessz s 1S an LD(2,3,3v +2) and, for each

(z,9) € S XZ3, H(q(z,y)) D ﬂ H(G@ns) | N H(Gzy0)-
r€BELUG
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Construction 4 has the following corollary.

PROPOSITION 8. If there is a group divisible design (S,G,[3)
with block size 3 such that there is a commutative LD(2,3,3|A| +2)
for each A € G, then there is a commutative LD(2,3,3|S|+2). (Note
that the existence of a commutative LD(2,3,3|A| +2) implies that | Al
is odd).

In [11], a URD(p, k), p, k € N is defined as an S(2,{2,3},p)(S, B)
provided with a partition (8,),cg of B, |R| =k, such that 2k —p+1of
the 3, are partitions of S into 2-subsets and p— 1 — k of them are
partitions of S into 3-subsets. From a URD(p, k) with p—1 — &k > 1,
we can construct a group divisible design with block size 3 on 2k + 1
points having a group of size 2k — p+1 and in which all remaining
groups have 3 points. Indeed, let R; be the set of all r € R for
which B, consists of 2-subsets. We have |[Ri|=2k—p+1 and it is not
restrictive to assume R NS =¢. Let rp € R — Ry. Our points will
be the elements of S U R;, our groups will be R; and the elements

of B,, and our blocks will be the elements of U B, as well
R—(RiU{r.})
as all 3-subsets of the type {z,y,7}, r € Ry, {z,y} € . In [11], it

is proved that if p =0 (mod 6) and p/2+1 < k < p— 2, then there
is a URD(p, k) and thus, a group divisible design with block size
3 on 2k +1 points having a group of size 2k — p+1 in which all
remaining groups have 3 points. Putting u =2k —p+1, v = p+u and
retranslating everything in terms of v and v yields the following. For
every odd integer v > 3 and for every v > 2u+3 with v — u = 0 (mod
6), there is a group divisible design with block size 3 on v points,
containing a group of size u in which all remaining groups have 3
points. In particular, a group divisible design on a v-set S with blocks
of size 3 in which all groups have size 3 exists for all v = 3 (mod 6).
A group divisible design on a v-set S with blocks of size 3 containing
a group of size 5 in which all remaining groups have size 3 exists
for all v =5 (mod 6) with v > 17. A group divisible design on a
v-set S with blocks of size 3 containing exactly one group of size 7
in which all remaining groups have size 3 exists for all v = 1 (mod
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6) with v > 19. A commutative LD(2,3,(3 x 5)+2) is constructed in
[18]. If a commutative LD(2,3,11) would exist, then a commutative
LD(2,3,(3 x 7)+2) would too, because 3 x 7)+2 =23 =2(11)+1. By
Proposition 3 this implies that if a commutative LD(2,3,11) exists,
then a commutative LD(2,3,3v +2) would exist for all odd v > 15
as well as for v =9. In other words, a commutative LD(2,3,v)
would exist for all v =5 (mod 6) with v > 3(15)+2 =47 as well
as for v =29. The cases 5, 17 and 23 have been treated before.
A commutative LD(2,3,35) exists, because 35 = (2 x 17)+ 1. Even
assuming the existence of a commutative LD(2,3,11), we do not
know how to handle the case 41. To summarise, if a commutative
LD(2,3,11) exists, then a commutative LD(2,3,v) exists for all v = 5
(mod 6), except 5 and maybe 41. As mentioned before, however, the
existence of a commutative L D(2,3,11) is still in doubt.

5. Some general remarks about closure spaces and their
constructive use.

A closure space is a pair (5,6), where § is a set and § is
an intersection-stable set of subsets of S. By convention, we put
ﬂ C =G, so that S € §. The elements of § are called closed sets.

Cef
If (S,8) is a closure space and A C S, we denote by &(A) the

intersection of all closed sets containing A. We call §(A) the closure
of A or the closed set spanned by A and say that A spans §(A). If
§#{S}, we define the dimension dim(S,8) of (§,6) to be the smallest
n € IN such that there is an (n+ 1)-subset A of S with §(4) =S. We
put dim(S,{S}) = —1. We call a closure space simple if the empty
set as well as all singletons are closed. A matroid is a closure
space (S,68) such that for any a,b € S and any subset A of S with
a € (AU {b}) — 8(A), we have b € §(AU {a}). The rank of a matroid
(S,6) is defined to be dim(S,8)+ 1. A hyperplane of a closure space
(S,8) is a maximal element of the poset (§ — {S}, Q). If (5,6) is a
closure space, we denote the set of all hyperplanes of (S,6) by &,. If
(S,6) is a closure space and D C S, then (D,ép) is a closure space,



212 LUC TEIRLINCK

where ép = {CND;C € §}. We often identify D with this closure
space, especially if D € §. For instance, by the dimension dim D of
D, we mean dim(D, §p), a hyperplane of D is a hyperplane of (D, ép)
and so on. If D € 4, then 6p = {C € §;C C D}.

In the remainder of this section, we describe in a very general,
but also somewhat vague and informal way, the possible uses of
closure spaces in the construction of mathematical structures. It is
easy to make everything rigorous once one specifies the concrete
structures one is interested in. We do not make any claim whatsoever
about originality. Most discussed ideas are essentially known, in some
form or another.

Suppose we are studying mathematical objects consisting of a
structure of a given type, say P, defined on a set S. Quite often,
there is a very natural notion of subspace for such structures. The
subspaces are subsets of S and the set of all subspaces defines a
closure space on S. A structure of type P on a set S will induce
a structure of the same type P on any subspace, although not
necessarily on any subset of S. Quite often subspaces of structures
of type P can even be defined as being those subsets D of S for
which the induced structure is itself a structure of type P on D. For
instance, if ¢ is an OA(t, k,v) or OD(t, k,v) on a set S, then a subset
D of § is a subspace of g iff ¢|D is an OA(, &, |D|) or OD(, k,|D|),
respectively. |

If 6 is a set of subsets of a set S, one can define a structure
of type P with holes in § on S as a structure A that looks exactly
like a structure obtained from a structure of type P on S, having the
elements of § as subspaces, by erasing, for each D € §, the structure
induced on D. However, we do not require that it is actually possible
to complete A into a structure of type P on S. This definition is
of course imprecise. The formal claim about the discussion below is
that it is valid for those types P for which we will state, below, what
we mean concretely by a structure of type P with holes. A more
general informal claim is that, for very many types P, it becomes
valid once structures of type P with holes are defined in the correct
way. Very often, it is obvious how this should be done. Sometimes, as
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for large sets, it may be more tricky. The notions of § — OA(t, k, S)
and § — OD(t, k,S) are the formalizations of the intuitive notions of
OA(, k,|S|) and OD(t, k,|S|) with holes in § on S. For LA(t, k,v) and
LD(t, k,v) one has to be somewhat careful, because some subtleties
are involved. For the moment, let us forget about large sets and
similar structures. We will come back to them later in this section.

If S € 6, then there is exactly one structure of type P with holes
in § on S, which we will call the empty structure of type P on S.
(Depending on the formalism, this may be the empty set or the pair
(S, d) or something similar).

If 6 C P(S), then c(§) will denote the set of all intersections of
families of elements of §. Obviously, (S,c(8)) is a closure space. If
5 C P(S), S ¢ 6, then there is no difference between a structure of
type'P with holes in § and a structure of type P with holes in ¢(6§);
or with holes in ¢(6) — {S}. Note that, if § ¢ &, then c(§), consists of
all elements of § that are maximal for inclusion. Thus, when talking
about structures of type P with holes in § on a set S, it is not
restrictive to assume that § =+, or that § = v —{S}, where (S,~) is
a closure space. ‘ :

 The degree of a given type P will be the smallest integer n
such that, for any closure space (S,4) with dim(S, 8) > n, there is
exactly one structure of type P with holes in §,, namely the empty
structure of type P on S. If no such n exists, then we say that the
type P has infinite degree. For instance, if P consists of the class of
all OA(to, ko,v), where ty and ky are fixed, but v is not, then P has
degree to. The same holds for the class of all OD(to, ko, v). '

Assume that we are given a closure space (S,8) and want to
construct a structure of type P on S such that all elements of § are
subspaces of this structure. This problem splits completely into many
subproblems that can be solved independently. These problems are to
find, for each C € §, a structure of type P having the hyperplanes
of C as holes. If P has finite degree ¢, then this problem is trivial
for those C € § with dimC > t, so that we only have to solve it for
the C € 6 with dimC < t. We will refer to this use of closure spaces,
where every closed set of the closure space we started from becomes
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a subspace of the constructed structure, as a strict use of closure
spaces.

One can use closure spaces in a more general way, which we will
refer to in the sequel as an opportunistic use. Let (S,8) be a closure
space. Let (6,...,6,) be an n-tuple of pairwise disjoint subsets of §,
such that §, = {S}, such that any two elements of §; are disjoint
and such that, for any 7 € {2,...,n— 1} and for any two distinct
elements C; and C, of §;, the set C; N C, is contained in an element
of 51 U...U6_1. If we can put a structure of type P on each of the
elements of §; and put on each C € §;, 1 € {2,...,n}, a structure of
type P with holes in {CNA; A € §U...Ué;_1}, then putting all these
structures together will produce a structure of type P on S. The
elements of §; will be subspaces, but this will not necessarily be the
case for all elements of §. If P has finite degree ¢t and dim(S,§) > t,
then, in many applications, we will have dim(S,c(; U...Ub,_1)) > ¢,
in which case one of the problems we have to solve, namely finding a
stucture of type P with holes in 6, U...U§,_1 on S, becomes trivial.

One of the advantages of using closure spaces is that one can
construct a limited class of structures of type P with holes and then
~ construct closure spaces for which all the structures needed for a
strict or opportunistic use belong to that class.

The reason why we did not try to maximize generality in
Constructions 1, 2, 3 and 4 is that any such a type of construction
can be completely described by specifying the structures we want to
construct, the kind of closure spaces we want to use and whether we
want to use these closure spaces in a strict or in an opportunistic
way.

Let us call a closure space I-equicardinal if all sets &§({z}),
r € S — 8(@), have the same cardinality. Obviously, every simple
closure space is 1l-equicardinal. For OD(2,k,v) a strict use of 1-
equicardinal matroids of rank 3 corresponds to applying Comnstruction
1. An opportunistic use corresponds to the technical generalization
of Construction 1 referred to in Section 2. Rank 3 matroids which
are not l-equicardinal have also been used for several combinatorial
structures, both in a strict and an opportunistic way. If (S, /) is
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an S, K,v), |8| > 1, k>t for all £k € K, then the closure space
(S,65) ={S}U{A C S;|A] <t—-1}Up is a matroid of dimension ¢
or, equivalently, rank t+ 1. We call (S,6g) the matroid associated
with (S,[). Every simple rank 3 matroid is associated with an
S(2,K,v). The t-wise balanced design construction described in
section 2 corresponds to a strict use of the matroid associated with the
S(t, K,v). Construction 2 corresponds to a strict use of 1-equicardinal
rank 3 matroids for OD(3,4,v). An opportunistic use yields the
technical generalization of Construction 2 referred to in section 2.

For large sets and other collections of individual structures, it
would seem that we have to adapt the above discussion, replacing
single closure spaces by colléctions of closure spaces. However, the
notions and constructions discussed in this section seem to be of such
a general validity that everything should work in a completely literal
way for structures of any reasonable type. The reason why they do
not work out literally for large sets and other collections of structures
on a set S is that, for collections of structures, the essence of the
notion of subspace can quite often not be completely captured by
considering subspaces to be subsets of S. Our feeling is that, for the
kind of purposes described in this section, collections of structures on
a set S should be considered to be defined on S U R, where R is the
indexing set.

AS—LA@tk S R), RNS=0,8 C P(SUR), will be a collection
g of (k+ 1)-tuples (ccl,‘.._,sv;;,r), Zi,...,Tk €S, r € R, such that:

(i) for any t-subset {i1,...,5} of {1,...,k} and for any t-tuple
Ti,---,Zi, Of (not necessarily distinct) elements of S and
any r € R, the number of elements (yi,...,y%,7) of ¢ with
Vi, = Tij,-.-,Yi, = T, equals O or 1 depending on whether
{zi,...,zi,r} is contained in an element of § or not.

(i1) for any k-tuple z1,..., z; of (not necessarily distinct) elements of
S, there are either 0 or 1 elements r of R with (z;,...,z,7) € ¢
depending on whether {zi,...,z} is contained in an element of
6 or not.

Then, one can define LA(t, k,S,R) as § — LA(t,k,S,R). If S and
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R are sets, put
5(t,S,R)={ACSUR‘;|AﬂS| <t-1,]JANR|=1}.
AS—-LD(,k, S, R) will be a
G UPyx_1(SYUSE, S, R)) — LA, k, S, R).

An LD(t, k,S,R) will be a § — LD(t, k, S, R). A subspace of an LA (or
LD) (t,k,S,R)q is defined to be a subset D of S U R such that ¢|D
is an LA (or LD)(t, k, SN D,RN D).

Obviously, an LA(t, k,S,R) or LD(t, k,S, R) is completely equi-
valent to an LA(t, k,[S|) or LD(t, k,|S|) on S with index set R. If we
consider § — LA(DXt, k,S, R) as LA(D)(t, k,S, R) with holes in &, then
our. entire discussion about structures of type P with holes applies
literally. Thus, it also applies literally to LA(D)(t, k,v), as long as
we are willing to retranslate everything in terms of LA(D)(, k, S, R).
For fixed ¢, and kg, LA(t,, ko, S, R) and LD(t,, k,, S, R) are structures
of degree k,. (Remember that we are assuming k£ > t+1). In the
abové, the set S U R has a preassumed structure, namely the ordered
partition (S, R), which induces a preassumed structure on all subsets
X of S, namely the quasipartition (X NS, X N R). This represents no
problem, because our discussion about closure spaces and holes did
by no means preclude the existence of such a preassumed structure.

How do the notions of § — LA(t,k,S,R) and § — LD(t,k,S, R)
relate to the notions of § — LA(t,k,S) and 6§ — LD(t, k,S) defined
earlier? Let us call a § — LA(t,k,S,R) strict if [DNR|=|D N S+
for all D € §. Similarly, we call a § — LD(t, &, S, R) strict if
IDNRl=(DNS|-)IDNS|—-t—-1...(DNS|—k+1) for all
D e é with [DNn S| > t. Strict uses of closure spaces in the
construction of LA(t,k,v) or LD(t,k,v) obviously require strict
§ —LA(,k, S, R) or strict § — LD(t, k, S, R), but this is not necessarily
the case for opportunistic uses. A strict § — LAD)t, &k, S, R) is
easily seen to be equivalent with a (§,),cp — LA(D)(, k,S), where
S ={DNS;D € é,re D}

Let 6 C P(S) and put & = {D x {0,1};D € §}. Then a
8'—LA(t,t+1,5 x {0}, S x {1}) is equivalent to a (§;),es — LA(t, t+1,5)
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where 6, = {D € §;z € D}. Obviously, it is also equivalent to a
5 —OA(t+1,t+2,5). We already used these equivalences in section
3 to obtain Proposition 2 from Proposition 1. Let 7" be a t-subset
disjoint from S and from S x {0,1}, and put 7 = {DUT; D € §} and
6p = {(Dx{0,1HUT; D € 6}. Then a 6;,—LD(t, t+1, (S x {0}HUT, S x{1})
is equivalent to a (6s)ses—LD(t, t+1, SUT), where §, = {D € 6751 € D}.
If dim(S,c(6)) > t, then a 67 — LD, t+1,(S x {0HUT, S x {1}) is
also equivalent to a §' — LA, t+1,8 x {0}, S x {1}) and thus, to a
6 -~ OAt+1,t+2,5) and a (8z)ges — LA, t+1,S). This is why, in
Constructions 3 and 4, we were able to use (6;)zeg — LA(2,3,S) in
the construction of LD(2,3,v). For L D(2,3,v), an opportunistic use
of the closure spaces 5{001,002}, where (S,6) is a l-equicardinal rank 3
matroid with §(0) = §, cojzoc0, and SN {oo;, 002} = §, yields a natural
generalization of Construction 4.

The notions of § — LS(t,k,S,R), LS(t,k, S, R) and subspace of
an LS(t,k,S,R) can be defined in the obvious way. Most notions
used in this paper have obvious generalizations to <higher A». It may
be worth mentioning that LD(t,t+1,5,R) and LS, t+1,S, R) are
special cases of more general structures used in [14,16] to construct
non-trivial t-designs without repeated blocks for all ¢. Part of the
difficulty in using LS(\;t,k,v) with £ > t+1 in the same way as
LS(\;t,t+1,v) were used in the inductive construction of designs
with larger t is that in the definition of LS(t, k, S, R) two classes of
subsets have to be covered by (k + 1)-subsets, members of one class
having size t+1 and members of the other having size k. For k =t +1,
these two sizes coincide, but not for & >t + 1.
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