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PROBLEMS AND RESULTS ON GRAPH
AND HYPERGRAPH COLORINGS

ZSOLT TUZA (Budapest)

Colorings have always attracted much attention in graph theory,
therefore it seems almost hopeless to give a comprehensive list of the
open problems of this topic. Two nice collections of some important
questions have been compiled by Toft [26], [27], also providing relevant
references for the historical background of the problems discussed
there.

In the present note the reader will find a set of about fifty graph
and hypergraph coloring problems (divided into 12 groups) which
have been raised during current research, or posed many years ago
but seem to have been forgotten although they are really attractive.
Most of those questions are selected from areas which, in spite of
their definite interest, have not yet been extensively investigated,
and therefore some of them might be more easily solvable than the
«classic» problems on vertex and edge colorings.

Notation.

We use the standard terminology of graph theory, therefore we
only give the most important definitions and notation here. Some
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more particular notions will be introduced in the text.

For a finite undirected graph G = (V, E) with vertex set V and
edge set I, denote by a(Q), w(@), and x(G) the independence number,
the clique number, and the chromatic number of G, respectively (i.e.,
(@) is the maximum cardinality of an independent set [= vertex set
consisting of pairwise non-adjacent vertices], w(G@) is the maximum
number of pairwise adjacent vertices, and x(&) is the minimum
number of independent sets covering V). The vertex set and the edge
set of G sometimes will be denoted by V(&) and E(Q), respectively.

In a hypergraph H, a vertex set S is independent if it does
not contain any edge of X, and T is a transversal if it meets
all edges of X (i.e., if the complement of 7" is independent). The
transversal number T(H) is the smallest cardinality of a transversal.
The chromatic number x(H) of H is defined analogously to that of
graphs; the hypergraph is 2-colorable if it has a transversal whose
complement also is a transversal.

Recall that a graph G is perfect if x(G") = w(G') for every induced
subgraph G' of G. A G’ =(V', E') is a subgraph of G if V' C V and
E'C{e€ Ele CV'}; G is induced by V' if E' = {e € Ele C V'}.

1. Orientations vs. colorings.

Two of the most famous sufficient conditions insuring k-
colorability of graphs (which happen to be necessary, too) point out
relations between the chromatic number and certain orientations of
the edge set. The theorem of Gallai and Roy ([12], [23]) deals with
directed paths, while Minty’s theorem [20] puts a restriction on the
orientations of edges on the cycles of the graph. Recently a common
generalization of those two important results has been found ([34]),
and it has been pointed out that, in an algorithmic sense as well,
Minty’s and Gallai and Roy’s assumptions are polynomially equivalent
to k-colorability. (The first of the two assumptions leads to a coloring
algorithm with linear running time!) It is not clear, however, whether
or not heuristics for finding an orientation without ’long’ directed
paths are easier than determining the chromatic number itself.
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Problem 1.1. Design fast (polynomial or sub-exponential) algo-
rithms that find an orientation of a graph, in which the length of the
longest directed path is «not very far» from the chromatic number.

Here 'not very far’ means a modest requirement; any improvement
on the performance ratio of graph coloring algorithms would be warmly
welcome. The accuracy of approximation to chromatic number (or to
the smallest possible length of a longest directed path) may depend
on the running time.

It follows from the results of [34] that if G contains no cycle
of length =1 (mod k), then x(G) < k. (This fact has recently been
observed by Dean and Toft, too [8].) For this reason it is natural to
pose the following question.

Problem 1.2. Let p,q,7 (p > ¢ > r > 0) be given integers. Find
simple properties P insuring that every graph with property P and
having chromatic number > p contains a cycle of length congruent to
r (mod q).

Of course, the case ¢ =2 is trivial. For ¢ = 3, Dean and Toft have
proved that every Ks-free graph of chromatic number greater than 3
contains cycles with lengths of 0, 1 and 2 (mod 3).

A more general question is as follows.

Problem 1.3. Describe (reasonably small) sets R of natural
numbers with the property that every graph G with x(G) > p contains
a cycle of length r for some 7 € R.

The previous two questions may be combined, looking for sets of
residue classes satisfying the cycle-length property in graphs of large
chromatic number.

2. Perfect-graph recognition.

There are fast recognition algorithms for many particular classes
of graphs (planar graphs, chordal graphs, etc.). However, no positive
result is known for perfect graphs. By Lovdsz’s famous theorem [17]
the question is equivalent to the following one. |
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Problem 2.1. How many steps are needed to check a(G")w(G') >
|V(GQ")| for all induced subgraphs G’ of G?

An n-element set has 2" subsets, so that for the first sight
«perfectness» means that many requirements. If the Strong Perfect
Graph Conjecture is true, however, then it leads to a considerable
simplification, as observed in [37], since the problem reduces to the
following one.

Problem 2.2. How many steps are needed to decide whether or
not a graph on n vertices contains an odd cycle of length > 5 as an
induced subgraph?

For this latter problem a stronger upper bound of O((2 — ¢)*)
has been proved in [37], for some constant ¢ > 0. The proof is based
on a hypergraph-theoretic observation concerning minimal transveral
sets of finite set systems. The results in [37] are not sharp, however,
and some improvement could be achieved (in the algorithmic sense,
too) if the answer to the next question were known.

Problem 2.3. Let r > 3 be a given integer. Find ¢, = inf {c| every
r-uniform hypergraph on n vertices has < O(c") transversals minimal
under inclusion}.

By its connection with perfect graphs, the most interesting
particular case is r =3, which does not seem to be very difficult.
(For r =2, Moon and Moser [21] proved that ¢, = 3'/3.) It is worth
mentioning that preparing the list of all transversals usually requires
just p(n) times more steps than the number of transversals (where
p(n) is a polynomial of the number n of vertices), i.e. almost the
whole difficulty is concentrated in estimating the number of minimal
transversals.

During a discussion with V. Chvéatal we found that the following
«extremal» variant of Problem 2.2 may be of some interest.

Problem 2.4. How many induced odd cycles (or, induced cycles)
can a graph on n vertices have?

Chvatal and I observed that the hypergraph method yields O(c")
for some ¢ < 2 as an upper bound, and also that 3%3 is a lower
bound in some graphs. It may be the case that the maximum number
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of induced (odd) cycles grows with the powers of ¢ = 3!/3, but at the
moment we do not have a proof for it.

So far we have considered upper bounds. Unfortunately, nothing
essential is known from the other side.

Problem 2.5. Find non-trivial lower bounds for the perfect-graph
recognition problem:.

3. Neighborhood-perfect graphs.

The neighborhood number of a graph was first defined in [24]; we
shall use the slightly different definition introduced in [16], however,
because it leads to a more natural formulation of the problem in the
present context.

The neighborhood N(z) of a vertex z in a graph G = (V, E) is
the set of edges e € F such that z € e or both vertices of e are
adjacent to z. The neighborhood number pn(G) is the smallest number
of neighborhoods whose union is F; the neighborhood-independence
number ay(G) is the largest number of edges such that no pair of
them belongs to the neighborhood of any vertex.

It follows immediately from the definitions that oN(G) > an(G)
holds for all graphs G. Call G neighborhood-perfect if py(G') = an(G")
in every induced subgraph G’ of G. The following problem was raised
in [16].

Problem 3.1. Prove that every neighborhood-perfect graph is
perfect.

A supporting evidence is provided by the Strong Perfect Graph
Conjecture, because neither the odd cycles of lengths > 5 nor their
complements are neighborhood:perfect.

A more general question is as follows.

Problem 3.2. Find a structural characterization of neighborhood-
perfect graphs.
Certainly, this problem is interesting for some reasonably large
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subclasses of graphs as well. Neighborhood-perfect chordal graphs
have been characterized in [16]; in particular, it follows that all
'strongly chordal’ graphs (and, consequently, all interval graphs) are
neighborhood-perfect.

From the algorithmic point of view, py(@) and any(G) are
N P-hard to find [5], but there are fast (linear-time) algorithms for
them in interval graphs [16] and more generally in strongly chordal
graphs [5].

It would also be worth investigating which of the other classes
of graphs, not necessarily subclasses of perfect graphs, admit fast
algorithms to find the neighborhood (independence) number.

4. Decompositions into perfect subgraphs.

Graph decompositions may be viewed as special types of colorings.
From the rich literature we pick a particular problem, raised recently
in [35], which has a more explicit relation with the previously
discussed topics. (Some further questions concerning decompositions
will be mentioned in later sections.) :

A decomposition of G consists of ¢ graphs G = (Vi, E1),...,G; =
(Wi, E;) (for some t), where each G; is a subgraph of G. We assume
that G1U... UGy =G, ie. U... UV, =V and EyU... UE; = E
hold. Various types of requirements can be considered, for example
the following ones:

(1) Each G; is perfect.

(2) Each G is perfect, and E;NE; =0 for 1 <i<j <t.

(3) Each V; induces a perfect subgraph in G.

(4) Each V; induces a perfect subgraph in G, and E; N E; ={ for
I1<icj<t.

For k=1,..,4 and for a given graph G, denote by fi(G@) the
smallest natural number ¢ for which there are subgraphs Gy, ..., G,
of G satisfying assumption (k). We put

fr(m) = max{f(G)| |V(@)| = n}.
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Problem 4.1. Determine fi(n) for 1 < k£ < 4.

One can also investigate the weighted version of the problem.
For k=1,...,4, denote by g;(G) the minimum value of |Vi|+ ...+ |V}
under the assumption that the G; satisfy (k), and put

gx(m) = max{gx(@)| |V(G)| = n}.

Problem 4.2. Determine g,(n) for 1 < k < 4.

The estimates on fi(n) and g,(n) (proved in [35]) are not sharp,
usually there is a factor of logn (or at least log log ) in the ratio
of the upper and lower bounds. Those 8 functions mean 8 problems;
among them the following one seems to be the most natural to ask.

Problem 4.3. Does every graph on n vertices have an edge
decomposition into (clogn)/loglogn perfect subgraphs, for some
constant c?

A probabilistic argument, also applying an extremal set-
theoretic result of [31], yields that one cannot expect less than
(c' logm)/ loglogn subgraphs in a decomposition, for some positive
constant ¢. Surprisingly, even though random graphs are applied,
this lower bound is shown to be true for about the half of graphs
only.

Problem 4.4. Is f1(G) > (c'logn)/ loglogn for almost all graphs
G on n vertices, as n — oco?

Also, it is not clear how much stronger the restrictions (2) and
(4) are when compared to (1) and (3), respectively.

; Problem 4.5. Give estimates on hi.1(G) — hi(G) and b1 (G)/ hie(Q),
in terms of n:=|V(G)|, where h € {f,g9} and k=1 and 3. Can the
difference tend to infinity (and how fast) if n gets large? Is there a
constant upper bound for their ratio?

5. Ramsey-type questions on local k-colorings.

An edge coloring of a (hyper)graph is a local k-coloring if for
each vertex z, there are at most £ distinct colors occurring on the set
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of edges containing z. (When just & colors are used in the coloring,
we simply call it a k-coloring.) For r-uniform hypergraphs, and for
1 <j <r—1, j-local k-colorings can be defined in a similar way;
in this case the requirement is that at most k£ colors should occur
on the edges containing J, for each j-element set J of vertices (i.e.,
«1-local» =«ocal».) Those concepts were introduced in the subsequent
papers [14], [13], and [28].

Here we focus on the Ramsey-type problems involving local
colorings. Let G be a graph (or r-uniform hypergraph), k and j
integers, k > 2, r > j > 1. Denote by (G, k) and r(G,k,j—loc)
the Ramsey number and the j-local Ramsey number for k colors,
respectively, that is the smallest n such that every k-coloring or j-local
k-coloring of the complete graph (complete r-uniform hypergraph) on
n vertices contains a monochromatic sub(hyper)graph isomorphic to
G

Problem 5.1. Find necessary and/or sufficient conditions for
(G, k) = r(G, k, j —loc). "

The case j =1 has been studied to a certain extent. It was shown
in [4] that equality holds when, instead of a single (hyper)graph G,
the class of all t-colorable r-uniform hypergraphs is taken, for some
t and r. (Then both Ramsey numbers are (r — 1)tF + 1.) Moreover, a
theorem of [14] states that in case of r = k = 2, equality holds for
complete graphs of arbitrarily given size (and also for triangles when
k = 3). For this reason it is natural to ask the following.

Problem 5.2. Is r(G,k) = r(G, k,1-1oc) for all k£ and for every
complete (r-uniform hyper)graph G?

One can ask the same question for j > 2 as well; in this case,
however, the structure of the colorings does not seem to be so strictly
determined and perhaps some examples exist for which the local
Ramsey number is larger than the Ramsey number. Similarly, we
do not know whether or not n > (r — 1)t* implies that every j-local
k-coloring of the complete r-uniform hypergraph on = vertices contains
a monochromatic subhypergraph H with k(H) >t (for 1 < j < 7).

Another important question is to investigate to what extent local
k-colorings allow larger structures than k-colorings.
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Problem 5.3. Estimate r(G,k,1 — loc)/r(G,k) and r(G, k,j —
loc)/r(G, k,G — 1) —1loc) for 1 < j <r.

A result of [14] states that the first quotient can be arbitrarily
large (even for k fixed, say k = 2) if no further assumption is put
on G. On the other hand, it is proved in [28] that for connected
hypergraphs it remains below a constant that only depends on k.

Problem 5.4. Given k > 2, find the smallest constant ¢, such
that (G, k, 1-loc) < ¢xr(G, k) for every connected (hyper)graph G.

It is observed in [14] that 9/8 < ¢; < 3/2 holds for graphs.
Probably this particular case (i.e., r = k = 2) is the first one in which
the supremum of the ratio of the two Ramsey numbers should be
determined, possibly in the «asymptotic» sense, assuming that |V (G)|
tends to infinity. A general upper bound ¢, < k*/k! is proved in [28].

Problem 5.5. Given k > 2, find the smallest integer &’ such that
r(G, k,1-loc) < r(G, k') for every connected (hyper)graph G.

As proved in [28], k' < c* for some constant c. Moreover, it
is mentioned in [13] (without proof) that k' < k? is valid in the
restricted class of connected graphs having at least one triangle. This
is the only case, however, in which the exponential upper bound is
improved to a polynomial one.

In order to find a sufficient condition insuring bounded ratio of
the Ramsey numbers, perhaps the following property will work (cf.
[28]). Let H be an r-uniform hypergraph, and let 1 < j < r. Define the
j-intersection graph of H as the graph whose vertices are the edges of
H, two vertices being adjacent if and only if the corresponding edges
of H share at least j vertices. Call H j-intersection connected if its
j-intersection graph is connected.

Problemm 5.6. Does there exist a constant ¢, such that
r(G, k,j—loc) < ckxr(G, k) for every j-intersection connected (r-uniform
hyper)graph G?

The simplest unsolved case is £k =j =2,r =3 (i.e. the class
of 3-uniform hypergraphs). As shown in [28], this problem can be
reduced to local 2-colorings with just 3 colors.
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6. 3-chromatic uniform hypergraphs.

In contrast with graphs, it is a difficult problem to tell which
hypergraphs are 2-colorable. There are several sufficient conditions
to insure 2-colorability (also called «property B» in the literature),
but the folowing nice problem is still open.

Problem 61. Let 4 < r < 7. Is every r-regular r-uniform
hypergraph 2-colorable? ‘

Note the Konig-Hall theorem implies that if # is r-regular
and r-uniform, then we can delete a vertex from each edge of %
in such a way that the hypergraph obtained is (r — 1)-regular and
(r — D)-uniform. Hence, the simplest counterexample might be given
for r = 4, or the ’easiest’ proof of an affirmative answer can be
expected for r = 7. The Fano-plane (as a 3-uniform hypergraph) is not
2-colorable, this is the reason why r > 4 is assumed.

Erdés and Lovész [9] proved by a probabilistic argument that
every 3-chromatic hypergraph has some vertices of large degree.
Along this line, a stronger variant of their «Local Lemma» implies
that every 9-regular 9-uniform hypergraph is 2-colorable. The proof
of Alon and Bergman [1] for r = 8 applies a different approach,
using deep algebraic results (Van der Waerden’s conjecture concerning
the permanent of stochastic matrices and Hadamard’s inequality on
determinants). Note that 3-colorability has been proved for all r > 3
by Bollob4as and Harris in [3], where further references and related
problems can also be found. (The Local Lemma proves 3-colorability
when r > 5.)

There are some further properties which are closely related to
the assumption x(X) = 3. From now on suppose that 7 is intersecting,
ie. HN H'#) for H, H'€ H. Then, for r-uniform H, x(H) >3 implies
T(H) >r. (In fact, 7(H) = r since H is assumed to be intersecting.) A
slightly weaker property is when 7 is intersection-critical (frequently
called v-critical in the literature) which means that for every H ¢ X
and z € H there is a H' € H such that H N H' = {z}. (In words, if we
replace any edge by some of its proper subsets, then the hypergraph
does not remain intersecting).

The study of the following three extremal problems was initiated
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in [9] and [18], respectively.

Problem 6.2. Determine the minimum number of edges in an
intersecting r-uniform hypergraph H with 7(H) = r.

Problem 6.3. Determine the maximum number of edges in an
intersection-critical r-uniform hypergraph.

Problem 6.4. Determine the maximum number of non-isolated
vertices in an intersection-critical r-uniform hypergraph.

For partial results concerning the minimum, see the paper of
P. Erdos in this volume. (A basic question would be to decide if the
minimum is O(r) or it grows faster.)

For the maximum number m(r) of edges, Erdos and Lovasz [9]
proved (e — 1 — o())r! < m(r) < r". Here the gap between the two
estimates is a factor exponential in r. Recently we have improved the
upper bound by a constant factor [36].

Much better estimates are known for the maximum number of
vertices. The upper and lower bounds (in [29] and {36]) both are

2
of the form ¢ 4 , but the value of ¢ is not the same in the two
T

estimates. Hence, the next problem here would be to show that in
. 2 '
fact the maximum is (c+o(1))< :) for some constant c¢. (From the

results of [30] a sharper upper bound follows, but the method cannot
reach the best current lower bound given in [29].) Note that the
above estimates remain valid if, instead of r-uniform hypergraphs,
we consider hypergraphs in which every edge has at most r vertices.

7. Hypergraphs with Helly property.

There are several interesting extremal problems on Helly-type
hypergraphs, but here we mention just one of them which, in a sense,
is the analogue of Kneser’s conjecture. -

Call H a Helly-hypergraph if it satisfies the 1-dimensional Helly
property, i.e. if the edges of a subhypergraph H’' C % have an empty
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intersection then H' contains two disjoint edges.

Problem 7.1. Let H; (1 <1 < t) be r-uniform Helly-hypergraphs
on the same n-element vertex set X, n > r > 3, such that every
r-element subset of X is an edge of some H;. Is then t > n—r+1?

It follows from the definition that the answer is affirmative for
n < 2r.

A more general problem is to determine the largest possible
number of edges in the union of ¢t Helly-hypergraphs having the same
vertex set. References and related questions are discussed in [38].

8. Strong chromatic index of graphs.

Here we mention some open problems originated from the
quadruple paper [11]. Call two edges e,e’ of a graph G = (V,E)
strongly independent if they are vertex-disjoint and their union e U e’
induces no further edges in GG. Denote by am(G) the maximum number
of edges no two of which are strongly independent (= antimatching),
by sm(G) the maximum number of pairwise strongly independent
edges (= strong matching), and by s¢(&) the minimum number of
strong matchings whose union is E (=the strong chromatic index of
G).

The first question was raised by Erdos and Nesétfil (private
~communication), the second one was published in [11].

Problem 8.1. Is sq(@) < 5d*/4 in every graph G of maximum
degree d?

Problem 8.2.Is sq(G) < d? in every bipartite graph G of maximum
degree d? )

The answer to both questions is known to be affirmative in the
case when sm(G) =1, see [6]. (For d odd, the upper bound of 5d2/4
can be improved to the sharp one 54%/4 — d/2+1/4.)

Let G be a class of graphs, and denote by f;(d) the maximum
number of edges in a graph G € G with sm(G) =1 and maximum
degree not exceeding d.
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Problem 8.3. For which classes G does am(G) < fg(d) hold for
all G € G such that G has maximum degree at most d?

Problem 8.4. For which classes G does |E(G)| < fg(d)sm(G) hold
for all G € G of maximum degree at most d?

It is conjectured in [11] that the above two properties hold when
G is the class of all graphs. The corresponding statements were
proved in [11] and [10], respectively, for the class of bipartite graphs.
(As noted above, in the bipartite case fg(d) = d?.) We mention that
these problems are open even in the case d = 3, and also for some
very simple subclasses of graphs. Several particular problems of this
type are raised in [11].

9. Bipartite subgraphs of 4-chromatic transitive graphs.

In [22] the minimum number of edges to be deleted from a
«large» x-critical graph G when making G bipartite is determined.
(Critical means that x(G —e) < x(GQ) for all edges e € E(G).) This
minimum depends on x(G) but is independent of |V (G)| (for large
|[V]). On the other hand, if the automorphism group of G = (V, E)
acts transitively on V (or on E), then for x(G) > 5 one has to delete
at least |V |'/? vertices (or at least |E|!/? edges) in order to obtain a
bipartite subgraph of G. Of course, such a statement is not true for
3-chromatic graphs in general, since the odd cycles are edge-transitive
and y-critical. The situation in the case x(G) = 4, however, has not
yet been investigated.

Problem 9.1. Find the largest integer f(n) such that no vertex-
transitive graph G of n vertices with x(G) > 4 contains an induced
bipartite subgraph of more than n— f(n) vertices.

Problem 9.2. Find the largest integer g(m) such that no edge-
transitive graph G of m edges with x(G) > 4 contains a bipartite
subgraph of more than m — g(m) edges.

Certainly, the first question to be settled is whether or not f(n)
and g(m) tend to infinity with n and m, respectively.
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A more general problem is to find estimates on the largest
number of vertices and edges in g¢-chromatic (induced or not
necessarily induced) subgraphs of p-chromatic y-critical transitive
graphs (p > g > 2). As shown in [22], the upper bounds of V| — |V|1_/ 2
and |E|— |E|Y/? hold whenever p > 2¢ and p > ¢2, respectively, but
no estimate is known for smaller values of p. Moreover, it is not
known how fast the number of vertices (edges) grows when p is much
larger than 2q or ¢2. (Iterating the result of [22] one can obtain some
improvement on the lower bound, but probably it is very far from
being sharp.)

10. Representations.

‘The following nice combinatorial problem occurred in algebraic
logic, in the study of representations of symmetric atomic relation
algebras. Denote by wi,..,v, the vertices of the complete graph
Ky = (Va,Ey), n=1,2,... Call a natural number t representable if
there is an edge coloring f : E, — {1,...,t} =: [t] for some n, with the
following properties:

@A) f71(j) is non-empty for all j € [t].
(ii) K, contains no monochromatic triangle.

(iii) For any ordered triplet (a,b,c) of three integers a,b,c € [t] (two
of which may coincide) and for any ordered pair v;,v; € Vp of
vertices with f(v;v;) = a there is a vy € V;, such that f(v;v;) = b
and f(vjvg) =c.

Problem 10.1. Is every t representable?

The answer was shown to be affirmative for t < 5 by Comer
[7]. Even if some counterexamples occur for some ¢ large, it remains
an interesting problem to determine which t are representable. For
further results in this direction, concerning combinatorial (coloring-)
characterizations of algebraic properties, see [32].



PROBLEMS AND RESULTS ON GRAPH AND HYPERGRAPH COLORINGS 233

11. Arithmetic progressions.

The folowing question is the simplest unsolved case of a problem
discussed in [2]. :

Problem 11.1. For a natural number %k, determine the smallest
integer n = n(k) with the following property: If the integers 1,...,n
are colored in such a way that every color occurs at most k times,
then there is an arithmetic progression of 3 terms having pairwise
distinct colors. |

Our best general estimates are 2k < n(k) < (4.5+0(1))k. Perhaps
the truth is n(k) = 2k + o(k), and most probably n(k) < 3k holds for
all £ > 1. (For small values of k, n(1) =3, n(2) =5, n(3)=9.)

A closely related question is as follows.

Problem 11.2. Find upper and lower bounds on n(k + 1) — n(k).

In particular, it would be interesting to prove (f true) that the
above difference remains under a constant for all k.

There are several generalizations and. related problems in this
topic (for longer arithmetic progressions, for edge-colored complete
graphs, etc.); some of them are considered in [2], some others
are investigated in a joint work with Alon, Caro, and Ro6dl (in
preparation).

12. Chromatic sum.

At the end of this paper we discuss some problems concerning a
coloring concept introduced quite recently. In this context, a coloring
(or s-coloring) of a graph G'=(V, E) is a mapping f:V — {1,2,.., s}
for some natural number s, such that f(z)#f(y) whenever zy € E.
The weight of a coloring is defined as w(f) := Z;cv f(z), and the
chromatic sum Z(G) of G is the smallest possible value of w(f), taken
over all colorings of GG. A coloring f is called minimal or best (in [33]
and [15], respectively) if w(f) = Z(G). We define the strength s(G) as
the smallest integer s for which G has a minimal s-coloring.

Some estimates on X(G), in terms of |E|, have been given
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in [25]. On the other hand, it was proved in [15] that finding
2(G) is an N P-complete problem. Hence, one cannot expect a good
characterization of graphs with a given chromatic sum.

Problem 12.1. Is it N P-complete to determine s(G)?

Problem 12.2. Design fast algorithms that determine the chromatic
sum and the strength of graphs belonging to some important particular
classes.

It has been ovserved by Kubicka and Schwenk [15] that even some
very simple graphs, such as trees, can have arbitrarily large strength.
For every s > 2 they constructed a tree on ((2++/2)*! —(2—\/5)3”1)/ V2
vertices with strength s, and I proved in [33] that their example
is the unique smallest tree of given strength (this result is also
claimed in [15] but the proof is incorrect there). As a matter of fact,
this extremal result follows from a much stronger theorem which
expresses a close relation between strength and edge-contractions:
For every s > 3 there are two trees 7, and R, such that every tree
of strength s can be contracted to 7, or R,.

These results show that the concept of chromatic sum leads
to a rich area of current research, offering lots of challenging open
problems. We first recall an unpublished extremal question of P.
Erdos.

Problem 12.3. Determine the minimum number of vertices in a
graph of given strength and given chromatic number.

Of course, the complete graph K, has strength =» (and its
minimal coloring is unique). Hence, the relation between strength
and the number of vertices can be linear and also exponential (as
in case of trees). It would be interesting to draw the boundaries
between «fast-growing» and «slow-growing» classes of graphs. More
precisely, for a class G of graphs denote by ng(s) the smallest number
of vertices in a graph G € G with s(@) =s.

Problem 12.4. For which integer-valued functions h(z) does there
exist a «nice» class G of graphs such that h(s) = ng(s) for all s?

In particular, we would like to see some «separating» graph
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classes, i.e. largest or smallest classes in which ng(s) is a linear,
polynomial (of given degree), or exponential function of s.

Another direction is to compare s(G) and x(G).

- Problem 12.5. Characterize those graphs whose strength is equal
to their chromatic number.
A generalization of this question, to characterize those graphs
G in which x(G) — s(G) is equal to a given integer, seems to be
hopelessly difficult. Perhaps the next two problems are easier.

Problem 12.6. Characterize those graphs G in which s(G') = x (G
for all induced subgraphs G’ of G. "

Problem 12.7. Describe the structure of those graphs whose
minimal coloring is unique. ,

We have already mentioned that sometimes edge-contractions
are relevant with respect to strength. Below we list a collection of
problems of this motivation, taken from [33].

Problem 12.8. Describe the basic structural properties of strength-
critical graphs (= graphs G in which s(G —e) < s(G) for every edge
e). . _

Problem 12.9. Describe the basic structural properties of
contraction-critical graphs (= graphs G in which the graph G,
obtained after the contraction of the edge e satisfies s(G.) < s(G) for
every e € E(G)).

Problem 12.10. Characterize those graphs which are strength-
critical and contraction-critical.

Problem 12.11. Describe the basic structural properties of
contraction-minimal graphs (= graphs G in which s(G.) > s(@) for
every edge e).

Problem 12.12. In which contraction-critical (contraction-minimal)
graph G = (V,E) is G, contraction-minimal (contraction-critical) for
all e € E(G)?
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From this point of view, odd and even cycles provide a
complementary pair of graph classes.

Problem 12.13. Do there exist «double-minimal» graphs (i.e. in
which the contraction of any pair of edges increases the strength by
2)?

Similarly, one can ask which graphs are «double-critical» with
respect to vertex deletion or edge contraction.

The strength and the chromatic sum do not increase when
an edge is deleted from the graph. Call an e € E(G) weak if
(G —e) =X(@A), and call e critical if s(G — e) < s(G).

Problem 12.14. When is a weak edge critical, and when is a
critical edge weak?

Most of these questions seem to be interesting also for some
(reasonably rich) particular classes of graphs. Further problems can
be posed concerning graphs G which are «vertex-strength-critical»,
i.e. when the deletion of any vertex decreases s(G@). (For example,
study the connections among the classes of (vertex)-strength-critical,
contraction-critical, and y-critical graphs.) Moreover, one can
investigate the relation between strength and subcontractions of a
graph (that are obtained by edge contraction and edge deletion).
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