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CONTROLLABILITY OF PARTIAL DIFFERENTIAL
INCLUSIONS DEPENDING ON A PARAMETER _
AND DISTRIBUTED PARAMETER CONTROL PROCESSES

SALVATORE A. MARANO (Catania) (¥)

Let A be a topological space and let 7 be a multifunction from
[0,a] x [0,0] x (IR™)* x A into IR™. In this paper we prove that, under
suitable assumptions, the set of all A € A such that the partial
differential inclusion

Zoy € F(m,y,z,zx,zy,zxy,/\)

is locally controllable around the origin of IR" at the point (a,b)
(resp. IR"-completely controllable) is open in A. Next, we present
an application to the study of two kinds of controllability for the
distributed parameter control process

Zoy = A(Z,¥)2 + B(2,9)2: + C(2,y)zy + G(z,y,u(z,y)).

Introduction.

Throughout this paper a,b are two positive real numbers; @ is
the rectangle [0,a] x [0,8] with the Lebesgue o-algebra; A is a first
countable topological space; m,n are two positive integers; IR" is the

(*) Entrato in redazione il 2 ottobre 1990
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real Euclidean n-space, whose null element is denoted by dR~; F is
a multifunction from @ x (IR")* x A into IR", with non-empty closed
values; p € [1, +ool.

If T is a compact real interval, we denote by AC,(I,IR") the
space of all absolutely continuous functions ¢ : I — IR” such that
%:* € LP(I,IR"). Given f € ACP([O,a],IR”), g € ACy([0,8],IR™), with
f(0) = ¢(0), and X € A, denote by T',(f,g,)) the set of all generalized
solutions (in the sense of [9], p. 282) of the problem

022 crls 0z Oz 0%z 3
*Ozdy R Oy’ Ozdy’
2(z,0) = f(=z)

»Z(O,?.J) = g(y).

Moreover, put:
Aa,); (£,0)0) = {+(0,D) : = € T4, )
If, for fixed X € A, |
i € int (A(a,0); (9yge, Iy V)

then, like the case of ordinary differential inclusions (see for instance
[1] and [5]), we say that the partial differential inclusion

52 crla 0z Oz 0%z /\>
Hz0y AR dy’ Hzdy’

(1)

is locally controllable around J\g~ at the point (a,b).
If
A(a,b);(f,9);3) = IR"
for every (f,g) € AC,([0,a],IR") x AC,([0,%],IR™) such that f(0) = 4(0),
then we say that (1)) is IR"-completely controllable.

In this paper we prove that, under suitable assumptions, the
set of all A € A such that (I,) is locally controllable around Jig- at
the point (a,b) (resp., IR"-completely controllable) is open in A (see
Theorems 2.1 and 2.2). To do this, we need some preliminary results

(Propositions 1.1 and 1.2 and Theorems 1.1 and 1.2). The proof of
Proposition 1.1 is implicitly contained in that of Theorem 3.1 of [10];
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Theorems 1.1 and 1.2 improve, respectively, Theorems 2.1 and 2.3 of

[9].
Next, we consider the following distributed parameter control
process:

0%z
(E) Oxdy

= A(z,y)z + B(, y) +C(af y) +G(:v Y, u(z,y)),

where (z,y) ranges over (), the vector function z is n-dimensional,
the control vector function u is constrained within a non-empty
closed subset Q of IR™, the matrix-valued functions A, B, C' and
the vector function G satisfy some rather general assumptions (see
(a1) — (as)). As an application of the previous results we prove that,
if (£) is locally controllable around ¥|z» at the point (a,b) (resp.,
IR"-completely controllable; see Definition 2.1) and A, B, C, G are close
to A,B,C,G in a sense to be specified then, the perturbed control

process

9%z

- Oz
(E) Erom +C(~’L‘,y)

ot Gy (e, 0)

~ ~ 0z

is locally controllable around Jjg» at the point (a,b) (resp., IR"-
completely controllable) too (see Theorems 2.3 and 2.4).

For other papers related, in some way, to the subject of the
present one, we refer to [2], [4], [10], [11], [14], [15]. Here, we point
out only that Theorem 3.2 of [2] is a particular case of Theorem 2.4
and that Theorem 3 of [15] (which holds only for p > 1) and Theorem
2.4 are independent. Indeed, the hypotheses of [15] on A, B,C are
more general than (a;) — (a3) (see, for instance, [4] Remark 4.1) but, in
the setting of coefficients 4, B, C which satisfy assumptions (a;) — (a3),
‘the closeness required in Theorem 2.4 is not so restrictive as that
required in Theorem 3 of [15].

1. Preliminaries.

Let X,Y be two non-empty sets. A multifunction & : X — 2Y is a
function from X into the family of all subsets of Y. The graph of &,
denoted by gr(®), is the set {(z,y) e X xY :y € ®(2)}. f W C Y, we
put &= (W)={z € X : ®(z)nW #£ 0}. If X|Y are two topological spaces,
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we say that ® is lower semicontinuous if, for every open set W C Y,
the set ®~ (W) is open in X. If (X, ¥) is a measurable space and Y
is a topological space, we say that & is measurable if &~ (W) € 7 for
all open set W C Y. If X, Y are two real vector spaces, we say that &
is a convex process if gr(®) is a convex cone of X x Y containing the
origin. This is equivalent to say that «®(z) + ®(z) C ®(az + B2) for
every o, >0, z,z € X. If (£,6) is a metric space, for every z € & and
every pair of non-empty sets VW C &, we put:

6(z, V) = inf 6(z,2); &*(V,W) = sup 8(z, W);
_ z€V , z2€V
S (VW) = max{§*(V, W), 8*(W,V)}.

Let (X, 6), (Y, p) be two metric spaces. A multifunction & : X — 2Y,
with non-empty values, is said to be Lipschitzian if there exists a
real number L > 0 (Lipschitz constant) such that

pr(®(2),®(2)) < Ld(z, z) .

for all z,z € X.

Finally, if S is a topological space and V C S, we denote by int(V)
the interior of V and by cl(V) the closure of V.

In the sequel, we will apply the following two propositions. The
first of them is implicitly contained in the proof of Theorem 3.1 of
[10]. '

PROPOSITION 1.1. Let S be a topological space and let & be a
lower semicontinuous multifunction from S into R", with non-empty
convex values. If there exists so € S such that 9|z~ €int(®(so)), then
there exists a neighbourhood U, of s such that 9\g~ €int(®(s)) for all
s € Uo.

Proof. Let Q1,Q,...,Qs» be the open orthants of IR". Since
$ is lower semicontinuous and Yz~ €int(®(sy)), there exists a
neighbourhood U, of sy such that &(s)NQ; # 0 for every s € U,
and every i = 1,2,...,2". Fix s € Uy and, for each i = 1,2,...,2",
take v; € ®(s) N Q;. Moreover, denote by V the convex hull of
the set {v;,vs,...,v2»}. Thanks to Theorem 6.2 of [12] one has
ri(V) # 0, where ri(V) is the relative interior of V. We claim that
Yr* € ri(V). To verify this, observe first that if W is any proper



CONTROLLABILITY OF PARTIAL DIFFERENTIAL INCLUSIONS,... 287

linear subspace of IR", then WNQ; = ¢ for some i e {1,2,...,2"}.
Indeed, if (21,2,...,2,) € IR"\{9|g~} is such that szzz = 0 for all
(w1, ws,...,w,) € W then, denoted by € the orthant assomated with
the arrangement (sign 2, sign z,,..., sign zp), one has Zwm >0

for all (wi,ws,...,w,) € Qi; therefore, W N Qy = 0. Now, aszsflme that
Jr~ € ri(V). By Theorem 11.3 of [12], there exists a non-null linear
functional ¢ on IR™ such that ¢(v) > 0 for every v € V. Let Q;, be such
~ that ¢=*(0)NQ;, =0 and let Q;, = ~Q;,. Since ¢ is continuous, Q;, is

a convex set not meeting ¢~'(0) and ¢(—v;,) < 0, one has ¢(v) < 0 for
every v € {;,, against the fact that v;, € V nQ,,. Hence, YR~ € ri(V).
This implies that the linear hull and the affine hull of V coincide.
Taking into account that, by a previous remark, the liner hull of V
is IR* and that V C &(s), we get Jig~ €int(®(s)). This completes the
proof. \ |

Remark 1.1. Proposition 1.1 does not hold if & takes its values
in an infinite dimensional Hilbert space. Indeed, let IN be the set
of all positive integers, H a separable Hilbert space such that
dim(H) = 400, {e,} an orthonormal basis of H, H, the linear hull of
the set {e1,es,...,e,} (r €IN) and S the one-point compactification of
IN with the usual topology. For every s € S, put:

H, ifs<+4oo,s=r
®(s)
H ifs= +00.

Then, the multifunction & : S — 27 s0 defined is non-empty
convex-valued and lower semicontinuous, Jy €int(®(+0)), but
g ¢int(P(s)) for every s € IN (of course, 9y is the null element of ).

PROPOSITION 1.2. Let (X,6) be a metric space; (Y,||-|ly) a real
normed space; ® a multifunction from X into Y, with non-empty
convex values. If ® is Lipschitzian and there exists z, € X such that

cl(®(20)) =Y, then cl(®(z)) =Y for every z € X.

Proof. Assume that cl(®(21)) # Y for some z; € X. Then, there
exist a real number ¢ and a non-null continuous linear functional ¢
on Y such that ®(z1) C ¢~!([c, +0o0[). Let p be the metric on Y induced
by || |lv, d the Euclidean metric of IR and n(y) the norm of ¢. Since
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cl(®(z0)) =Y and ¢ is onto, one has:

p*(®(0), B(21)) _>_.p*(‘1>(¢o),90"1({0., ool)) 2

> p*(@-l(] - OO>CD’ 90—'1([0’ +OOD) >

> o (o™ (= 00, D), ol (e, 0D) =
L — 00, ¢], [¢, +oo]) = oov‘
= oy @ 1= e0.0) oo = +oo.

This implies that pg(®(z0), $(z1)) = +oo, agai.nst the fact that @
is Lipschitzian. |

Remark 1.2. Let ® be as in Proposition 1.2. The assumption
®(z0) = Y does not imply that &(z) =Y for every z € X. Indeed, let
Y be infinite dimensional and complete and let Y; be a dense convex
proper subset of Y (see, for instance, [3], Exercise 27 p. 437). For

every z € X, put:
Y ifz==z
d(z) =

(Yo if 2 # .

Then, the multifunction ® : X — 2¥ so defined is non-empty
convex valued and Lipschitzian, &(z¢) = Y, but &(z) # Y for every
z € X\{zo}.

We denote by C;(Q, IR”) the space of all continuous functions
z:Q — IR" for which there exist h € L?(Q,IR"), hi € L?([0,d],IR"),
hy € LP([0,8],IR™), 20 € IR”’ such that

2(2,Y) :/x/yh(s,t)dsdt+/xh1(s)ds+/yh2(t)dt+zo

0 0

for all (z,y) € Q. It is possible to show that if 2z € C;(Q,IR"), then
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., 0z 0z 0% .
there exist - 52’ By’ 020y and, a..e. in @, one has

0_?3%1/_) /h(x,t)dt-i-hl(x);

For every z € C;(Q,IR") put:

Oz 0z
Il 0 7y = s, (= )l + “ [ P O 7 P
ol
Oz 0y L»(Q,IR™ .
where || - || is the Euclidean norm of IR”’ It is clear that |I HC.(Q IR™)

is a norm on Cr (@, IR") Moreover C3(Q,IR™) endowed with this norm
is complete (see for instance, [9] Propos1t10n 1.1). |
If AC,(I,IR") is as in Introduction and ¢ € ACp(I ,IR™), put:

. ' de
N —— t T )
”‘P”ACP(I,IR ) I?E%XH('O( )”+ “ dt Lr(1,IR™

Of course, (AC,(I,IR™), (|-l (1 IR™) is complete.
Now, put:

Z, = {(/,9) € AG, ([0, a],IR") x A, (0,8}, R") : £(0) = 9(0)}.

On E, we consider the norm of the graph || ||z,. The space Z,,
endowed with this norm, is a closed linear subspace of AC,([0;d], IR") x
AC,([0,8],IR™).

In the sequel, we will use the following theorems, which improve
(when X = IR"), respectively, Theorem 2.1 and Theorem 2.3 of [9].

THEOREM 1.1. Assume that:

(1) the multifunction (z,y) — F(z,y, 21, 22, 23, 24, X) is measurable
for every zy,z0,23,24 € IR", X € A;
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(ii) there exist Ly € LP(Q), Ly € LP([0,]), Ls € LP([0,a]), M €[0,1]
such that, for every 2,2l € IR", i =1,2,3,4, X € A and for
almost every (z,y) € Q one has

dH(F(:B,y, 21’2/2>Z§’Z:1)’\)’F(may) Zil»zlz’,zg,zz,)\)) S
< iz, y)ll2t — 27 ||+ La(w)ll23 — 25 || + La ()| 2 — 25 || + M| 25 — 24|,

where d is the metric induced by || - ||;

(iit) the multifunction A — F(z,y, 21,22, 23, 24, A) is lower semiconti-
nuous for every z1,zs,z3,24 € IR" and for almost every (z,y) €

0.

Then, the following assertions are equivalent:

(i1) for each convergent sequence {)\.,} C A the set functions

A — // d(’t?an F((IZ y,’l9|Rn 19an 19|Rn 19an A ))]pdmdy aré
equi- absolutely continuous;

(ia) for every (f,g) € B, the multifunction X — Tp(f,g,)) is non-
empty closed-valued and lower semicontinuous with respect
to the norm topology on C3(Q,IR").

Proof. Let us prove that (i;) = (i3). Fix k£ > 0 such that

M + [(ab)l-l/p + al-—l/p +b1-—1/p](pk)_1/p <1

and, for every (z,y)€ Q, put

: T Y . y . pz »
L(x,y):/ / Ll(s,t)pdsdt—{—/ Lz(t)Pdt+/ La(s)?ds,
0 0 0 0

where / / Li(s,t)Pdsdt stands for / (/ Ll(s,t)f’dt> ds. Next, con-
o \"

0 "o
sider on L?(Q,IR™) the norm (equivalent to the usual one)

. z py 1/p
— ~kL(z,y) / / AP dsdt
= max e s, $ )
”WHO (29920 ( A HSO( )|

and go on exactly as in the proof of Theorem 2.1 of [9]. Conversely,
let us prove that (i) = (41). Let {),} be a sequence in A converging
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to ) € A, (f,9) €5, and z € T,(f,9,A). Arguing as in the proof of
Theorem 2.1 of [9], we get a sequence {z.} C Cy(@,IR™) such that
zr € Tp(f,g9,Ar) for all r € IN,

(1) 7‘1_2'20 ”Zr —_ z”C;(Q,an) = 0
and
(2) AR, F(2,y, g, d)gm, 9| IR Ar)) <
' 92 (2, || 0z (a,
< Lafe, (o, 0l + Ea()| 20 | 4 )| S22

+(M+1)l%%yl“+1

for every r» € IN and almost every (}:c y) € Q. Let ¢,01,¢09,... be
a_sequence in LP(Q,IR”) such that z(z, y) = f(:z:) + g(y) < f(0) +

/ / p(s,t)dsdt, 2-(2,y) = f(z) + g9(y) — £(0) + ¢r(s,t)dsdt (r € IN)

0
for all (z,y) € Q. Since, thanks to (1), one has l1m ©r = @ in LP(Q,IR™),
the set functions

A—*/l <L2(y) aLa(i’—yl )pdwdy,
i / [ (] 0 s

zr(m Y)
8:1:8

dxdy
are equi-absolutely continuous. At this point, assertion (i1) is a sirﬁple
consequence of (1) and (2). ' |

_ THEOREM 1.2. Let F satisfy assumptions (i) and (ii) of Theorem
1.1. Further, assume that the real function

(2,9) = d(Oge, P (2,9, 91, Yigs IR IR A)

belongs to L*(Q) for all X € A.
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Then, there exists a constant c, depending only on a,b,p, ||L1||r(q),
M Lzllzeqo,enys 1 LsllLe(o,a)y @nd M, such that, if D is the metric induced
by ” Hc=- (Q, IR™ ) one has

D (Tp(f1,91,2), Tp(f2, 92, 1)) < e([l(f1, 91) = (f2,92)llz, + [11(0) — f2(0)[|+

+esssup sup dp(F(z,y,&A), F(z,y,& 1))
(#,9)€Q ¢¢(IR™)4

for every (fl;gl)) (fZ;gZ) EEp: A)NEA

The proof of this result is similar at all to that of Theorem 2.3
of [9]; hence we omit it.

Remark 1.3. Theorems 1.1 and 1.2 remain true (with the same
proof) if IR™ is replaced by a separable real Banach space X.

We denote by IR™™ the space of all real n x m-matrices. For every
D € IR™™ put

|D| = sup{|| Dul|:u € IR, [Juljg~ < 1}

(|| - [ljg= is the Euclidean norm of IR™). If #4Q,IR™™) is the space of
all (equivalence classes of) measurable functions from @ into IR™™,
for every D,,D; € MQ,IR™™) put:

B |Di(z,y) — Da(z,y)]
6(D1, Da) = // 1+ |Di(z,y) — Do(z,y)] dedy

It is clear that 6§ is a metric on MQ,IR™™). Moreover, for every
sequence D, Dy, Ds,... in MQ,IR™™) one has klim §(Dy, D) = 0 if and
only if klim Dy = D in measure in @ (see, for instance, [7] pp. 5-6).

The definition of the space M(Q,IR") is similar at all.

Given a non-empty closed subset @ of IR™, we denote by
Z(Q x Q,IR™) the space of all functions G:Q x © — IR" such that
G(-,u) € MQ,IR™) for every u € Q and the function u — G(z,y,u) is
continuous for every (z,y) € Q. Moreover, for every G € Z(Q x ©,IR")
we put Mg (Q,Q2) = {u: Q — Q such that u is measurable and
G u()) € L7(Q, R™)}.

If @ is compact, we denote by Z. the class of all functions
G € ZQ x ,IR") such that for almost every (z,y) € Q the set
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{G(z,y,u) : u € Q} is convex and contains g~ If G1,G2 € Z,, put:

supHGl(x y,u) — Ga(z,y, u)|
p(Gl’Gz) // 1+SUPHG1($ y,u) Gz(ﬂ?,y,U)” dxdy

Obviously, p is a metric on Z, and, for every sequence G,G1,Gs,... in
Z, one has klim p(Gr,G) = 0 if and only if klim sup||Gr(-,u) — G(-,u)|]| = 0

in measure in Q.

2. Results.

Our first theorem is a stability result for the local controllability
of (I,) around Y|~ at the point (a,b).

THEOREM 2.1. Let F satisfy assumptions (i), (iii) and (i) of
Theorem 1.1. Moreover, assume that: ‘
() for every X € A there exist a neighbourhood U of )\ and
Li € LP(Q), Loy € LP([0,8]), Lsyx € LP([0,a]), M € [0,1] such that
dH(F(CB,y,Zi,Z/Z,Zé,Z,/},/I,), F(way721>212’>23;z4aﬂ)) S

< Lia(z, y)lley — 24|14 Lo a2 — 25 |+ Laa ()| 25 — 25| + M| 2, — 24|
for every 2,2/ € IR", i =1,2,3,4, p € U\ and for almost every
(z,y) €Q; |

(ij) for every X € A the set A((a,b); (z?an J|R~); A) is convex.
Then, the set

Vi = {X € A: (1)) is locally controllable around ¥~ at the point (a,b)}
1s open in A. |

Proof. Fix Ay € V;. Thanks to (j), we can apply Theorem 1.1
to the multifunction F| ax(IR™ixus, and we obtain that, for every
(f,9) € Ep, the multifunction A — T, (f,9,1), A € U,,, is non-empty
closed-valued and lower semicontinuous with respect to the norm
topology on C;(@,IR"). Now, for every z € C}(Q,IR"), put

T(z) = z(a,b).
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Of course, T is a continuous linear operator from C;(Q,IR") onto IR"
and one has

(3) A(a,); (f,9);2) = T(Tp(f,9,2))

for all (f,9) € Ep,v A € Uy,. Taking into account (jj), this im-
plies that the multifunction A — A((a,b); (9|5, 9|g~);A), A € U, is
non-empty convex closed-valued and lower semicontinuous. Since
dr» €int(A((a,b); (g, ¥|g*); Mo)), the conclusion follows at once from
Proposition 1.1. |

Remark 2.1. A simple sufficient condition in order that (i;) of
Theorem 1.1 and (jj) of Theorem 2.1 hold is the following:

Gjy for every A € A and for almost every (z,y) E'Q the graph of the
multifunction (zl,zz,z3,z4) — F(.’L y,zl,zg,zg,z4,)\) is convex and
contams the origin.

The following theorem deals with the IR"-complete controllability
of ( I A)-

- THEOREM 2.2. Let F satisfy assumptions (i), (iii) of Theorem 1.1
and (j) of Theorem 2.1. Further, assume that for almost every (z,y) € Q
and every A € A, the multifunction (21,22, 23,24) — F(2,y, 21, 22, 23, 24, A)
s a convex process. Then the set

Ve ={X € A : (1)) is IR"-completely controllable}
s open in A.

Proof. Fix X € V.. Since A((a,b);(dg",d)g); o) = IR and (jj)
holds, by Theorem 2.1 there exists a neighbourhood W,, of \q such
that Wy, C V;. Let us prove that W), C V.. To this, end, fix A € W), and
observe that from our assumptions it follows that 4((a, b); IR YR )5 A)
is a convex cone of IR" and 9|z~ €int(A((a,b); (9=, 9jz~); A)). Hence,

(4) A(a,b); (957, 9gn); A) = IR™

If we apply Theorem 1.2 to the multifunction F| ox(IR™yixvy, We
obtain that the multifunction (f,¢) — I',(f,¢,A) is Lipschitzian, with
Lipschitz constant 2¢, and non-empty closed-valued. Moreover, for
every (f,g) € Z,, the set I',(f,g,) is convex.
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Now, observe that, thanks to (3) and Theorem 6 of [13], for every
(f1,91), (f2,92) € 2, one has

di(A(a,b); (f1,91); A), A(a,b); (f2,92); X)) <
< n(T) D (Tp(f1,91,2), Tp(fa, 92, A)) <

S DH(FP(fl)gl)A))Fp(f25g27A)) S 20”(f1>gl') - (f?agz)llsr’

where n(T') is the norm of the operator T introduced in the proof of
Theorem 2.1. This shows that the multifunction (£, 9) — 4((a,b); (f, 9); })
is Lipschitzian and non-empty convex closed-valued. Taking into
account (4), from Proposition 1.2 it follows that 2((q,b);(f,¢);)) = IR"
for every (f,g) € E,, that is A € V.. So, our claim is proved. ||

Now, let us apply the previous results to the study of two kinds
of controllability for the distributed parameter control process (E).
Suppose that the following assumptions hold (cf. [14] p. 566).

(a1) A€ LP(Q,IR™);
(a2) B € M(Q,IR™") and there exists g € L?([0,b]) such that lB(a: y)| <
B(y) a.e. in Q;

(as) C € M(Q,IR™™) and there exists v € L?([0,q]) such that |C(z,y)| <
7(z) a.e. in Q;

(as) G € ZQ x 2, IR").

For every (z,y) € Q, 21, 22,23 € IR" put:
®(z,y,21,22,23) = {A(2,y)z1 4+ B(z,y)z2 + C(z,y)z3 + G(z,y,u) : u € Q}.

The following proposition allows us to study the control process
(E) by means of a suitable partial differential inclusion.

PROPOSITION 2.1. A function = € CX(Q,IR") is a solution of the
differential inclusion

0?2 . 8z Oz
@) iy <0 (e )

if and only if it is a solution of (E) for some u € Mz(Q, Q).
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‘Proof. Let z be a solution of (I). For almost every (z,y) € Q, put:
_ Oz(z,y) 0Oz(z,y) ) , }
wz@,y)_{(z(x,y), o), 20 ) ueal.

Of cdurse, the multifunction U, : Q — 2R xIR™ o5 defined is
measurable and non-empty closed-valued. Now, for every (z,y) € Q,
21y 29,23 € IR , U E Q put

Y(z,y, 21,22,2‘3,“) Az, y)z +B(93 y)z2+C(x y)zs + Gz, y, u).

Observe that' for all (21,22, 23,u) € (IR")? x Q the function (z,y) —
¥(z,y, 21,2, 23,u) is measurable and for all (z,y) € Q the function
(21,22, 23,u) — Y(2,Yy, 21, 22, 23, u) 18 continuous. Since one has

Uy e(e,y) = @ (x,y,z(m,w, ol asz@} w) ,
e
%@fj_}_ € ¢($,y,‘1’z($,y))

a.e. in (), we are allowed to apply Theorem 7.1 of [6]. Then, there
exists a measurable function u : Q — Q such that

0%z(z,y) 0z(z,y) 52(% y)

W—w (df,y,g(d},y), ax 3 (:C y))
a.e. in Q. It follows that u € M:(Q,Q) and 7 is a solution of (E). The
converse is trivial. _ |

For every u € Mz(Q,Q), (f,9) € Z,, denote by R,((a,b);
(f,9);(A,B,C,G)) the set {z(a,b) : » is a solution of (E) such
that z(z,0) = f(z) for all z € [0, 4], 2(0,y) = g(y) for all y € [0,b]}.

- Moreover, put:

R((a,5)(£,9)(4,B,C,) = |J Ru((@b);(f9); (4.B,0,6))
- : : ue Ms(Q,0) ,

We give the following

DEFINITION 2.1. The control process (E) is said to be locally
Q-controllable around Jg~ at the point (a,b) if

Iige € int(R((a,b); (9pr, IR (4, B,C, G))).
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If, for every (f,g) € E,, one has
R((a,);(f,9);(A,B,C,G)) = IR",

then we say that (E) is (lR”,Q)-completely controllable.
The next theorem is a stability result for the local Q-controllability
of (E) around dz~ at the point (a, ).

THEOREM 2.3. Assume that G € 2, and that the control process

(E) is locally Q-controllable around 19IR” at the point (a,b).

Then for every € L*([0,b)), 5 € LP([0,a]) such that B(y) > B(y)
a.e. in [0,b] and ¥(z) > v(z) a.e. in [0, al, there exists o > 0 such that if
Aer(Q,R™™), B,C e MQ, IR™™), G € z, and

(b1) 1B(2,v)] < B(®), IC(z,y)| < ¥(2) a.e. in Q,

(52) A=Al g Ry +8(B,B)+6(C,C) +p(G, &) < o

then, the control process (E) is locally - controllable around dg~ at
the poznt (a,b).

Proof. Suppose th{t the conclusion of the theorem does not
hold. Then, there exist g € L7([0,5]), ¥ € L?([0,d]), a sequence {A4;} in
LP(Q,IR™"), two sequences {B;}, {Ci} in M(Q,IR™") and a sequence
{G+} in Z, such that: |
(5)  B(y) > B(y) ae. in [0,0], 5(z) > 7(z) a.e. in [0, a);

(6) |Bi(z,9)| < B(y), |Ci(2,y)| <4(z) a.e. in Q and for all k € IN;

1
(7) I]A——AkHLP(QJRn»n)vaS(B,Bk)+5(C’, Cr)+p(G,Gy) < = for all k € IN;

(8) for every k € IN the system

952z Oz Oz

is not locally Q-controllable around 9|z~ at the point (a,b). Since, by

(7), the sequence {|A(-) — Ai(:)|} converges to zero in L?(Q) and the

sequence {|B(~)—Bk(»)l-l—lG(-)—Ck(-)l—i-sugl]G(-,u)—Gk(-,u)H} converges
u€

to zero in measure in @, from Theorem 2.8.1 and Remark (e) p. 88 of
[8] it follows that there exist & € L?(Q) and an increasing sequence
{k.} of 1ntegers such that

(9) - IAk (2,9)| < é&(z,y),

+ Gk (‘U; Y, u(:v, 3/))
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lim [|A(z,9) — Ax, (2,9)] + |B(z,v) - B, (2, )|+
(10) +1C(2,y) = Cr, (2, )|+
+§EEI|G(m,y,u) k(29,0 =
a.e. in @ and for all » € IN.

Let A be the one-point compactification of {k,}, with the usual
topology. For every (z,y) € Q, #1,72,23 € IR", A € A put:

F((B,y, 21,22,2’3,/\) =’

{Ax,(2,9)21 + Bi,(z,y)22 + Ci,(2,9)23 + Gr,(2,y,u) 1 v € Q}
if A < 400, \ = ky

{A(z,y)z + B(:c Y)ze+ C(z,y)23 + G(z,y,u) : u € Q}
i X = 4.

The multifunction F: @ x (IR")3x A — 9IR™ 50 defined is non-empty
closed-valued and, thanks to Theorem 6.5 of [6], measurable with
respect to (z,y) € Q. Moreover, by (5), (6), (9) and (10), for almost
every (z,y) € Q and every zl 2l e IR”, i=1,2,3,2 € A, one has

dH(F(ZB,y,le,Zé,Zé,/\), F(.’L‘,y, 21,22,23,)\))
<A@z, )zt = 21 [l + [Ba(z, )l |25 — 23] + |Cale, y)] [I25 — 25| <
< @z, y)llzt — 21 (| + Bwllzs — 251+ F()l|25 — 24,

where (A, By, Cy) = (Ak,, Bx,,Ck,) if A = k» and (4y, By, C)) = (4, B,C)
if A = 400. Now fix (2,y) a.e. in Q and 2,25,23 € R". If W is a
non-empty open subset of IR” such that F(z,y, 21, 22, 23, +00) N W # 0,
then, for some z € Q, one has

A(CL‘, y)z1 + B((L‘, y)ZZ + C(m’ y)zB + G(m, Y, ﬂ) € w.
Since (10) holds, there exists F €IN silch that
Ag, (z, y)z1 + By, (z,y)z2 + Ci, (:L' y)zs + G, (z,y,0) € W

for all » > 7, that is F(z,y, 21, 20, 23,k )NW # 0 for all r > 7. This implies
that the multifunction A — F(z,y,21,22,23,1) is lower semicontinuous.
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Finally, observe that, since G,G4,,Gs,,... € Z., for every X € A
and for almost every (z,y) € Q the graph of multifunction (2, 23, z3) —
F(x,y,21,%2,23,)) is convex and contains the origin. At this point, we
can apply Theorem 2.1. Then, taking into account that, thanks to
Proposition 2.1, one has |

ﬂ((ﬁ,b); (19an, 29|Rn); /\) = R((a, b«); (19an,19an'); (A)\, B)\, C’,\, G,\))

for every A € A, from +oo € V; it follows that there exists »* € IN such
that for every r > r* the control process

92z

Sy = Aer(E 02+ B (0,0) 5+ Co(2,0) 5 + G (3,9, u(2,)

Ox

is locally Q-controllable around 9|p~ at the point (a,b), against (8). M

If @ is a closed convex cone of IR™ and G(z,y,u) = Gi(z,y)u
((z,9) € Q, u € Q), with G; € MQ,IR™™), then, arguing as in the proof
of the previous theorem, but using Theorem 2.2 1nstead of Theorem
2.1, it is possible to verify the following

THEOREM 2.4. Assume that: Q.-is a closed convex cone of IR™
G(z,y,u) = Gi(z,y)u ((z,y) € Q, v € Q), with G; € MQ,IR™™); the
control process (E) is (IR",Q)- completely controllable. Then, for every
B e Lr([0,0]), 7 € LP([0,a]) such that B(y) > B(y) a.e. in [0,b] and
¥(z) > y(z) a.e. in [0,d], there exists o > 0 such that if A € LP(Q,IR™™),

B,C € MQ,R™™), Gy € MQ,IR™™) and.
@)  1B(z,y)| < By), IC(=z,v)| < H(z) ae in Q,
(85) 114 = All o IRmy + 8(B, B) +6(C, ) +6(G1,G1) <

then, the control process (E), where G(z,y,u) = Gi(z,y)u ((z,y) € Q,
u € Q), is (IR™,Q)-completely controllable.
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