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STABILIZABILITY OF OSCILLATORY SYSTEMS:
A CLASSICAL APPROACH
SUPPORTED BY SYMBOLIC COMPUTATION

ANDREA BACCIOTTI - PAOLO BOIERI (Torino) (*) (*%)

~ In this paper we study the stabilizability of planar single-input non-
linear systems, whose linearization at the origin has purely imaginary
eigenvalues. A classical recursive procedure based on polar coordinates
transformations is applied to obtain some sufficient conditions. Then
we focus on bilinear systems; a complete solution of the problem is
given in this case. :
Explicit statements of the conditions are possible thanks to the
use of symbolic computation packages.

Introduction.

In this paper we deal with nonlinear systems of ordinary
differential equations in the plane of the form

T = f(x;y).
(1) {y:g(m,y).

Our study is motivated by the stabilizability problems of certain
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nonlinear control processes. Indeed, as explained in Sect. 3, under
suitable assumptions the stabilizability problem reduces to checking
local asymptotic stability of an equilibrium position z = z¢, y = y, of
a system of the form (1), where the functions f(z,y) and g¢(z,y) at
the right-hand-sides depend on some real parameters. In particular,
in this paper we focus on the oscillatory case. This means that the
linear approximation of (1), namely the linear system defined by the
Jacobian matrix

g—i(mo,yo) %(970,290)

0 0
-a-:%(xo,yo) 5—3(500,310)

has a pair of purely imaginary conjugate eigenvalues. Oscillatory
systems are critical in the sense that stability cannot be decided by
looking at the linear approximation.

o analyze stability of oscillatory systems at least three methods
have been proposed in the literature. The most recent one is due to
[8]. The basic fact is the existence of a Liapunov function V(z,y) such
that . '

Tl G g =@ 4 ) b kg )

Obviously, the origin is an asymptotically stable equilibrium of
(1) if the first nonvanishing term of this expansion is negative. In
principle, the coefficients v,,v4, ... can be determined by the algorithm
shown in [8]. Computations are very involved and a heavy use of
computer algebra is needed: explicit results are given for particular
kinds of systems.
| A more classical approach is given by the so-called normal
form expansion. By a sequence of coordinate changes, any analytic
oscillatory system is transformed into a pair of polar coordinates

equations

{ r= a17°3 + a2r5 + ...+ akr%“ + ...

2) W=14br?+byr*+ ... +bpr?* 4 ..

Now, it is obvious that the asymptotic behaviour near the origin
- depends on the sign of the first non-zero coefficient of the first
equation. As far as the authors know, explicit expressions have been
found only for a; (see [9]) and a; (see [10]). The expression of q; is
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not too difficult to use, but that of a, is terribly involved. So, in the
highly critical case where a; = 0, this approach is not very helpful.

A different classical approach to stability analysis of oséillatory
systems is reported in [13]. This leads to an infinite system of
ordinary differential equations which, in principle, can be solved by
hand. However, also in this case computatlonal difficulties have been
until now a serious obstruction to practical results. Nevertheless,
in the authors’ opinion, this third method has an advantage.
Namely, computational difficulties are not intrinsic to the theoretical
framework, which is on the contrary very simple and clear. The use
of symbolic computation packages reduces to computing a sequence of
definite integrals involving trlgonometrlc polynomials of higher and
higher degree.

The paper is organized as follows. In Sect. 2 the theoretical idea
of the method is sketched for sake of completeness. The first step
of the procedure for solving the resulting infinite system of ordinary
differential equations is carried out in general. At that point, to decide
about stability, one has to evaluate the sign of an expression that,
except for a positive constant multiple, is the same as the expression
of a; found in [9]. In Sect. 3 the problem of stabilizability of an affine
control system by means of linear feedback is introduced. We present
some sufficient conditions, based on the first step of the procedure
developed in Sect. 2. In Sect. 4 we consider oscillatory bilinear control
processes in highly critical position; stabilizability conditions of this
section are obtained by iterating the procedure to higher order steps.
The study of the bilinear processes is completed in Sect. 5; we prove
that, except for one trivial case, oscillatory bilinear systems can be
stabilized by means of constant or linear feedbacks. '

Related papers are [5], where planar systems whose linear
approximation has a simple zero eigenvalue are treated using a
centre manifold approach, and [6], devoted to linear stabilizability of
planar bilinear systems. Some results of the present paper are stated
in [6] without proof.

Local stabilizability of critical systems is also considered in [1],

[2], [3], [4], [7], [12].
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2. Sketch of the method.

" Let us consider a system of the form (1). Without loss of
generality, the equilibrium position is supposed to be the origin. In
other words, we assume that 7(0,0) = ¢(0,0) = 0. We assume also that
f and ¢ are analytic around the origin, with Taylor expansions

(3.1) fle,y) = —y+ folz,y) + f3(z,y) +

(3.2) 9(z,y) = = + g2(z,y) + g3(2,y) + ..

where f,(z,y) and g.(z,y) are homogeneous polynomials of degree
n (n=2,3,..), namely

(4.1) fa(y) = D Aya'y
‘ ‘ ) i4+j=n

(4.2) gn(m y)= > Bia'y
i+j=n

(n = 2,3,..). Following the exposition given in [13], the system is
rewritten in polar coordinates (p,6). One easily gets

-
®) {9—/1)+;(£?(/2, 0,

where
F(p,0) = F3(6') + pFs(0) + p* Fs(0) +
G(p,0) = G3(9) + pGa(8) + p*Gs(6) +

and .
: n+1(6’) fn(cosd,sin @) cosd + gn(cos,sin ) sin @

n+1(9) = gn(cosf,sin @) cos § — f,(cosb,sin @) sin b

....................................................................

for each n > 2. Note that F,(0) and G,(6) are polynomials of degree n
in the variables cosf and sind. From (5) we have

% — 02F(p,0) [1 = pGlp, ) + pG*(p,0) + ..]

(6) dé
= p2F3(0) -+ ,03 [F4(0) - FB(Q)GS(H)] +
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Let us denote by p(8, po) the solution of (6) such that p(0, po) = po.
We can write

(7) | p(8,p0) = c1(0)po + ca(6)p5 + cs(6)p3 + ...

Substituting in (6) we have

dp 2 2
®) 20 = €1(0)F3(8)pp + [2¢1(0)e2(0) Fa(0)

+ OV Fa(0) — Fo(0)Ga(0))]65 + ..

On the other hand, taking the derivative of (7), we also have

dp _ dcl(ﬁ) dCQ(Q) 2

Equating (8) and (9), an infinite system of differential equations
in the unknowns cy,cs, ... is obtained

(10.1) dc;é&) =0
(10.2) 220) _ py0)eio)
ng(g) 3
(10.3) 0= 2¢1(0)c2(0)F3(0) + 1 (0)(Fa(0) — F5(6)G3(6))

......................................................................

Furthermore, there are some obvious initial conditions associated
with this system. Indeed, since p(0, po) = po, from (7) we obtain

(11.1) | e (0) = 1
(11.2) e(0) = 0

(113) 63(0) —

..................
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Finally, according to (10.1) and (11.1), it is easily seen that
¢1(6) = 1; this allows us to simplify equations (10).

Now, let M = {¢:7¢> 1 and ¢;(27) # 0} C N and let m = mmM
The following statement is easily deduced.

PROPOSITION 2.1 Let us consider system (1), with f and g given
by (3). Let us assume that M # 0. If cn(27) < 0, then the origin is
(locally) asymptotically stable. N

In order to determine the stability properties of the origin of a
system defined by (1), (8), we have therefore to compute numbers
¢;(2r) until a non-zero value is found. From (10.2) and (11.2) we
obtain immediately

co(27) = /0 - F3(0) d

and
2

e3(27) = [ /0 7 Ry 6) dé’]

The computation of ¢;(27) and c3(27) has been performed by the
authors with the aid of a standard symbolic manipulation package
The results are reported in the following statement.

+ /O " Fy(0) do - /0 Ry (6)Gs(6) do.

PROPOSITION 2.2, For a system defined by (1), (3), (4), we have
c2(27) = 0 and

T ' - |
(12) c3(2m) = Z[3A30 + A1 + Ba1 + 3Bos + A11(A2o + Ao2)
: — B11(B2o + Boz2) — 2A20B20 + 2402 Bo2] |

Remark 2.3. As recalled in the Introduction, also the normal form
expansion performed in [9] leads to a polar coordinates representation
of the system. Thus, it is natural to expect some similarity in the
-conclusions. Indeed, the expression found for c3(2r) is the same as
the expression given in [9] for the coefficient a; of (2), except for a
positive multiple 2.

Relationship with results of [9] is briefly discussed in the
Appendix, where we shall show that the two approaches can be
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considered equivalent from a practical point of view. However, the
method described in this section looks considerably simpler and
clearer. | ’

3. The stabilizability problem for planar affine systems.

In this section we consider single-input planar control systems
of the form

{3'3 =~y + ago1u + ¢(z,y; u)

1 .
( 3) y-_—x+b001u+¢(m,y,u)

where u is the control and

\14'1) ¢>(m,y,u) = Z [ Z awkxzyjukJ

n=2 [i+j+k=n

oo .
(14.2) Y(z,yu) =) [ > bijkmiyjukJ
o n=2 ti4+j+k=n

A smooth function v = u(z,y) is called a stabilizing feedback
if the origin turns out to be a (locally) asymptotically stable point
for the differential system (13), with u = u(z,y). The stabilizability
problem consists in finding sufficient (and/or necessary) conditions
~ for the existence of such a feedback. A

‘We note that if a},, +b%,, # 0, a well known result implies the
existence of a linear stabilizing feedback, that is, a feedback of the

form
(15) . u(z,y) = pz + qy.

Based on the approach described in Sect. 2, we next state
some sufficient conditions for the existence of stabilizing feedbacks
of the form (15) also in the critical case where ago; = boo; = 0. We
‘limit ourselves to the so-called affine systems, whose importance in
applications is well known. Referring to (14), a system is affine when
ik = bijk =0 for each & > 1. '
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Let us think of p and ¢ as real indeterminates. Substituting
(15) in (13), a system of the form (1) is obtained. Of course, the
coefficients A;; and B;; of (3) are now polynomial expressions of D, ¢
and the coefficients a;jz, bijx of (14). Stabilizability results can be now
deduced from Proposition 2.1 and 2.2, provided that the term c;3(27)
has been rewritten as a function of p, ¢ and the a;;x’s and b;;;’s. To
this purpose, symbolic computation can be again very useful.

PROPOSITION 3.1. Let us consider a system of the form (1),
obtained by substituting (15) in (13). Let us assume agp1 = bpo1 = 0 and
aijr = bi;p = 0 for each k > 1. Then, c3(27) is a quadratic expression
of the real indeterminates p and q. More precisely, c3(27) = 2nH (p, )
where '

(16) = H(p,q) = Haop® + Ho2q® + Hi1pq + Hiop + Ho1¢ + Hoo
and
Hoo = a120 + 3azoo0 + b210 + 3boso + a200a110 — 2az200b200
+ a110@020 + 2@020b020 — b110b200 — b110b020
Hlp = ag21 + 3azo1 + b111 + aro1a110 — 2a101b200 + a200Q011
— 2az00b101 + Go11a020 — bo11b200 — bo11bozo — brorbi1o |
Hor = a1 + 3boa1 + bsor + a101a200 + @r01@020 + 0110110
+ 2a011b020 + 2a020b011 — bo11b110 = b101b200 — b101b020
Hao = ato1a011 — 2a101b101 — bo11b101
Hy = 0301 + agy; = bgyy — blos
Hoz = a1010011 + 2a011b011 — bo11b101

We are now able to state some sufficient conditions of sfabiliz-
ability. '

THEOREM 3.2. Let us consider a control system of the form
(13), with age; = boo1 = 0 and aijk = bijx = 0 for k> 1. There exists a
stabilizing feedback of the form (15) if at least one of the following
conditions holds:
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(1) Hao <0 or Hoy <0 -

(ii) Hyo = Hop =0 but Hy; #0;
(1) Hyo = Hyy = Hop = 0, but Hy # 0 (or Hog £ 0);
(iv) Hy = H11 = Hys = Hyo = Hyy = 0 but Hoo <0
(v) Hy >0, Hoz >0 and 4HyHos < HE;
(Vi) H3o >0, Hog > 0, 4HsoHos > HZ, but

HooHg) + Hoa HYy — HiyHioHoy

Hopp <
%0 4HyoHoz — HE

(Vii) Hyy > 0, Hoy > 0, 4HoqHyy = HY and HiyHy, # 2H02H10 (or,
equivalently, HiyHyg # 2Ho0Hoy);

(viii) Hyo > 0, Hog > 0, 4HooHoo = H, HiyHoy = 2HosHio and 4HogHyy <
HE.

Proof. The’ conclusion follows immediately under one of the
assumptions (i), (ii), (iii) or (iv), taking into account Propositions 2.1
and 3.1. Let therefore H,, and Hy; be nonnegative, but not both zero.
To study the sign of H(p,q) we can now look at its critical points. Note
that if 4H,Ho, # HE), then H(p,¢) has a unique critical point (po, 90),
which may be a minimum or a saddle. In particular, if 4H.oHy, < H 2,
then (po, ¢0) is a saddle. Since the critical point is unique, then H (p,q)
must take negative values, for suitable p and q.

If 4Hy0Hoy > H}, then (po, o) is actually a minimum,; so, there
exists a stabilizing feedback of the form (15) if and only if H (p,9)
takes a negative value for p = Po and ¢ = o- A little computation
'shows that

HosHiy + HogHE — Hiy HigHo,
4H20H02 — Hll

H(po, q0) = Hoo ~

Hence, the conclusion follows also under the assumption (v) or
(vi). In the case (vii), there is no critical points. So, H (p,q) must
change sign.

Finally, in the case (viii) there is a stralght line of minima. Along
this hne we have
H

H = Hyy —
(p, q) 00 4H02
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(it is not restrictive to assume Hys # 0). Hence, there is a linear
stabilizing feedback if this value is negative. t N

With. the same arguments used in the proof of Theorem 3.2, it
is possible to find out the cases where a linear stabilizing feedback
does not exist, i.e. the cases where H(p,q) > 0 for each pair (p,q) € R2.
This analysis does not exhaust all the possible situations. It may
happen that H(p,¢q) is nonnegative and vanishes for some pair
(p,q) # (0,0). When this occurs, it is not possible to decide about
linear stabilizability by looking at-c3(27); we need to compute higher
order coefficient ¢;(27) and study their signs for those values of (p, q)
such that H(p,¢) = 0. In these cases we say that the system is highly
critical; an important example is treated in the next section.

4. Stabilizability of some highly critical bilinear systems.

In this section we consider single-input planar oscillatory bilinear
systems, that is, systems of the form

{ &= —y+ u(ajore + ao11y + aoo1)
y==zx+ U(blolx + bo11y + boo1)

an

As before "we assume agg; = 6001 = 0 otherwise the problem is
trivial. We seek again stabilizing feedbacks of the form (15). The
expression of H(p,q) given in Proposition 3.1 now simplifies to

H(p,q) = Haop® + Hi1pg + Hozq”.

In view of the analysis which will be carried out in Sect. 5, we
focus our attention on the case where

ajo1 = —bo11 =a. and ao1; = b1 =

Putting u = pz + qy, the system becomes

¢ = —y+ (pr + qy)(az + by)
a8 {y=m+(px+qy)(b~”c-—ay) E

It is easily seen that, in this case, Hy = Hi; = Hoy = 0. Hence,
the existence of a linear feedback cannot be decided by invoking
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Theorem 3.2. Nevertheless, we prove that for a suitable choice of p
and q, the origin is an asymptotically stable point of (18). Since (18)
is considerably simplified with respect to the general form (1), it is
convenient to restart application of our method from the beginning,
instead of using formulas of Sect. 2. To this purpose, let '

®(0) = (acos20 + bsin20)(pcosf + ¢sin h)
\II(G) = (bcos 20 — asin 20)(p cos f + ¢sin 9)

With this notation, (6) and (8) can be rewritten as

) D= B(0) = PUOVO) + 5 B0 (1) - RO T0) + ..

% = c}(0)®(0)pf + [2¢1(0)ez(0)B(0) — 3 (0)B(0) ¥ (9)]p3
+ [e3(0)B(0) + 261 (6)es(6)B(0)

— 3e1(0)c2()B() U (9) + c1(9)2(0)¥*(8)]p6

+ [2¢1(0)ca(0)B(0) + 2¢2(0)cs(0)B(0)

— 3¢} (0)es(0)2(9) ¥ (9) — 3¢ (9)c3 (6)(6)¥(9)

+ 4c?(0)c2(0)q>_(9)\1;2(9) — E(0)B(0)T3(0)]ph + - - -

(&)

where 5'* order terms have been included. According to (8) and (9), a
simplified system of infinite differential equations is obtained. Using
the integration by parts rule, new expression for the ¢;(27)’s can be

found.

ea(27) = /0 " 5(6) a6
ea(2m) = [ /0 7 50) do]

ea(27) = [ /0 7 5(0) dar__Q /0 " 5(0)ds /O " 5(0)(6) do |

_ /O 7 @(0)3(0) /0 " 5(s) ds) d9+/0 B(0)T2(6) do

2

- / " T(0)T(0) do
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4 2

es(2m) = [ /0 z,rq)@ d&] +s [ /0 " 5(0)5(0) d&]
~3 [ Ozw 0 d&} 2 OZW B(0)U(9) do

27 27

é
—o [ awyan [ @0)ve) / B(s) ds) df
+2 / " 5(0)do / " B(0)07(0) do

. /0 2”(1,(9)\1,(0)( /0 0 3(s) ds)zge

27T

+2/02ﬂ(<1>(9)\1:2(9) /09<I>(s) ds) do—/o ®(0)T3(9) do

We already know that c,(27) = c3(27) = 0. To compute the
remaining integrals, we need once again the aid of a symbolic
manipulator package. It is possible to verify that

/ ” B(0)(0)do = 27{(@(9)\11(9) / 9@(5) ds) df
= /27r O(0)T%(8)do =0

Hence, c4(27) = 0 and

2

cs(2m) =2 [ (2(0)¥*(0) /O a5 ds)
- [Tows@y [ eaa
(19) _ /0 27r'<1>(9)\1:3(9) do
= _%[(ab3 +a%)(p* + ¢%) |

+2(e* = 5)(pg® — p°q) — 6(ab® + a®b)p°¢?]

THEOREM 4.1. Let a and b be such that a® + b* # 0. Then, there
exists a pair of real numbers p and ¢ such that the origin is an
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asymptotically stable point for system (18).

Proof. We distinguish several cases, depending on the sign of
the product ab. If ab > 0, it can be chosen p = 0 and ¢ = 1. Then (18)
implies
es(27) = —%ab(az +b2) <0

and the conclusion follows by Proposition 2.1, since ¢y(27) = c3(27) =
c4(2m) = 0. If ab < 0, the choice p = ¢ works. Indeed, in this case

es(27) = %p"‘ab(a2 +6%) <0
If a =0, b # 0, then according to (18),
T .
es(2m) = 2bpa(q” - p*)

It can be made negative takiﬁg any pair (p,q) such that |¢| > |p]
and pg < 0. Finally, if a # 0, b = 0, we have

T
es(27) = —ga‘*pq(q? - pz)

which is negative for |¢| > |p| and pg > 0. N

5. Bilinear systems with constant or linear controls.

Here we consider again single-input planar bilinear systems of
the form (17). In the previous section, we restricted our attention to
linear control functions of the form (15). Now, we want to remove
this restriction, allowing also constant feedback laws.

- THEOREM 5.1. Any system of the form (17) can be stabilized by
means of a linear or constant feedback, except for the case where

(20) agor = boor = @101 = bo11 =0, ag = ~bj01

When (20) holds, the system is not stabilizable at all.

Proof. We already noted that if a2y, + b2,, # 0 there exists a
linear stabilizing feedback. So, we can assume that ago; = bgo; = 0.
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First we check the existence of constant stabilizing feedbacks.
Note that if » is constant, then (17) is a. linear process. Thus,
eigenvalues can be directly computed by solving the equation

A% — Au(aror + bo11) + U2(01015011 - 610111?101) + u(bio1 —ao11) +1=0

We conclude that a constant feedback exists provided that
aio1 + bo1n # 0. Indeed, we can choose any sufficiently small value u
such that u(aier + bo11) < 0. ‘

Let therefore be aj0; = —bo11 = a. The expressions of Hyy, Hi; and
Hyy given in Sect. 3 simplify now to

Hoy = a(aou'-.— 17101)
2 2

Hiy = agy; — bygy

Hoo = 0(1)101 - aon)

If Hyo # 0, then also Hos is not zero and has opposite sign. Thus,
a linear feedback exists by Theorem 3.1(3).

The last case to be considered is when Hoo = Hop = 0. If a #0,
then agi; = by0; and Theorem 4.1 applies.

Let therefore assume a = 0; when the condition |ag1| # |b101]
holds, we have H;; # 0 and a linear feedback exists by virtue of
Theorem 3.1(ii). Using again Theorem 4.1, the existence of a linear
feedback can be proved also when agy; = byo; # 0.

| Only two cases are still missing: the trivial one, when all the
coefficients vanish, and when condition (20) holds. Here it is easy
to see that the system is not stabilizable at all; indeed, in polar
coordinates the system takes the form p =0, § = 1 + ubjo;. The
statement is so proved. : ' _ [ ]

Remark 5.2. The previous proof reQuires the application of
Theorem 4.1. This is a motivation for the analysis carried out in
Sect. 4.

Remark 5.3. According to the Jurdjevic and Quinn theory ([11]),
stabilizability of system (17) can be achieved also by means of the
quadratic control law

w(z,y) = ajo12® + (011 + bio1)2y + ao11y°
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provided that (20) is not satisfied.

6. Appendix.

In this appendix we briefly indicate the relationships between
the approach of [9] and the method described in Sect. 2. First of all
we recall the following basic result about normal form expansions.

Let us consider a system of the form (1), with f and g given by
(3.1), (3.2). Then, for each positive N there ex1sts an analytic change
of coordinates :

' r = E+ ...
21
) {2zt
transforming (1) to

N
£=—n+) (& +1°)(a:€ — bin) + o(2N + 1)

i=1

N
n=E+ Y (67 +n) (@n+bi€) + 02N +1)
1=1

where o(2N + 1) denotes analytic functions of ¢ and n of order strictly
greater than 2N + 1. .

Note that the Jacobian matrlx at the origin of the change
of coordinates coincides with the identity matrix. Using polar
coordinates (r,w), the system takes now the form (2). Starting from
it, and repeating the procedure of Sect. 2, we obtain the equation

d
(22) d—(:- = (117’3 + (az - blal)rs + ...

that represents the same differential equation as (6) in the new
system of polar coordinates. -

Let r = r(w, ro) = di(w)ro + da(w)rE + ... be the solution of (22) such
that r(0,7) = ro. Then, it is easily seen that
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d2(2m) =0

d3(27) = 27ay |

ds(27) =0

d5(2ér) :‘67:'2(1% + 2mag — 2mbyay

....................................

The expression of r(27,7y) has to be compared with the expression
of p(2r, po) found in Sect. 2. To this purpose, it should be noted that
the two systems of polar coordinates are related by means of (21). In
particular, it can be verified that |

p=r+a(0)r® 4+ az(0)r® + ...

for some functions «3(8), «@3(f),... . This last expression with 6 = 2=
can be used to find the relation between the coefficients ¢;(27)’s and
d;(27)’s. In particular, it is an exercise from elementary calculus
to verify that if do(27) = ... = dn_1(27) = 0,and dn(27) # 0, then
e2(27) = ... = em-1(27) = 0 and ¢ (27) = dn(27). Taking into account
the expression of d3(27) found above, the numerical outcome pointed
out in Remark 2.3 is now explained. Moreover, in the highly critical
case where a; = 0, we see that c;(27) = ds(27) = 27a;. In general,
it can be seen that if a, is the first non zero term in (2), then
Com+1(27) = dom+1(27) = 2wam, while ¢;(27) = d;(27) = 0 for each
1=2,3,...,2m. This shows the pi'actical equivalence of the method of
Sect. 2 and the normal form expansion approach.

In a similar manner, relationships with the Liapunov function
method of [8] can be explored. Indeed, consider the system in the
normal form (2), and take V(z,y) = 3(z? +3?). It is easy to see that
if a,, is, as above, the first nonvanishing coefficient in (2), then
Yo = Y4 = ... = Y2 = 0 and 92mi2 = a,,. This is confirmed by the
expression of v, found in [8] in the cubic case, which agrees with the
expression of a; given in [9].
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