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A FURTHER RESTRICTION IN
RELATIVISTIC EXTENDED THERMODYNAMICS

SEBASTIANO PENNISI (Catania) (*)

The best result on relativistic thermodynamics of these last years
is the partial differential equations system (henceforth called PDE)
that has been found to describe it by Liu, Miiller and Ruggeri. This
system is determined except for a single variable function A. here it is
imposed that this system is hyperbolic and that the shock speeds do
not exceed the speed of light ¢, finding some necessary and sufficient
conditions to this end (Liu, Miiller and Ruggeri have imposed only
some necessary conditions to this regard); the compatibility of these
conditions is then studied obtaining as result that the fuention A must
be non positive. '

Introduction.

Relatavistic extended thermodynamics is a theory where the 14
independent components of the particle number — particle flux vector
Ve and the stress — energy momentum symmetric tensor 7*# may be
determined from the balance equations

(*) Entrato in redazione il 2 dicembre 1990
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(Ve =0 - conservation of particle number

(1.1) < T,‘,’f =0 - conservation of energy - momentum

| A#y* —JPY =0 - balance equation for the fluxes

where APY*  IP7 are the following explicitly expressed functions of
Ve, TP,

1.2) A% = (C? + CTr)u®uPu” + (c2/2)(nm? — CO — C™x gty 4
1 1 1 1

+3C3(g(*F — 6c=2ute P )M + 30510 M)

(1.3) I°? = BT n(9%" — 4c™2u*uP) + Bst!*® 4 2B,q(*P)

with | _
gap = diag(l,-1,-1,-1)

the metric tensor,

»(1.4) - n=C Y (VaVP)L/2
u® = c(VﬁVﬁ)‘l/zV"
hoP = e~ 2youf — gof,
t{ef) = (hgh{f - %ho‘ﬂhw> T+,
q% = —hu, T,

e = ¢ 2uuu, TH,

1

= _?)‘h/.wT“y - p(n,e),

m 1is the particle mass, p(n,e) is the value of % hu T in
thermodynamical equilibrium as function of n, e and all coefficients

C?,CT,Cs,Cs, BT, B3, By are functions of n, e and the first four of them
are determined except for a single variable function A.
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The expressions (1.2), (1.3) are found by Liu, Miiller and Ruggeri
(henceforth referred as LMR) in ref [9] by imposing the relativity and
entropy principles; to this end they use another set of independent
variables; the so called Lagrange multipliers that compels to impose
also the symmetry of 7%’ and A*? (henceforth referred as “the
symmetry conditions”) and the condition Agﬁ = m2C?V* (the trace
condition) that come from kinetic considerations.

LMR impose exactly the entropy principle but only approxima-
tively the symmetry and the trace conditions, i.e. in a linear departure
with respect to thermodynamical equilibrium; after that they return
to the suggestive variables V*, T*® and obtain the expression of 424
at first order with respect to thermodynamical equilibrium.

A different procedure that avoids all these twists may be that
of always remaining with the old variables (V*,7%%), keeping up
the symmetry and the trace conditions exactly verified and imposing
the entropy principle in a linear departure from equilibrium. This
procedure is followed in appendix A for the sake of completness; from
the result it can be seen that the two procedures are not equivalent;
in fact in appendix A all coefficients of (1.2) are determined except
for the two variables function Cs(n,e) while in LMR’s approach this
same function is determined except for a single — variable function A.
Obviously this restriction on C3 may be obtained with the approach
of this paper by imposing the entropy principle also in orders greater
than 1 with respect to equilibrium. _

This fact shows that coefficients appearing in a certain order v
may be influenced by the equations studied in order greater than v;
therefore the suspicion arises that, if one studies the equations in
a sufficiently great order, restrictions may be found for the terms
linear with respect to equilibrium such to deprive them of physical
significance. The attempt to eliminate this suspicion may be the
subject for future works.

The entropy pr1n01p1e states that a vector — valued function
he(VP,T7%) exists, such that

(1.5) k% >0holds for all solutions of egs. (1.1).

As shown by Liu in ref [8] and already used by many authors
[6,7,9], condition (1.5) is equivalent to assume the existence of
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Lagrange multipliers ¢, Qg, ¥4, such that
(1.6) o +EVS 4+ QpTEY + Tpy (A = 1P7) 2 0

holds YV, T*?, or, equivalently,

(1.7) R — V%o —TFQp o — AP7*S5, o — T, IP7 <0
where
(1.8) R = h® + V™ + QgTP* + £, AP,

Now the expressions of ¢, Qp, T4, found here, or in [9], are
invertible fucntions of V<, T°#; therefore it can be adopted an idea
conceived by other outhors [3, 13, 15] to take them as independent
variables so that (1.7) becomes

Oh~- oh®
& = TP* = ——
| Ve = 9%
(1.9) Ohe
APre — > Y <0
82[37 By —

and consequently the PDE (1.1) assumes the symmetric conservative
form. Then hyperbolicity holds in the time — like direction &, iff

is positive definite.

21,
(1.10) H Oh

TXA0X;

Where X4 are the independent components of ¢, ,, ¥3,. LMR
have imposed only some necessary conditions that come from the
convexity condition (1.10) in a nelghbourhood of equilibrium and with
Eo = Uq.

In this paper, sect. II, I obtain necessary and sufficient conditions
assuring the validity of property (1.10) for every four — vector ¢, such
that £,6% = ¢?, in order that (see ref [16]) the shock speeds do not
exceed the speed of light.

In sect. III it is proved that these conditions imply A < 0,
where A is the single variable fucntion appearing in the expressions
of C?, CT, Cs, Cs; moreover they imply that relativistic extended
thermodynamics can be applied only for values of temperature
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satisfying certain relations; for example these ones surely hold for
sufficiently little values of temperature as in the application of ref

[1].

In sect. IV are drawn conclusions.

2. convexity of the function ¢, 2.

Let us call y4 the independent components of V*, T*?, From
relations (1.8) (1.9) we obtain

' Hh*
ha - h’a -
X4 5%,
and |
Oh O*he . B -
oo 5V, 6Y ) = — o ——— 06X 46X 5 — T S — .
0,075 PTeT TEXax, (40X E — Xa 80X 40Y,0q RORCE
but for X4 = ¢, we have
a3h,a 21/ _
—~X4 - _6__3_1/_ = 0;
0X 40Y,0Yg 0Y,0Yy
for X4 = Q,, we have
63h’a | a?,Tau
—%a OX 40Y,0Yq —$h 9Y,0Yq 0
for X4 = £,,, we have
83h,a i ' aZAuua
—a OXA0Y,0Yg i 8Y,0Y,

that is null at equilibrium; then

82he grhe

(2.1) | Q= fam‘SXAfSXB = —5amé}’;6}’q

at equilibrium. As consequence, the statement (1.10) holds iff the
quadratic form @ is positive definite. This condition is satisfied for

Eo = Uy iff

(2.2) AL < 0; 2¢%(e + p)TAI > 1; AT <0
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hold. . ,
It is satisfied for every timelike ¢, iff also

(2.3) —2c2A1 = 243 — (e + p)(AD)?T — 441 [2c%(e + p)T AT — 1] > 0
(2.4) (3AL + 24T er — 6T AL AT [T(pr)? + nerp,) + 6TALAT epe +p) > 0

(2.5) Ar=an’ +Bn+6>0An €0,

hod. (See appendix B for the mathematical details). The expressions
of A%, Af, ’1'2, A3, «, B, 6 are presented below in egs. (B.3)-(B.8),
(B.13)-(B.15). '

- LMR have considered the condition (1.10) only for ¢, = u, and
then they would have found the conditions (2.2); but they impose
only a necessary condition to obtain (1.10) with ¢, = u,, i.e. that the
elements of the principal diagonal of the matrix associated to @ are
positive; thus they obtain A! < 0; A7 > 0; AT < 0 (see ref [10] that
corrects ref [9] on this regard). Here these ones are substituted by
the more restrictive eqs. (2.2) that assure the principal minors of the
above matrix to be positive; then they are necessary and sufficient
conditions for (1.10) with &, = u,.

Now in ref [16] and [14] has been proved that (1.10) V timelike
¢, holds iff it is verified for ¢, = u. and moreover the characteristic
velocities are less than c; in ref [4] Boillat has found some algebraic
equations for these characteristic velocities.

Consequently by imposing that their solutions are less than ¢
~ one obtains the conditions (2.3)-(2.5) with an equivalent procedure.

In the next section the conditions (2.2)-(2.5) are investigated for
little values of temperature.

3. Compatibility of conditions (2.2)-(2.5).

Let us firstly prove that as consequence of these conditions one
has A < 0 which allows the more restrictive theories where A = 0 (see
ref [5] as example) to remain compatible with LMR’s one.
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Now in the non-degenerate case we have
(3.1) e = nmc*(G — 1/7); p = nmc?/y
and for little values of -:1— the following development holds

G()—1+£_1_+£__1___}_5___1_+_1_3_5___1_.
VTR TR T T

45 1 1

+ ‘2‘;,75 + ‘,;6—91(7’)

(3.2)

with

Ii (y) =g ;
1 /lvr_rlogl(v) g1

(henceforth other functions g;(y) will be introduced and it will be
understood that they are such that 1/limo g9:(v) = gi).
o T= |

Consequently we have

B 2y 8 92 8 3 27T 44

(3.3)
45 1 1 - 1
2‘—5—7—/-5--*--77591(7)
| 3 151 45 1 135 1 1
(3.4) eT:nk[§+T?_?—7—z_+_2—5’_;3—+Ty—Zg2(7)]

Pn = > 0; pr = nk.

Now the condition (2.2); can be written as

AKy(y) 15 6\
ny < m3BK | Ka(y) (1+ 7G ;

if we consider K and v as independeet Variablbres and take the

2
limit of this relation for P 0, the first member remains unchanged

. ) )
(because it does not depend on —), while the second member becomes

zero; therefore A < 0 holds.
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Another possible consideration is that LMR’s theory may be not
applicable for.all values of T; in fact er > 0 is a necessary condition
for the convexity and from the above expression it can be seen
that it may be not verified for all values of vy. However the ﬁeld of
applicability of the theory is not the empty set; in fact

3
Ao = gm0

and then er > 0 for little values of 7.

We can see now that all the conditions (2.2)-(2.5) are satisfied
for sufficiently little values of T. ,

In fact from 4 < 0 we can see that (2.2), is verified for all values
of n, T. Moreover all the other first members of (2.2)-(2.5) may be
developed in growing powers of —1—; the corresponding expressions are

presented in appendix C, for simplicity. By taking their limits for

1 — 0, we can see that (2.2)-(2.5) hold at least for little values of

temperature. »

The property A <0 and the verification of the conditions (2.2)
(2.5) have been proved in the non-degenerate case; however this case
is obtained from the degenerate one letting —% go to infinity, where
p is the specific Gibbs free energy or chemical potential; consequently,
for the permanence sigh theorem we obtain that the results of this
section are verified also in the degenerate case but with sufficiently

great values of ——YL:

4. Conclusions.

Relativistic extended thermodynamics is a theory of great beauty
and significance. Even if some questions may arise, they find
satisfactory answers when put under sufficient consideration as in
this paper. I think that the present work contributes to improving
the understanding of this theory. In fact it completely exploit the
convexity requirement showing that it is verified at least for little
values of temperature.

Moreover, by showing that A < 0, it draws this theory nearer
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to those where A = 0, at last it shows (in the appendix) that it is
not strange the difference of this theory with that in ref [2] where
the unknown fucntions are determined except for a two — variables
function (and not for a single — variable fuention as in LMR’s work).

I retain that other aspects may be checked up in the future.

Appendix A. Explditatibn of the entropy principle.

The entropy principle in the form (1.6) can be expressed as

(A1) N XaFA% = 055,177 <0 YV, Ty
A

where

CXi=1;, FY*=h% Xy =¢, F?* = V% Xayp = Qp; F3HP = TP,
and for A > 7, Xa =Xp,y; F*¥= AP,
 The relation (A.1); gives

8FA0‘ : aFAO(
(42) , ;XA 57, = L;XA T =0

If we consider the functions F4* of V,, T},, as composite functions
by means of n, e, 7, u,, q,, t(w) and use the relations (B.1), that are
presented below, we obtain that (A.2), multiplied times h,,, u,u,, u,
gives the following eq. (A.7) and

-aFAa 6FA01
. —_— = . h.l/:
(A.3) EA:XA 5 =0 EA;XA gt =0

of which the second one can be written as the following eq. (A.9) with
/¥ given by (A.11). By using these relations (A.2), becomes -

. OF
XA:XA ot

A Can Loy

{7é) <h7 b 3" 76> =Y

that is equivalent to (A.10) with ff‘ﬁ hg, fs', J§ respectively given by
(A.15), (A.12), (A.13).
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By using all these relations, (A.2); multiplied times u, gives

. . 8FAa ‘
(4.4) N > Xa 5— =0
and of (A.2), it remains the relation (A.8) with f¢ given by (A.14).
Moreover if we consider the function v = y(e,n) and invert it to
obtain e = e(y,n), we can consider v and n as independent variables
instead of e, n; if F4%(e,n) = GA%[y(e,n),n] we have

OFAx [ pGAe 9y pGAe
Xa=5, "XA< 5y on T on )

o FAa aGAe 5y
Xa—g—=Xa 8y oOe

and then (A.3); and (A.4) are equivalent to (A.5) and (A.6) Where the
notation "F4*” instead of "G4%” has been again used.

In this way we have written the conditions (A.2) in the form
(A.5)-(A.15) where the presence of f?, ff‘ﬁ hy, f5, f§, f§ takes into
account of the fact that u®, ¢, t{®f} are restricted by u®*¢* = 0;
uo‘t(aﬂ) = 0; haﬁt(aﬁ) =0.

Then in conclusion of this first step we can say that the entropy
principle is equivalent to the following relations (A.5)-(A.15) and to
the residual inequality (A.1)s.

@FAO‘
(A.5) ZXA =
. A :
. 6FAa
(A.6) zA:XA 5 =0
8FA&
(A7) > Xa 5— =0
A
. (9FA°‘ i} o '
(A.8) Y X4 o S+ Ly b et qufE=0

A



A FURTHER RESTRICTION IN RELATIVISTIC,... 347

OF4> "
(A.9) ZA:XA 50 + four =0
OFAc afp (p
(A.10) > X4 Bt + PR )+ ffuru? o+ fERR = 0
A VH
where
| " oF4e |
(A11) 1 ; A
1 HF A
A2 : Y = ——uu X
. : . 1 6FAa
(A.13) - C=_hys Y Xa
3 37 ; 8t_<75)
1 . QFAe
o e {
(A14) f4 - 62 u ;XA 8u7
‘ : . ) 9 HF A«
: CfoBpB B
(A.15) | freR =5 ughYEA:XA i

The second step is to consider the expressions of V&, T*8  A%fY,
IPY, €, Q%, Eo‘ﬂ ‘at first order with respect to equilibrium and that
of h* at second order; By imposing the relativity principle (see refs.
[11], [12]) we obtain A*#7, I#Y given by (1.2), (1.3), h® given by (B.2),

& =&+ xm;

2 : 3
Yap = 02liap) + —7 01%adp) + oo <haﬂ + C—QUQUﬂ>
and obviously V¢ = nu®,

' 2
TP = %P} 4 [p(n,v) + 7]h*F + —gu(aqﬁ) + -C%—uo‘uﬁ.
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By using these expressions (A.11)-(A.15) become

1 o . 2 L2, 48 2
ff’ = | — 'EZ—Ag —_— E‘lo + 7('(""' ;—2—‘42 - ‘CZ‘/\O + ;5'0300):]ua - 6—2030'1qa

. T\ u® T
fg = - (lo +/\oz§—> 0_2 - 9.050'00—2ua

1
fg? = -g-(Ag - /\1 +201C'5)q°‘ - 0'071'05’&&

_ua

= 2 {ns+£on+2(e+p)lo+7r[A’f+nx+

A
+2(e + p)~c—2°~ + 2o + oc?(nm? + 86‘{’)] -

1
—g(nm2 - c?)alqa}

A A c
srn =g (5 -1 )+

A
+hoP (lo + ?g—w + 6Csao7r> .

After that we can impose (A.5)-(A.10) at first order with respect
to equilibrium. The following relations are respectively the coefficients
of u®, mu®, ¢* in (A.5), those of u%, mu®, ¢® in (A,6), those of u®, mu?,
g® in (A.7), those of g®¥, mg®¥, t{*¥) ¢®u?, ¢*u® in (A.9) those of t(*®)y, ,
g%g7° in (A.10) and those of t{*#), q®u#, u®g#, ¢ 7g** in (A,8). They
are

d(ns)

(A.16) S+ €0+ enlo = 0

(A.17) 8@/;71' + x + ooc? <m2+‘2 8(5;) +en%’— =0
(A.18) 3(;;8 + —c;— <m2 - 36(:? ) o1+ pad =0
(A.19) On%) 1 ey =0

on



(4.20)

(A.21)

(A.22)

(A.23)
(A.24)
(A.25)

(4.26)

(A.27)

(A.28)

(A.29)

(A.30)

(A.31)

(A.32)

(A.33)
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GAT | X . ,0C) _

5 +e.,c—2+20'oc 5y =0

dAS ¢ 8CY

—-(9-7—+p7/\1-—-——3—0'1 37 =0
=0

AT +2CT00c? =0

c?

Ag+/\1— 3 C’fcn:O
Al 4 15=0
Ao

72r+'07-200'003_:0

AL 4 205C5 = 0

QAE +0:C5 =0
Ag—/\l +20,C5 =0

¢’ 2 0
~3—(nm —C{)o2—1o=0

A A 1
__c;—(e +p) + 20,CY + g(nm2 — CNay — =

ns+&n+ (e +p)lo =0

349
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2
(A.34) AT +nx+(e+p)—;\70+10f —%—(nmz— 10CY)oo =0

Now the next step is to evaluate these conditions (A.16)-(A.34).
From (2.4) in the variables n, ¥ we obtain

os _ 1
Oy TV’
Bs L (et
dn ~ T \* n
and then (A.19), (A.16) give
1
o=-77
_ g TP
§o=—s+ T
while (A.33) is identically verified. (A.25) gives
1
0o_ *.
A2 — T s

(A.18) and (A.21) form a linear algebraic system in the unknowns A,
o1, whose solution is '

o= 3pn k
AT L, 9Oy med
p‘Y 8n pn 87
k o

A= — 2 ‘ ¥-Yall on YT

me po (m2 — 0CT +p aCY

v on " Oy

From (A.31) we obtain
3 1

09 = — .
2T nm? — C?

(A.17), (A.20) (A.34) form a linear algebraic system in the unknowns
X, 0oc?, Ao/c?* whose solution is '

R e AV
X = —CZTD [—2€n-8—7—+67 (m +2'—<—9n—“
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3 -
0'0:——*7:6—5-671) 1
6c? 6CY
A= ——LD!

0 T Oy

where

D=6

e ' acy . o
5 (e +p—ney) + ey <6n by {4nm —10CY | .

The relation (A.32) gives a condition on C?

9C? aCc?
(A.35) <m2 - 8n1 ) (e +p+7py) + P (nm2 +5C7 + 871 ) =0

From (A.26), (A.24) we obtain

«__(606C 60
A2——<—7—.,— 07 +;§7T—6703>D s

aC?

—-m? + 8,10
T 87}, . _9?/- -1 2 _ 86'1
Cl - Pn Pn b [p‘y <m on ) +
acv1 [8CY . G
+Pn 67}(6’)’ +106~Y—62— .
(A.27) and (A.30) give
6 - 1
0 _
Az = ¢*T nm? — C} Cs
;2 m?— 90t
Cy = - on
6 Pn
aC? aC?
py(mz— 8n1>+ . (‘31
- Cg.

The relations (A.23), (A.28), (A.29) respectively give

w3y 2 _ oC? -1_
Al = T, (m 5 D
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’ 0
-18 Y Ey D-—-2 [p7 (mz . aCfl

Tpy on >+
8C01 [ 6C? G\

The functions e,p,C} are determined in thermodynamical equi-
librium with the statistical mechanics; in the non-degenerate case
they are given by (3.1) and (see ref. [9])

mi(1039),
Ci=nm” |14+ —G);
v )
this function satisfies condition (A.35).

Then all the unknown functions are determined except for
C3(">7)' |

In ref. [9] the entropy principle is partially imposed also in
order greater than 1 with respect to equilibrium; as consequence the
further restriction is found

-1 3.3 1
G3=_ﬁ<1+—5—G—G2) (1+—6-G-G2—M_AL
Y Y 15ny®

where A is a single variable function 4 (K:(y/n)).

If this expression for C; is used in the above relations then
the corresponding expressions in ref [9] are found; in particular the
expressions of AT°, A%, At, AT, A9, AT, A are those listed in appendix
B, egs. (B.3)-(B.8) .

In remains to impose the inequality (A.1)s; by using (1.3) and
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the expression of s, one finds at second order
o9B3 < 0;
1By > 0;

UoBf > 0.

3563

Appendix B. Conditions assuring that the quadratic form Q is

positive definite.

To exploit’ this condition on @ it is useful to notice that from

(1.4) it follows, ’

SO wy w1, ORP 2 g,
(B-1) Ve — ¢’ 9V, __;h- ' OV, _——"czh .

ot{ab) 9 1
= (ap P __poBou _ glu(a),B) .
v, ne? <q h 3 et —t “ )’

0q“ 1 u%qh e + p+
= —qlan) _ | XTP
aVy n ne? T n ’

Be 9

I
Ve~ pez 1

on 2 u#
OVE ~ 3ne? (1= 3pe)g” ~ pn?z—,

1

at(aﬁ) — pBpr)e _ _g_haﬁhuu;

T,

Oe utu?
0Ty ¢z’
or 1 ubu?

= —h" — P,
0T, 3h ° 2

Moreover we need the expression of h%, at second order with
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respect to equilibrium; from ref. [9] we read
(B.2) h* = (ns+ AT+ AT 7% + AlqPqp + ALt 50 Y+

+(AJ + ATm)g™ + AJt{Plg,

where (in the non - degenerate case),

2 3 Ky? 1 5 2> [3
(B.3) AT ~—§m<1~72+7G )5
' -2
9
—(2—~2—3>G——1—3—G2+2G3] [2—%+<1——
0 ¥ Y Y
30 45\ » 9 5 m3AEKA [ 1
2 ) S g Bl () I
73)G <2 72>G - 3ny 7
_ +£G-—G2)J ;
Y
Ky 5 2715
g _ 1 a2 =
(B.4) Al = o (1_+ ~G-G ) [7 +
30 10 5, 5 mAKA
+<—7—2—1)G—7G +G e
—kvy? 6 m3c3K A
t__ T e R
(B.5) A = 4m2etnG? (1 + ¥ G 15n+y5
1 s
(B.6) Ag:?; AT =0
ky 5 A
) T — o __G —
(B.7) ey <1+7G | ) { 7+
-1
, 5
+<2—2—2>G+ EG~—2G3J [-2+—2—
¥ ¥ Y
5 922
—~ (Q—E(;)Gnt (4——6—‘;—> G? 4+ 263 - 2G4+
Y v Y Y

+ 1_L+EG_G2>M-
vy 3ny> |’
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' ky 5 -1
0 _ -~ _ 2
(B.8) A= — <1 3 G-G ) (14
6 , m3BKA
+ G- 6= T

2
where v = —?;c—, T is the temperature, K the Boltzmann’s constant,

K,(y) is the Bessel function of order v

o0
K,(v) = / cosh vpe™ 7% Pdp
0

satisfying the relations

- . v _,
Kyp1(7) = Kvi(7) = — K

d

¢ = K Y
"d':y-]\u(7) - ]\u—1(7) ~ I\V(7)a

G = Ks/K>

and then
M =—1- EG+ G%;
dy Y

. A . . S ‘ .1 Lo
moreover A is an arbitrary function of the variable —=. We can use
ny

these expressions and those for the derivatives of n, u*, ho8, ¢{B) o
e, # with respect to V,, 7,,,;

then, if we define ¢ = £ u%c ‘2, £* = —h*#¢, (and therefore
€% = €% + tu®), the quadratic form Q at equilibrium is

Q = —2c%¢[AT (67)% + Al6qp6q° + A5t 615,01~

3 3 d
2A58m3qE, — 23611y — (anyier S
2
—25571(5662 a@(gs) —662((5 )2 9? (ns) +£6 St +p_
e+ p

-2 — [6qﬂ6u“ + (e + p)buy 6ub] + 26#§u, 6T —— 7
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+26AJ[(e + p)E%Sug + %6+
+2AJ[E, 84 §uy, — (6p + )€ 6ur].

Let us now define
T‘aﬁ —_ t(’aﬂ) + ﬂ-haﬁ

from which it follows

T = %—Ta’@haﬁ

tlaB) — paB _ ppop
and consequently, at equilibrium,

om = %haﬁsT“ﬂ
5P = §TP _ p*Pox
6¢1%P16t o py = 6T°F 6T — 3(67)?
E%8t(ap) 60" = E*6Tupbq” + €a8¢%6m

Eqbt'oP) sug = E46T, 56uP + E%6uqb;
Let us also remember the Gibbs relation
: e 1
(B.9) Tds = d (—n—) +pd <—;>

that, if e and n are used as independent variables, gives

s 1  8s _ e+p
(B.10) Be = AT Bn - Wl

while if n, T' are the independent variables, gives

0s 1 Os e+p 1

(B.11) aT ~— nT or; on = n2T + nTen;

moreover the symmetry condition on (B.11) is

(B.12) nen, + Tpr — (e + p) = 0.
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1

By using these equations and AJ = 7 one obtains

0%(ns)  8%(ns)
on? dedn (571) _
0%(ns)  0%(ns) be
- fedn de?
—25——1—6q Sut — —3—5—0‘6(1 5T — —2—-5—"511 6P—
T Tz Yett T ops Ot

Q = —£c*(6n Se)

—2c%(AT" — 3AY)(67)? — 2P AY6q, 60" — 262 AL TPV 6T~

e+p

_é‘T

Supdut — 2(AT + AJ)6m6q%Eq—

—2A3€,6T*6q5 + %g‘#aTuy&u”;

But
/ 0%(ns)  O%(ns)
(6n 8e) | an? Jedn <6n> _

8%(ns)  8%(ns) be
dedn Oe?
[ 0o(ns) d(ns) |

that by using (B.10) becomes equal to

é—f—p 1
5(5 7 >v6n+6(T>5e

that by using (B.11) becomes

n € 1 . »
__n%(an)? - ‘T‘Tz‘(‘ST)z = —5 [nen + Tpr — (¢ + p)}énéT

that is equal to
1
—W[pnT(én)2 + nep(6T)%
thanks to (B.12).

‘Consequent’ly, in the reference frame T where u* = (¢,0,0,0);
£* = (0,£1,0,0) and by using

b= %MM + 672 4 §799)
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the quadratic form @ becomes
7 . 3 ] . 3 '
Q=¢|ACBT®)? + > Ay X'XT 4+ ) By(Y'YI +2°2)
=1 4hj=1
where
A= —4c2AT
X' = én: X? = 6T; X3 = 6T, X* = 672,
X% =673 X% =6uy; X" =é6qy
Y1=6u? Y2 =6¢% y° = 6Ta;

7t = 5u3; 7% = 6q3; 73 = 5T13;

2

11 nTp”’ 12 13 14 15

A16 = _g—lgl%_; A17 = O

c?

Ay = myer; A = Apg = Ass = 0;

p _ 1
Aze = —5_151%; Agr = =€ lflﬁ

2

Ass = —.562(/@2 +647);

Ass = Ass = —%cQ(Afz — 34%):;
Aso = — 671"
har = 676 (S48 47
Aqq = Agz; Ags = Ass; Ase = 0;
As = —5 (A7 + AR
Ass = Ass; Ase = 0; As7 = Ayr;
1

e+p
Aso = —5—3 Ao = 75 Arr = 2c% AL,
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et+p. R T SO
- ,Blz-—T,Bls—Tf &

Byy = 2¢Al; Bays = £71ELAS;

By =

Bas = —4c’A}; Ai; = Aji; By = By

Now the classical stability conditions p, > 0; ez > 0 show that
A1 > 0; consequently @ is definite iff ¢-1Q is positive definite, i.e. iff
A>0; A; > 0; B; > 0 where A;, B; are the determinants with i rows,
obtained by deleting the last 7 -1, 3 — 4 rows and columns of the
matrices A;;, B;; respectively.

Now, after some calculations, we obtain

€+p
T 3

A = ——402A§; B1 =

B, 2¢*(e + p)TAY — 1]

:?FT[

o, o
By = 75 [2°A{ + 243 + (e + p)T(43)%)y~

c2

—4 T2

At[2c*(e 4 p)T A — 1]

where .
n=(£"1eh?
2 ' o2

A= T P Ay = 3 PreT > 0;

| 2 C6 a2 .
AB:_gmpneT(Al +6A1),

4 501
As = 90 nT3 P

8 1 2
A5 = _3010 nT3 PneT(Ai)zAl )

As = —-énc—;pnAg {[(3,4; + 2Af2) er—

er AL(2AT + 341);

—6TA§A71T2(Tp% + neTpn)} n -+ 6TA§A§26T(6 + p)c2}

A7:an2+ﬂ'n+6
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with
, _ 1 Wil (Pn \% | 3 pwa2 (PT v33 1
(B13) o= {[M (B) b () Tz
1 _ _ _
[M*22 e + M*33(A37)2 + 2M*33(A47)2 + 4M*34A37'A47+
_ N2
FOM*(Agr)?] — == (17’172‘ M*22 _ A8 L 2M*34A47> }

1
(314) ,8 — 6 ‘;p [M*zz T4 4 M*33(A 7)2 + 2M*33(A47)

+AM*3* Agr Aar + 2M*3*4(Agr)?] + 2 (EM*”—

T2 \'T?

_ _ 2
_M*3 A, — 2M*34A47> ~ 262 A [M*“ (p_”) +

Y (_PT1>2 n M;as%]

1
(B.15) 6 = o [26%(e + )T Af ~ 1] 45
: 2
M*ll :AS ZT : M*22 A5 Z‘
C’Pn c €T
33 _ 4 c® t | w2 t
M '5‘ T3 pneTAl(QAl + 3A1);
%34 4 c8 t 72 t
M = _gﬁs—pneTAl(Al - 3A1)
- 2 1
Azr = —9—A§ ) 2

- 1
Ay = ""3‘(Ag + A3);

Consequently 4 > 0, As > 0 and B, > 0 give the conditions (2.2)
from which A4; >0, 45 > 0, A3 > 0, A4 > 0, B; > 0 are verified as
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consequence. The conditions B; > 0, 4¢ > 0 must be verified for all
n € [0,c?].

Now they already hold for = 0 and are linear in 5; therefore they
are verified for all € [0,c?[ iff B; 3 0; As > 0 for n = ¢%. Consequently
the requested convexity holds if (2.2) and (2.3)-(2.5) are satisfied .

For the evaluations of Bjs, As, A7, the following properties of
matrices have been used : | |

Let M be a matrix with det M £ 0 and M* its adjoined matrix;

then

u - M*u vy -M*u
u - M*v vy M*v

.

b

= (det M)~1

Appendix C. Orderings in growing powers of 1/+.

In section 3 , the following orderings of the first members of
(2.2)-(2.5) in growing powers of 1/, have been used. They are obtained
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from (B.3)-(B.8), (B.13)-(B.15) and by using the expansions (3.2)-(3.4).
We have '
1 “2 m33K A

' 5
g P = —) = ~G-G?
24i(e+p)e’T - 1.= f4 <7> -G (1_—{— " G-G ) p:

where

f1 (i> = <1+—5—G—G2> G[~5—— (3—3—1> G-
Y Y Y\
gy GBJ -1,
Y .
from which

1/y=+0 5
and consequently (2.2), is verified for little values of 7.

im y=2f; (%) A PN
Similarly we have

7r'2 [&r 3 4 '
Al = oo {—g‘/ 1+ gs(7)]+

#5714 ()4

with ‘
m3c3K A

_ 3ny

and therefore (2.2); is verified for litte values of temperature.

A =

In the same way we obtain

K

Al = ——
L 4m2cin 7

2 [1 + %95(7)—

11, 1 .
5o (14 o)

K (1 1
4= o 57 [ 00] -
1 £ ,79(7)
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225 [1 + —i—gs(‘/)J }

1
pre—r el

nm?2c¢t

K 2 1
A= —~ {372 [1 + 7910(7)] -

21, 1 B
*55—"714 [14—7911(7)]},

K 4 1
A = ——— {——5— 3 [1 + 791‘2(7’)] +

nm2c?
4 1
+§57A [1 + 7313(7)} } ;

K™ (3 ,[ 1
As = 5,837 {—2*0*7 [1 + 7914(7)] -

—g 4 1 2o + (a7 [+ Sauat)] -

~(g5) ey 1+ %91'7'(7)} } >0,

M*ll

A
02]' 5,

2 m2e? 1 1 1
*22 __ .
M =3 T A5—72 .] + ——7 ng('Y)J ;

nZetmb | 10 7

K° 1 [ 1 ]
M*34 - {_ 8 1+ 7919(7) —

2 4 1
A* |14 =
75 [ + Jzo(’Y)]
+ ——7i(A*)? 14 ~1—go (7)- =
375 Ty P

1 Ay | 1 1
- 14 — v
6 AL | + 7922(7)J

363
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M*33 — _2M*34 [1 + %/‘g23(7)] ;
_ 1 1
Azr = —~3—A2 1+ 7924(7) ;
1 1
Agr = —gdz |1+ 7925(7) ;

1 K® 5 1
T n3clamio | {5 [1 + 7926(7)] -

— —14—A* [1 k= %927(7)}} : {15 [1 + %—928(7)} -

5

— aar [1 + %929(7)]} {35 [1-+ ;1;930(7)] -

1, 1
i o ]

1. K9 N 1
h= 24.3.55 ndcllpmlo | {5 [1 + ?932(7)] -
1
_?1_

—4A* [1 +/jyl~gss(7)]} {—-5 TT5 [1 + -717936(7)] +

A* [1 + %—1133(7)J} {15 [1 t :ly_g34(7)] -

It 6, . 1
+4 - 36v*A [1 + 77—937(7)] - __)'/_2—("4 )? {1 + 7938(7)]} <0

1KY AT
O = TT5 wmite Y {5 [1+7939(7)J -

e Sl ot

~44* [1 + %gss(v)]} : {2573 [1 + %943(7)] -

—~10A4* [1 o+ 5944(7)] + %(A*)Q [1 - %945(7)}} > 0.
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After that we see that the first member of (2.3) becomes

K 2 1 4 1 |
— {—74 [1 + 7946(7)] - — A"y [1 + ;‘M?(‘Y)J +

nm2c¢t |5 25
4\* 1 L1
() Fr [ e

and therefore (2.3) is verified for little values of 7.
The first member of (2.4) is-

*2
—'——A { 2T s [1 + 5949(7)] -

m2ct | 20 20 7
9 . 1
~ 557 v A [1 + 7950(7)}

gAY 1+ San)] )

and therefore (2.4) is Verlﬁed for little values of temperature

. Moreover

20c®> + 8= [1 +%gsz(7)] <0

and consequently

dAry

ek = 2an + ﬂ
is negative for » = 0 and for n= c?; therefore from its linearity it

follows

dAr
W<O V?)E[Oc]

From this fact we see that
r | 1
Ar(n) > Ar(?) = ac* + P + 6= [1 + —7—953(7)} >0  Vnpelo,c?

This shows that also the condition (2.5) is verified for little
values of temperature.
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