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BARBIER TYPE THEOREMS FOR PLANE CURVES
STANISEAW GOZDZ (Lublin) (*)

_ A C" class of simple closed and convex plane curves whlch contams
all ovals is considered. This class is divided into subclass for whlch
greatest lower bound of number of Barbier sets are determined.

1. Introduction and main results.

Let Cp denote the set of all the pos1t1ve contlnuous perlodlc
functions defined on IR = (—co, +00) with the period L > 0. Then we
define as in [2] the following class Qo of all the closed plane C’l-curves
of the form

(1.1) rf,k(s)vz‘/ k(t)f(t) eiK(t)dt, .SE IR,

Where K(t) = / lc(s ) ds and f,k € Cp, and K (L) = 2m. Note that a curve

rs i is closed if and only if-

L L
(1.2) - / k() £(t) cos K (t)dt = / k() £(t) sin K (t)dt = 0.

(*) Entrato in redazione il 6 febbraio 1991
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In the sequel it is denoted by [P] the set of all the plane curves,
which are obtalned by isometrical transformatlons of curves belongmg
to the fixed set P of plane curves. We define

(1.3) - @=[Q]

If flc 1s contlnuously differentiable, then the curvature of r;; is
equal to 7 . Therefore the class of all the ovals, [4], is included in Q.

At first we consider the subclass of the Q curves of constant
n-width. Each convex polygon with n sides and equal interior angles
is called n-polygon. Each n- polygon imitates the belt determined by
two parallel straight lines in the plane. We express this known fact
as follows. '

LEMMA A. For each point belonging to the region bounded by
‘n-polygon or belongzng to the sides of the n-polygon the sum of
distances of the point from the strazght lines passmg by the szdes of
the n-polygon is constant. '

Therefore the value of the surn‘ is called the n-width of the
n-polygon. Obviously. 2-width means usual width of the belt bounded
by two parallel straight lines.

Now we consider a curve z(s) = rs,x € Qo. Then T, = ¢/K(*) is the
unit tangent vector and N, = 7} is the unit normal one at point z(s).
If s € [0, L), then the unit tangent vector T, determines all directions
on the plane. It is easy to observe that the function

(34  s—en(s) =K (k(s) + 21)

where K-! is the inverse furction for X and n.= 2 3,. ., rotates the

tangent vector T, by the angle 2.

For a fixed number s € IR, the tangents at points

(1.5) 2(5), 2(¢n(5)), 2(62()), ..., 2(02"1(5)).

determine the n-polygon described on z(s),wy here

G5(5) = pn(en(- . on(s)..), v=1,2,..
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The n-width of the n-polygon will be called the n- -width of the
curve z(s) in the direction of T, and it will be denoted by w,(s).
Obviously

(1.6) Wn(pn(s)) = wp(s), for selR.

The curve :c(s) will be called of constant n- wtdth if and only if
wn(s) is a constant function. Next we say that the curve vel{z}lCc@
has constant n-widt if and only if the curve z(s) has constant n-width.
Now we give the first main result of the paper S

THEOREM 1. All the curves of Q of constant n- wzdth wn, have the

2w

same perimeter ——wn
n

If n = 2, we have

THEOREM A (Barbler) All the curves of constant wldth b have
the same circumference wb. :

The second group of the results has special character. To express
it we 1ntroduce some notlons Let M denote the perlmeter of curve

xEQo

DEFINITION 1. For parameter so €1R, the set of points on curve
z defined by (1.5) for s = s, will be called au n- Barbzer set of poznts zf
and only if the equalzty holds '

(L.7) o M-%}wneo)

Obviously we extend the definition of n-Barbier set of pomts on
each curve y € [{z}] C Q. '

A 2-Barbier set will be:calle a a Barbzer pair of points.

Let A C Q be an arbitrary subset of Q. We put

ﬁn‘(A) : min{ﬁn (y) ‘Y€ A}_,

where f,(y) denotes the number of the n-Barbier sets of points on
the curve .
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Now we consider some subsets of Q. For this purpose we recall
that. The sequence - :

1 1 1
————»-,——cosnKs , —=sinnK(s),n=1,2,...
Vo v i), g sinn(s)

is orthonormal and forms a complete system in the real Hllbert space
L{z0 rj(k) with weight k(s), [2]. | |

‘Let feCp and ryp € Qo Then the Fourler serles for f has the
following form

o0

(1.8) . - f(s) = ‘ Z ncosnK(s)+ B,sinnK(s)], -

because A; = By = 0 (see condition (1.2)).
Let Q") c Qo, n=2,3,..., p=2,3... denote the set of all curves
rs,k such that :

A= Bu= A = Ban = ... Anip1) = Bagp1) = 0.
B 'T}:len we deﬁne | |
(1.9) Qnp = [Q5"].
No we cap e;{prees the following. |
THEOREM 2. The identities $5,(Q) = 2 hold for n = 2,3,.

'THEOREM 3. The identities B,(Qn.p) = 2p hold for n = 2,3,..
p=23...

2. Proof of Theorem 1.
To prove Th 1. we apply the following.

LEMMA 1. Let £, and w,, n > 3, denote the perimeter and the
n-width of the n-polygon, respectively. Then the equality

T
£y = 2wy tan —
n
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holds.

Proof. Let the complex numbers zy,z,...,2,-1 be the vertices of
the n-polygon. Then the unit vectors

tet, ..., e" 1t

where
t = (21 — 20)|n1 - 2|1 and ¢" = 1
are parallel to the sides of the n- -polygon.

Now let z be a point of the interior of the n- polygon Then we
express the sum w,(z) of the distances of z from the straight lines
passing by the sides of the n-polygon as follows

n—1 . L
wp(z) = Z[E“t, z—q],
v=0
where points qo, ¢1,...,¢,~1 are chosen on the sides 2021, 2122, . .., 231 20

of the n-polygon and [z,w] is the determinant of z and w. Hence
. - ' n—1 ’ . |
(2.1) wn (%) [Z e""q, ] :

This means that w,(z) is independent of z.

Let ¢, and 7, denote the lengths of the sectors between ¢, z,,1,
respectively,v =0,1,2,...,n=1(and 2z, = 2,). We consider the folllowing
'system of equations

q7.)+€v5t—qu+l_776v+1t ’1)—0,1,2 n— 1.

n—1
Obviously £, = Z(&U + 7).
v=0
.27 _ v .27
But &, sin — = —[ — qus1,€ +lt], 7y Sin — = (90 — qut1,€"1].

Finally £, = 2w, tan % This completes the proof.
Proof. of Th 1. Lm 1. means that each curve y € Q has constant

n-width wy(s), if and only if all n-polygons described on y have the
same perimeter. ,
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let |
_ . T
/ K(OF(E)dt
be the length of the curve y € Q. Slmllarly as in Thl. [1] we show
that

L |
(2.2) / k(s)Ln(s)ds = 2nM_tan —g—

0

But £,(s) = Ln, (e £, is a constant functlon) thus 27&, =
9Mn tan—7-r—

ks 2w
SoM_——L ctan — Tml- AT,
n

Th1s completes the proof.

‘3 Proof of Theorems 2 and 3

By equality (2.1) we observe that the nw1dth wn(s) correspondmg
to direction T, is expressed as follows : :

(3.1) o wn(s) = [Pn(ls)»aTS]s

,Where,pn(ﬁ): i en’ “’(’903'(3)) and z(s) = 75,5 (s).

LEMMA 2. If y € [{m}]cQ, then the Fourzer series for wn(s) has the
form

nM = Anp
wn(s)= ———n [ng/ﬂ—l

- Bny . - '
5 cos nukK(s) + POy sin nuK (S)J ,

y:l;
n=23,...
Proof. From (3.1) we. obtaih

. o v (0) | _ )
cwnl(s) = Z/ k@) f(t)sin <K(s) + -2—7;1) - K(t)) dt
o 0 _ - A
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Inserting series (1.8) and formulas (1.4) into the last formula,
we obtain the Fourier series for w,(s) in the form:

wn(s) = iao+Z(aJ cos jK () + b; sin jK (s))
j=2

with coefficients ag = 2% and

n—1
—A;
(3.2) aj = . [ZCOS ——]v—{—Zsm ——]U}

v=0
and
, Eﬁ iy 27 = 27
(3.3) b; = T [ sin —;2——31)—2003711)
v=0 v=0
A; B,
Hence a; = ]n_’ i and b; = ; ‘n ’1 whenever n divides j in the

remaining cases we get a; = b; = 0. This completes the proof
~ Let g, (v =,2,...) be a 2r-periodic continuous real values function
such that its Fourier series has form

o0

(3.4) gu() ::'Z[a“ cos ut + by, sin pt].

U=v

A zero ty € [0,27) of g, is- c:i(lled simple if we have either t5 = 0 or
to € (0,27) and g,(to — €)gu(t +¢) < 0 for all sufﬁc1entIy small ¢ > 0; In
[3] the followmg lemma is proved L ~ -

LEMMA B. The function g, has at least 2v simple zeros in the
interval [0, 2m). |

Proof of Th 2. Now let r4 3 be an arbltrary curve in Q P We
consider the following function (by LM 2).

[ 4, B,
- ng ol
gn(t) = ; [W———f cos ,unt + Ti- sin ;,mt]

where t = k(s) € [0,27), n=2,3,.... hence by Lm B the function g,(t)
has at least 2n simple zeros in [0,27), n = 2,3,.... This means that teh
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n-width w,(s) has the value 2]:[ at least in 2n points (see LM 2.). But

the n-Barbier set consists of n points in [0.,»L) If wa(s) = M then

wn(pn(s)) = %—]:—T/[—, (by (1.6)). Thus there exist at least two dlfferent

n-Barbier sets of points on ry ;.
This means that £,(Q) > 2. Let the curve r;; € Q be defined by
the formula (1.1) with k(s) =1, L = 27, K(s) = s and f(s) = 2 — cosns.
Then '

n
gn(s) = — 7 cosns.

The nonnegative roots of the equation g¢,(s) = 0 are equal to

2v+1 w

—— g v=0,1,2,...

Sy =

 itis easy to observe that s, € [027) if and only if v = 0,1,2,...2n—1;
Next we observe that <pn(s,,) = sy4+21. Denoting the n- Barb1er set by
B(sv) = {-'L'(Su) m(son(su)) - 2(Pn” 1(SU)O} we have

B(so) = Blsz) = ... = Blss), § = 0,1,2,.

and

B(Sl) = B(S3) =.. B(82j+1) ]:0 1 2

Hence there are exactly two n-Barbier set of pomts on the curve.
Thus 8.(Q) = 2. This completes the proof,

Proof. of Th 3. Similarly considering the functions

o

B, ,
gn,p(t = Z [nz 7 7 cos;mt—{-———‘i——lsmpnt

we deduc.e that 8,(Q — n,p) > 2p.

Next in order that to prove £.(Q.;) = 2p we examine zeros of

the function f g 5) = 2 — cosnps, where k(s) =1, L = 2=. It is not hard to

L. r v=0,1,2,...,2np —~ 1 are simple zeros of g, ,

np 2
belonging to [0,27). Moreover ¢}(s,) = s, +21p. Hence we obtain the

see that s, =
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following equalities:
B(SQ) = B(Sgp) = ... B(Ssz), ] = 0, 1, 2, e

B(Sl) = B(82p+1‘) =.. .B(Szpj+1), j = O, 1,2, e

..............................

B(Szp_l) = B(84p_1) = .. .B(Sgpj+2p_1), _7 — 0, 1,2, e
Finally 8,(Qs ) = 2p. This completes the proof.

Remark In the extreme case for f € Cp, if A,; = Bn; = 0,

= 1,2,..., then for each s € [0,L) the formulas (1.5) and (1.6)

determme are n-Barbier set of points on the curve ry j, (compare Th
1. of the paper).
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