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A MATHEMATICAL MODEL
FOR RADIATION HYDRODYNAMICS

SEBASTIANO PENNISI (Catania) - MARCO SAMMARTINO (Catania) (¥)

We adopt here the 1dea of descnbmg a radiation ﬁeld by means
of the radiation energy density F and the radiative flux vector F
which must satisfy a set of evolution equations; in these equations an
unknown tensorial function P(E, F) appears that is determined by the
methods of extended thermodynamics.

1. Introduction.

Transport phenomena occur in many areas of physics, and in the
last decades, have received an increasing attention. Typical examples
of such phenomena are radiative transfer (relativistic astrophysics
and cosmology are its areas of applicability), neutron transport
and, for non-neutral particles, electron transport in plasmas or
semiconductors.

The mathematical tool for deahng with the transport of particles
of identical speed is the distribution funtion #r, Q,t), which gives
the probability of finding a particle at time ¢ in the position r and
with propagation direction Q, where Q lies in the unit sphere S2.
The evolution of the distribution function is governed by the transfer

(*) Entrato in redazione il 6 febbraio 1991
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equation which, for neutral particles, reads (see [12])

1 6F Y
(1) —W_I_Q VF= 'U-EE-—O'?:

where v is the speed of the particles, ¢ is the total interaction
coefficient expressing the rate at which particles at the position r are
removed from the beam with direction , v is the effective albedo
here supposed to depend only on position and time, while £ is the
surface integral of ¥ on the unit sphere

(2) | E= % ] Fr, Q,1)dQ

Notice that in eq (1) we have not taken into account the
dependence of the - distribution function on the modulus of the
momentum p of the particle. This means that eq (1) is the transfer
equation for particles with a given |p|. '

In eq (1) it is implicit that no external forces (gravitational or
other) can influence our particles.’ Only scattering (here supposed
coherent and isotropic) and absorption by the underlying medium
can change the propagation direction of our particles. Equation (1)
neglects also the possibility of particle - particle collision. For photons
this gives no restriction, the superposition principle being valid, but
for neutrons (or any other fermions) this amounts to considering low
densities with null probability of neutron-neutron scattering:

Usually in radiative transfer treatments the transport equation
is written for the radiation intensity I2 which differs from the proper

distribution function by a factor T a5 (see [120), where ¢ is the
speed of hght h is the Plank constant, and v is the frequency of the
photons we are con51der1ng Because of the hnearlty of (1) this makes
no difference, but when written in terms of radiation intensity the
quantity E, as defined by (2), is the energy density, while the vector

3 F(r,t) = / Hr, Q,1) QO

is the energy flux. In this paper we are mainly interested in radiative
transfer; then henceforth we shall call £ and F, energy density and
energy flux respectively.
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Equation (1) has been the object of many theoretical enquiries.
In particular existence and uniqueness questions for the solution
of eq (1) with prescribed boundary and initial conditions (see for
example [5], [7], [8]) have been studied. But in many instances,
particularly when (1) must be coupled with the equations governing
the underlying medium, solving the transfer equation can be too
difficult. _ ,

In these cases an approximation procedure is needed. A common.
method to circumvent this difficulty is the so called moment method:
taking the moments of equation (1) one obtains an infinite set of
equations for the moments of distribution function

Miveois = / FU QD
ar o

In order to make this procedure operationally useful one needs a
relation linking the (n + 1)-th moment to the lower ones; the question
of how to postulate such a relation defines the so-called closure
problem. The system of the first m moments of the transfer equation,
together with the closure form a closed set of equations, which is
usually simpler to solve than the original transfer equation (1) ,
because the moments of the dlstrlbutlon function depend only on
space and time.

In this paper we shall seek a closure at the second order, that is
we impose the condition that the second moment of the d1str1but10n
function, the stress tensor

4 P= i/ FQQAQ,
v 4
depends only on the ieroth and first moments , ie. (2) and (3)
respectively. Under that hypothesis, the most general expression for
P obeying the objectivity principle (see [13], [16], [17]) is
i _ L oy imi L oo
(5) Pl = < B89 4 q(F'F) - 2 P6")

where also the fact has been used that the trace P! is equal to E. ¢
is a scalar function depending on £ and F = |F|.
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In radiative transfer a very commonly used (see [9]) closure is

- y 1=y i 3y—1 FiFi
6 : . 1) — PR, S < ¥ A 3 o)
®  Pi=p( A F)

where x, a scalar function depending on E and F, is called variable
Eddington factor. The meaning of X is apparent if one cons1ders the
one dlmensmal version of (6), viz.

(7) | . | P= XE

In the collision dominated regime the radiation field is isotropic
and then one has P = iE In the opposite regime, the free streaming
case (see [9]) all pressure is concentrated in one direction and one
has P = F. Then the variable Eddington factor plays the role of an
interpolating factor. between the two opposite reglmes '

Notice that the two closures (5) and (6) are equlvalent and the'
two unknown functions are related by ¢ = EF~2 (3x - 1)/2; moreover
the problem of finding a closure at the second order is reduced
to finding a variable Eddington factor. Ifs expression is usually
introduced in a phenomenological or ad hoc manner, while here we
shall find it, except for a constant h, by requiring that the system of
the equations of moments (see eqs (8) and (9) below), together with
the closure (5) (or (6)), admit a supplementary conservation law.

This requirement is based on the desire to have a symmetric
quasilinear system of partial differential equations and it will
guarantee the existence of an entropy . The exploitation of the
entropy balance will allow us to find a whole class of closures (6)

In particular we shall find that the only Eddmgton factors
consistent with the existence of an entropy principle are those
satisfying an ordinary differential equation (see eq (22) below).

For a comprehensive review of the variable Eddington factors
already introduced in the literature see ref. [9]. We list one, viz.

X:é_ _2_,/4 3F2E 2

3 3

which is appropriate to the case when there exists a preferred
reference frame in which the radiation is isotropic. '
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This is a particular case in this paper, when the above mentioned
constant h is —5/4, and has been found by Levermore [9] and by
Anile, Pennisi and Sammartino [2] although in different contexts.

The paper is organized as follows. In Sec. IT we shall state the
basic equations of our treatment and some other constraints. In Sec
III we shall impose an entropy principle, and find as final result an
ordinary differential equation for y depending on a real parameter,
whose solution will give the only closure cons1stent w1th such entropy
principle.

In Sect. IV. we shall find other conditions on y that will
guarantee the hyperbolicity of our system of equations; this result
will be obtained as a consequence of the convex1ty of entropy in some
cases, or it will be proved directly in the remaining ones.

In Sect. V we shall state the existence and uniqueness for the
solution y of the aforesaid differential equatlon and of all the other
related conditions. : : :

In Sect VI we draw some conclusions..

2. Basic equ'ati'ons and‘conStraints

Let us now consider eq. (1) and take its zeroth moment integrating
over Q. We obtain:

(8) | | —%?—+V F=vu(y—-0o)FE
Multiplying (1) by Q and then integrating, we obtain the ﬁrst

order moment equation

. - 1 9F
(9) - —C,)-t—- +uV .-P=—-
The system (8), (9) together with the closure (6) forms a closed

set of equations once y is given as a function of £ and F.
It is commonly assumed that xy depends on F and E through

their ratio f = _u% (see [9] ). Here we shall do so.

From the definition of F and E, we have that 0 < F < Eu, so that
0 < f <1, Moreover the two limiting values, 0 and 1, are assumed
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by f in the two opposite regimes, the collision- domlnated and the
collisionless regime respectively .

Then we are interested in a function x(f), defined in [0,1], such
that x(0) = % and x(1) = 1; that function will be found except for a
constant A, in the next sectlon

3. Entropy principle and determination of x(f).

-Now we impose the condition that the solution of (8) and (9) ,
with p¥ given by (5) , satisfies the relation |

(10) . 8S+8Q =y

where S, @' and g are functions of the field variables £ and F!.

From a physical point of view the existence of such a supplemen-
tary conservation law is very natural; for an exhaustive treatment
on entropy principle see [1] and [15].

In [10] it is shown that the existence of an entropy principle for
solutions of (8) and (9) is equivalent to the existence of four functions
A, A; called Lagrange multipliers, dependmg on E and F and such
that one has identically : :

(11) 8:S+8;Q° g+ A E+0: F' —u(y— 0 B)]+Mi(8: F +020; P o Fi) = 0
By the representation theorems of [13], [16], [17] we have
(12) Ak = LFy, Qi = aF;

where L and « are scalar functions depeh'ding on £ and F. We use
the closure (5) and obtain

as | as o Oa 1 2 00\ _

| 95 +A=0, 8F+LF 0, 0E+L <3 F 3E>_O
o 1., o, 09 o 202, _

(18) g+ gletFot = FL(?FU =0, a4 A+ Ity =0,

9= A(0E — ) +uo ) F.
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The integrability condition 1mp11ed by equatlons (13); and (13),
reads , . .
ax 7 QL

or Tap =Y

(14)

1f one solves eq. (13)s for «, substltutes in eqs (13)3 and (13)4 ,
obtains the equations '

or _ 1. 2 0‘1‘1) 2 0L
(15) | o8 = 3 (1 Far) ' eg
_(91 _ 1 o 3‘1 _ gulF? oL 5
aF =73 —Lv*F F Fe—- 9F 3 qLu*F.
Using (15); eq (14) becomes:
d(logL) A(log L) ( Oq
(16) 5 1 F+ 55 +3 F(?F+5 =0,

while the integrability condition implied by (15), and (15), reads.

d(log L) , Oq ) d(log L) ( )
0q |
+3F 7

Using eqs (21) and (22) and defining

Oq Jq
2 2 2
A_1+2F aE-!—qu <q+2F3F>

one obtains

M=~—1—F[9 i (5q+Faq>< ror 9L )]A"l

oF 3 GE oF oF
(18) 8ogl) 1 0 9 9q

g L) L1 9|2 04 q 99 -1

o) L[ (v 28 (ss0 22

Now we change our variables and use, instead of F and E, the
variables, £ and f; moreover we define the function ¢ as ¢ = qu?Ef2.
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Notice that, in order to have the equivalence of the two closures
(5) and (6), we shall suppose ¢ and y linked by the linear relation

¢ = 3X - . As we have already said (in sect. II ) it is usually
assumed in radiation hydrodynamics that the variable Eddington
factor depends only on f and henceforth we shall do so (i.e. ¢ = ¢(f)).

Using the new variables eqs (18) become

O(lag L)
af N 3fA

O(log L) _ eatian | | ay L
T_——331—{f¢(8¢>+1—9f2)~12¢+3¢(1+3f2)}. E

| i 1272(¢) +3f¢'(¢ = 3f2) + 9¢(f* — ¢}
(19)

Where ' = %, and Ay = f2A =2f(¢ — f3)¢' — 3% + 2f2q$+f2

Defining

’ ‘ —QOF2y _ 2 2y .
(20) ()= fo (8¢.+1 9f ?_3;?;5 +34(1+ 3f2)

integrating the eq. (19);, and inserting the solution 1nto (19)1 one
readily finds ~

(21) | $(f)=h
where h is a constant. Eq. (20) becomes now

(22) ¢' F[2(3h+4)p—3(2h+3) 2 41]—3(3h-+4)¢?+3[1+(2h+3) f2]¢+3hf* = 0.
this is the main result of this papér. By (22) we have obtaiﬁed an
ordinary differential equation for ¢, hence for x, depending on the '
parameter h; in section V it will be shown that with the boundary
condition, x(0) =1/3, x(1) = 1, eq. (20) admits a unique solution for

all h € IR.
Now using (19); and (21) we have

(23) L =p(f)E"

where 5(f) is the soluti_o_n of the ordinary differential equation

(08B = =g [2F(6)7 + 3186 - 3+ 96( - O]
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this express1on is equlvalent to

(24) (log 8)’ = “ﬁ+“gt§§+”“2

because , multiplying (22) by (2¢'f —3¢) we obtain

[2F7(#) + 374/ (¢ = 3F%) + 96(F* - )1 (1 - )+
+3f M1 [=3(h+ 1) + (2h + 8)¢'f] = 0

It will be useful to notice also that, if h = —1 eq. (24) gives
B =p(1 —qS)“ if h = ~2 it gives B=p8(1+2¢— 3f2)71; in both cases ,8
is a constant. _

Inserting the expression (23) for L in eqs. (19), they becoﬁie )

(25) 57 = g BB+ 1) + 3618
25 - : ‘
= S BAA(1— 44 — 3h)

‘These two eqs. give for A

E b+1
[1— (3R + 4)¢]ﬁu2 o

3 - ¢'f _ o _

where A; is a constant. Using (26) and (23) in (13), 2 wWe obtaln two
equations for § whlch glve after 1ntegrat10n '

+ Xo ifh#-1

(26) A=

o = cof —

\

27
S s Skt 443kt D - B+ S
—gﬁu (h+1).(h+2)[. - (3h + )¢+. (h+Df]=XE+6
| - if ~1#h#-2
o) %—Bqu’(logE -1+ [%%2—)4-
%ﬁﬁ@E—%E—B&/ﬂL+%—ﬁﬂr%#+& Cifh=2

where § is a constant.
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Finally (13)s gives

Eh+1

h+1 (¢ )”'/\0_ | 1fh¢—1

(28) a = _, _ ) _
-4 +ﬁv?/ ol (14 #55) 4~ §hlog B o ifh = 1

In conclusion we have found that the only closures (5) ,or (6)
which are consistent with an entropy principle are those given by
eq. (22) . Before integrating eq (22) one must of course determine
the parameter h. How to choose such an 4 depends on the particular
transport phenomenon we are dealing with. As equation (27) shows,
h determines the dependence of S on E. In [2] the case h = —5/4 has
been examined.

In Sect V we shall prove existence and uniqueness for the solu-
tion of eq. (22) with the boundary values conditions ¢(0) = 0; ¢(1) =1
that correspond to x(0) = 1/3; x(1) = 1. Thus x(f) will be determined
except for the constant A.

But before that, we shall now exp101t the condition of hyperbolicity
of the system (8) and (9). This will be considered in the next section.

4. Hyperbolicity of the field equations.

In order to obtain the hyperbolicity of our the system (8), (9) we
apply a powerful and elegant theory which has been widely explained
and successfully applied in [4], [11], [14], [15].

To this end we recall that a sufficient condition for the
hyperbolicity, is the convexity of the entropy S, i.e. that ‘

9%S

(29) IXA0XE

is positive definite
where
YA = E for A=0 .
T | F4 for A=1,2,3"

moreover let
v, — -A forA=0
AT\ =4 for A=1,2,3."
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Infact, from (13); (13),, we have that

S

and consequently (29) ensures the 1nvert1b1hty of the function
Y4 = Y4(XP) so that Y4 can be taken as independent variables.

In the same way, defining Q™ = F*, Q/ = v?p¥, @ = —Q' + Y5 Q'B,
S=-S+Y4X* we have that (13), (13), can be written as

: an QzB
(31) - ox, By, =0

consequently we have

aS as 80XB as

732) 7 XAJFYB 7 _—__a-YA + XA+
 taw %ﬁf - x
- W I
() B

where (30) and (31) have been taken into account. By using these

A Y
results, the field equatlons (8), (9), i.e. .82(; +8;Q** + P* = 0, may be
written as | o

025 ovs 0 i

Moreover, by using (32) we have that

825 85 4 A ( 8s )
6 =6 6Y4 = 6X26Y 4 = 6X =
TVa0v, 0 AYE <6YA> A 4 ’ ox4 )
| S . p.va
= axagxe XX

-
and then _(9_§__ is positive definite if and only if (29) is verified.
0Y40Yp ~
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Thus, by imposing the convexity condition (29) we obtain that
our system can be put in the symmetric hyperbolic form (33).

Moreover the well - posedness of the Cauchy problem for smooth
initial data is guaranteed (see. [6]). ‘

Let us then impose the cond1t10n1(29)j; we have

.02 / 2

@=5%0x, XA O
- 025 \.
'O Y sp,:
+ 6 ( T, ) k)

but S(E,F*) = S(E, f(E, F*)), where f(E,F*) = u-‘lE-l(Fka)l/?and
- F* = yfEn*; then we have (by using nién* = 0)

- 8S 8§ 88 11w\ -
_Q_=‘5<‘5§“af lf)‘SE”(é'f“ B )““fE“h)—v‘

_ (05 85 ., 05 ;
‘._5<5E afE f)éEM(af )6(fE)+

823 "
757 (B’ + <6E8f
823
5f2

k .
C'?f f6n dny =

a5

a7 (6£) + f————énk6nk.

af

> B" ) SESf +
By using (27), (24) and (22) we obtain

T 2 ‘ )
%? = —Bf B2, 2 Esz = — - BEM1 - (3h +4)¢ + 3(h + )f;

89S
8EOf

~(h+2)Bf B!’

which are also true for h = ~1 and h = -2.
Consequently

o825
B

) Eb_+21—fg[—(2h +3)6'f + (3h + 4)6 — 1],
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A R i )

M= OE? - QEOf  of
= 92§ . vagE_li L _(?—Zi~
OE8f  of . af?

(34) 1 ,32 4E2b+2

B {{(Bh+4)¢ = 3(h +1)f* — 1]

2R+ 3)f — (3h+ )6+ 1 +3(h+ DH1— g7}
For 2(8h+4)p + 1 —3(2h + 3) f2 # 0 this relation becomes equal to

(35) ﬁzEzh“ 4[2(3h +4)¢ — 3(2h +3)f% + 1° H{[(3h + 4)¢ - 1]%-

| - 9(h + 1) 252}, |
628 o "

Now @ is posmve definite if and only if == FET >0, M is positive

and g F>0 and then the following conditions must be imposed

a) 1—Bh+4)¢+3h+1)f?>0

b) (34) is positive _ ‘

[8 < 0 should also hold , but from (24) it can be seen that this

amounts to choosing a negatlve initial value for # and does not effect
the other considerations.] ' :

Clearly (36) is verified in (f,4) = (0,0); therefore it must be
exploited only for f > 0. : ’

Let us now distinguish four cases

casei) -2 < h < -1;

(36)

o , L ht1
cae_e ii) A > llandgb <2 n i3 );é 3h+4
1 ) h+1

Y

3 ,
case iii) A > —1 and ¢ <2h+3

case iiii) h < —2.
In the next section we shall prove existence and uniqueness of
the solution of eq. (22) with ¢(0) = 0; ¢(1) = 1. We shall also prove

that in the cases i) and ii) this solutlon satisfies the conditions (36)
for 0 < f < 1, while in the case iii) this condltlon is not ver1ﬁed if and

. 1
only if f = i3
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h 13 < f < 1. Therefore in theée last two cases the function (30) is

not invertible for these Values of f and consequently we cannot take
the Lagrange multipliers as variables . Neverthless we shall prove in
Appendix A; that also in these cases the system (8),(9) is hyperbolic .

5. Existence and uniqueness of the solution of eq. (22) with

#(0) = 0;¢(1) = 1. |
" Let qb(f) = y[z(f)] Wlth z(f) = f7%; then eq. (22) becomes |
_ 3 Bh+4)y -1+ (2 +3)aly—hz _ G(z,y)

. . ,
(37) TS T aRBht Ay -3k +3)e+1  H(z,y)
- where
gt

H(z,y) = 2z[2(3h + 4)y — 3(2h +3)z + 1]
and ¢(0) = 0, ¢(1) = 1 become |

Gy y0)=0yD)=

The simplest case is h = —4/3 because for such value of h eq.
(6.1) is a linear differential equation whose solution is

3 o x| (1Y, 4] 3 . 5
v=qe-Ue e gmor ) T3 T2 te

Where ¢ is a constant of integration; moreover we have
limy(z) =0&c=0
z—0

and
limi y(z) =1,

so that in'this case the existence and uniqueness of the boundary
value problem (8), (9) is proved ; furthermore the condition (36) is
valid except for z = 1; in that case (34) is equal to (35) because
2(3h+4)y+1—-3(2h+3)z # 0. Thus the convexity of entropy is assured
In the remaining cases we now have h # —4/3.
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The solutions of G(z,y) = H(z,y) = 0 are the critical points (0,0);

(L.1); (Oiﬁlﬁf) ((zhi:-s)w (2h+3_')~(lgﬁ+4)> =0

- Where obviously @ must not be considered if 4 = —3/2. There is
_ H(z,y)

that

dy ~ Glz,y) |
reach every given point P distinct from the critical ones.

one and only one solution of (37) or of its inverse

We can also see that the functions -
(39) y=Bh+4)"1+3(h+ D2y = Bh+4)"1[1 - 3(h+ 1)z'/?

are two solutions of (37); they do not satisfy the condition (38) but
are useful, because they cannot be crossed by other solutions of (37)
outside the critical points.

Every solution of (38) outside these critical points may be
obtained eliminating the parameter y between two functions y = y(u);

r = z(p) satisfying

d
’zz‘y‘ = G(z,y)
7
(40) q
== = H(z,y)
dp ’

Now if we consider the linear terms of G, H in z; y, we can see
that the critical point (0,0) is a saddle point for the system (40) and
therefore (see ref [3]) there are four and only four solutions of (40)
coming from or arising in (0,0); two of them are :

. 1 . " . R ’
z=0;p—po==lg{[l - Bh+4)yly™'} = Jim, p = +o0

and

1
J):O;,u—/loz—:);—lg{ 1—(Bh+4)yly™ '} = hmu 400

Consequently our system (40) has two and only two other
solutions reaching (0,0) of which one lies in the half plane z < 0
(and therefore must not be considered) and the other in the half
- plane z > 0. We have then to restrict ourselves to this solution ; if it
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reaches also (1,1) then the existence of solution of (37), (38) is proved:
uniqueness will follow as consequence of what we have just said.

It will be also useful henceforth to know the values that may
be assumed by y'(z) in (0,0), (1,1) and Q; to this end we can apply
the I'Hopital theorem to the second member of (37) in these critical
points obtaining in this way a second degree algebraic equatlon for
the unknown ¥'(z) whose solutions are

-, 1\ 3. 2h+3
Y\ 7or T3 ) =35k
(2h + 3)2 2 3h+4

or

(1 N _ 3, 2h+3
/(arar) =70+

Y(0) = o 0r y/(0) =~

where this last one is obviously the value assumed on the solution §
while y/(0) — oo refers to the solutions with z = 0.

By using all these properties it can be proved existence and
uniqueness of the solution of eq. (22) with ¢(0) =0, ¢(1) = 1; moreover:it
can be proved that the condition (36) holds when -2 < h < ~1;0r b > —1

1 h+1 1 h+1
/ e @' = -
and ¢ (2h+3># 33h 4 or h>-1, ¢ <2h+3) 33h+4 a‘.‘d

[ # TR ;or h < 2and0<f<——2h+3;

(This fact and the results of Appendix 1, assure the hyperbolicity
of the equations (8) and (9)). :

The effective proof will be exposed in Appendlx 2, where the
following four cases will be dlstlngulshed

case 1: h < —2; case 2: =2 < h < —4/3; case 3: —4/3 < h < —1; case
4: —1 < h.

(The case h = —4/3 has already been treated in this section ).
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6. Conclusions.

We are satlsﬁed to see how a powerful methodology such that
explamed in ref. [4], [11], [14], [15] always find a greater field of
applicability. In this paper it has furnished a closure for the system
(8), (9) as given by (5) with g= ¢(flu=2f~2E~! and 4(f) determined
except for a constant h by the differential equatlon (22) and the
boundary values ¢(0) = 0; ¢(1) = 1.

If h €[~2,~1] this closure allows the system (8), (9) to be put in
the symmetric hyperbolic form (33) with S a convex function of its
variables; hyperbolicity and well - posedness of the Cauchy problem
for smooth initial data is then guranteed ([6]).

The same thing can be said if A €] — 1, +oo[ but

' 1 h+1
¢ <2h+3> Ty
In the other case, i.e., h €] — 0o, —2[ or h €] — 1 + o[ but with

1 h+1
/ —_— ey ——
¢.<2h+3> =3y

we have that the hyperbolicity of our system (8), (9) still holds and
moreover the characteristic velocities do not exceed the speed of the
particles v that is not greater than that of light. _

Therefore we consider these results as greatly 1mproved over those
already known in the literature regarding the variable Eddington
factors.
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Appendix 1 - Hyperbolicity of equations (8),(9).

- We have already proved in sect. IV that in the cases i) and ii)
the system (8),(9) is hyperbolic ; the same thing we have proved
and in the case iiii) except

in the case iii) except for f = 3

< f < 1. We prove now that also in these cases the

1
oh+3 .
hyperbolicity requirement holds.

Infact, if we call F* = vEf* and substitute

this system assumes the form

fdr -

or

5 from (8) in (9)

ABaUp + A48, U +GA =0

where
Up = (E’ fk)T’ GA = (UE(_'Y'*' 0')) U7fj)T,

1 0oF

(A.1) APAB — :
(L

fni Eéik
iAB _ o 3
A =v pln*nfnk + po bt nk+

ij ind o .
Q16 + qan'n +p36”°n3 +p461kn’

Let us consider firstly the case iii); here hyperbolicity remains

to be proved only for f = 3 ¢ <2h+3> = _33h+4 and

((2h 4 3)(3h + Y4_) ’

_y (h+1)(h+2)
N = L+ 3)(3h+ 4)

consequently ¢ =

E—l.

(h+1)(h+2)
(2h +3)2(3h+4)

_ ht3
3h+4’
h+1

3h+4’

qs = =2

b1 =

P2 =
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_ DR+ 1
ps == 3h+4  2h+3’

h
P‘*"f 3h+4

Consequently the hyperbolicity requlrement holds , if the:
eigenvalue problem

(CiAz'AB ‘_ AAOAB)VB =0 N

admits real eigenvalues and 4 linearly 1ndependent eigenvectors for
every unit vector ¢;.

In the reference © where n’ = (1,0,0); &’ = (¢!,¢2,0) the charac-
teristic equation is

h 4 3, 4,230 +2 ely?—
(A+3_h+4eu>{/\ st

h? 4+ 8h + 8 a2 (R+1D)(R+2)] 4
- [(5 e ) (3h + 4)? ]”

1\3 h(h + 2) 22,1 3R+ D(R4+2)] _
(8) '03m+2(6)v - (3h+4)2 }—0,

whose solutions are real and given by

h 4.

Al =—"m€ U

)\22—6'&

A3 =1 [(e1)? £ V(e)2(h + 1)2 + 2(e?)P(h + 1) (A + 2));

3h+4

if ¢'e? # 0 these eigenvalues are all distinct and then the
hyperbolicity requirement holds;

if ¢! = 0 only the first two of them are coincident but there are
two independent corresponding eigenvectors

((2h + 3),-2(h + 2),0,0);(0,0,0,1);
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if €2 = 0 only one of the above eigenvalues has multiplicity
with multlphclty 2; its correspondlng

greater than 1,1.e. A = T

1ndependent eigenvectors are (0,0,1,0) and (0,0,0, 1)

Consequently the hyperb011c1ty requirement in f= 5 h 5 holds

in every case; it can be also appremated that all the above elgenvalues
are such that |\;| < v and then the characteristic velocities do not
exceed that of the particles nor the speed of hght Let us consider

now the case iiii) for — Sh3 < f<1; in the section V we have

proved that in this case the solution is ¢ = (3h 4 4)~1.[1+ 3(h + Df].
Consequently in the matrix (A.1) we have :

g1 =Bh+4)" (h+ 1)(i ~HE"L
2= (3h+4) (L 300+ )f — (3h+ B
p1 = —’(3h +4)T B+ 1)+ 2171
p2 = —(3h+4)" (R + 1);
ps = (3h + 4)‘1[3(ﬁ+ 1) +Mf“1] - f

pe = (3R +4)7'[3(R+ 1)+ f7Y]
and then we find the real eigenvalues

A = slv_;

A= (Bh+4)"[B3(h+1)+ f*_l]slu
Asa = uf 7GR+ 8)"H[(1+ (2h + 1) fle*

£\/[1+ (4h+5)f2(e)? + 4(h + DF(f - D(2)?};
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When ele? # 0 they are all distinct;

When ¢; = 0 we have A\, = A; and Xj, )3, ), are all distinct;
moreover there are two independent eigenvectors corresponding to ;
such as (1,1 - £,0,0); (0,0,0,1).

‘When ¢, = 0 the distinct eigenvalues are ), (with multiplicity 2),
A1 and —(3h +4)7" (h + 2)e!; there are two independent eigenvectors
corresponding to ), such us (0,0, 1, 0) and (0,0,0,1). '

 Then also in this case the hyperbolicity requirement holds and it
can be seen that the characteristic velocities do not exceed the speed '
of the particles nor that of light. ' :

Appendix 2. Study of the solution S from f =0 to f = 1.

Let us now study the solution S (discovered in sect. V) for all
values of the constant h. We shall prove that it reaches the point
(z,y) = (1,1) or it can be extended in an unique way to a solution
reaching this point.

Four cases will be distinguished .

Case 1: h < —2. Let us consider the domains

= {(z,y) : y1(2) Sy <a(2),0< 2 S‘m}

= (=) 1) Sy S w0 2 < i)

where
14 3(h+1)2l/?
yi(z) = 3h+4

i.e. the solution (39),,

) = 1+ (2h + 3)z — /1 + (2h + 3)%22 + 2(6h% 4 10k + 3)z)
ya(2) = 2(3h + 4) - ’

i.e. a part of G(z,y) =0
ys(z) = (6h + 8)~ [3(2h +3)z — 1],

l.e. a part of H(z,y) = 0.
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We have that G(z,y) < 0, H(z,y) > 0 and then y/(z) < 0 in the
internal points of D,, while G(z,y) >0, H (a: y) >0 and then y'(z) > 0
in the internal points of D;. ‘ _

Consequently the solution S is initially contained in D,. It cannot '
reach a point P of the curve (z,y:(z)) outside the critical points
because P is a point of minimum for the solution of (40) passing
through P. The solution S cannot also reach a point of the curve
(z,y1(z)) outside the critical points because such curve is another
solution of (37). _

Then if we call j(z) the solution S; we have () < y(:z:) < yo(2)

taklng the limit for ¢ — ————— Wwe obtain

foro<z< e

.
(2h+3)7

_ 1 - =h -
y<(2h+3)2> CEDEEDR
i.e. the solution S reachs the point Q. The expression of y(z) for

BhT3)? <z <1is (39);; in fact y = y1(z) is a solution of (37) coming
from @ and reaching (1,1); there is no other solution satisfying this

property because, for A < —2, Q is a knot while (1,1) is a saddle (if
v1(z) < v5(z) were two solution, coming from a knot and going to a
saddle, through every point (z,7) such that v,(2) < § < 72(2) would
pass another solution satisfying the same properties; then there will
be infinite solutions reaching the saddle and this is not possible).

For0<z< —(m the condition (36) is verified; in fact (36.a)

becomes
(4.2) (3h + 4)(u1(2) — 7) > 0

that is true because 7(z) > yi(z).
Moreover (34) is equal to (35), because

(A.3) 2(3h +4)p + 1 —3(2h + 3)‘f2 =2(3h + 4)((z) — y3(z)) # 0
and then (36.b) becomes

(3h +4)°(9(=) — y1(2))(F(x) — ya(2))

26h + D) - v5(2)) >0

(A.4)
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1 —3(h+ 1al/?
Where ys(z) = Zgh +4)

inequality is verified because

i.e. the solution (89),; the above

9(2) > y1(2) > ya(e)

and moreover

¥(z) < y2(2) < y3(z).

Then hyperbolicity hqlds for z < Dk it holds also for
BhT 7 i S <z < 1 because this has been proved in Appendix 1, case

i1ii).
Let us now consider the

Case 2 -2<h< —4/3 As before we may cons1der the sets
 Dy={(2,y) 1 31(2) Sy<wa(e),0< 2 < 1)

- Dy ={(z,y) 1 y2(z) <y < ys(z),0 <2 < 1}

“We have y/(z) < 0 in the internal points of D and y’ (z) > 0 in
the internal points of Dj: then S is initially contained in D;.

" The curve (z,y,(z)), outside the critical points, is constituted by
points of minimum for the solutions of (37) passing through them 4
then it cannot be crossed’ by S outside the critical pomts ‘

The curve (z,y:(z)) is also a solution of (37) and then it can-
not be crossed by S outside the critical points; the critical points
contained in Dj are reached only for z = 0 and z = 1 (and then Q ¢ ‘bg,
differently from the previous case except for h = —2 when Q = (1,1)),
so that y;(z) < §(z) < y2(z) for 0 < ¢ < 1 and then taking the limit for
z — 1 we obtain 7(1) = 1 as we desidered to prove.

Moreover §(z) > y1(z) > ya(2) and §(2) < y2(z) < ys(z) assure that
the conditions (A.2), (A.3) and (A.4) are verified and then hyperbohc1ty
holds because S is convex.

The case h = ——;1— has already been succesfully considered.

The next case to be considered is

Case 3: —-g— < h<-1.
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We consider the sets

Ds = {(,9) : 92(s) < y < s (2),0 < 2 < 1}

Ds =A{(2,y) : y3(z) <y < 9a(2),0 < w0 < 1}

Dr={(z,y) 1y < ya(2),0 <2 < 1)
and notice that
y(z) is de‘creasin‘g in the internal points of Ds,
y(z) is increasing in the internal points of Dg,

y(z) is decreasing in the internal points of -D7.

Consequently § is initially contained in Ds; moreover we have:

a) The curve (z,y,(z)) outside the critical points is constituted by
points of minimum of the solutions y(z) of (88) passing through
them, _

b) the curve (:i: gg(m)) outside the critical ‘points is constituted by
points of minimum of the solutions #(y) of (37) passmg through
them.

Then both curves cannot be crossed by S outside the critical points

of D3, i.e. those with z =0 and z = 1, (we have that Q € Dy & h = -1

when @ = (1,1)) so that ys(z) < §(z) < y2(z) for 0 < z < 1 from which
7(1) = 1 thus assuring existence and uniqueness.

. Moreover (A.2), (A.3) and (A.4) hold, from which the convexity of
entropy and the hyperbolicity requirement; in fact we have

Q(x) < y2(z) < yi(z) < ya(z)

and
s(a) < §(z).
Let us consider now

case 4: —1 < h, and the sets

Ds = {(:v,y) ya(2) Sy <), 02 < ‘(Q—hi—ﬁ}
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DQ:{(x,y) y3(m)<y<yg(x)0<m<_(_%_1_3_)_é_} .

Dloz{(:c y) :y < ys(z), O<x<—(—2—h—}——3—)—2—}

IA

z

IA
[y

.

Dur = {0) s wae) S v S o) g

INA
a .
IA
[y

Dis = {(x,y) :yz(:é) < ZJS ys(f‘?), (_21—1—41—-_3)—2—

Dia = {(2.0) 1@ < < 1) gy <7 <1

A
IA

Where

() = 1+ (2h + 3)z + /1 + (2h + 3)222 + 2(6h2 + 10k + 3)=
vslt) = | 2Gh+4)

In this case, as in that with h < -2, we have ?2—];—1—3—)7 g 1 and

it will be. seen that Q is reached by S before thls solutlon arrives in
(1,1). Infact

if h <0 we have y'(z) < 0 in the internal points of Dg and
Do, whlle y (a:) > 0 in the internal points of Dy so that initially S
lies in Dg, it cannot reach the curves (z,y;(z)) or (ac ys(z)) that are

consituted for 0 < z < - by points of minimum of the solutlons

1
(2h + 3)?
y(z) or z(y), respectively, of (37) passing through them. Consequently
1 .

ya(z) < g(z) < y2(=) that for z — E proves that @ is reached.’

(2h +3
. ' 1
= ' < <
If h =0 the solution S for 0 < 2 < Bh 32
7(z) = y2(¢) = 0 as it can be directly verified from (37); o
If h > 0 we have that y/(z) < 0 in the internal points of Dg and
y'(z) > 0 in the internal points of Dy so that initially S lies in Dg;

is given by

for 0<z < it cannot reach the curves (z,ys(z)) or (z,y:(z))

(2h + 3)?
because the first one is also a solution of (37) while the second one
is constituted by points of maximum of the solutions of (37) passing
through them. Then y(z) < §(z) < ya(2), that for z — (2h +3)~2 proves

that Q is reached by (z,3(z)).
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It remains now to be proved that there is a solution of (37)
leaving @ and reaching (1,1). To this end let us notice that (1,1) is
a saddle and then there are 4 and only 4 solutions of (37) leaving
or reaching it. Two of them are constituted by (39); with # <1 and

z > 1 respectively and then they are such that y/ (1) = —g 321{1; of
the other two solutions one is such that y > 1 and for the other y < 1;

then we are 1nterested in this last solution that we call #(z) and is
such that 7(1) = 2 > y4(1) > 0.

Consequently, in a neighbourbood of (1.1), (z,§(z)) lies in Dj;.
Moreover we have that y () > 0 in the internal points of D;,, while
¥'(z) < 0 in the internal points of D;;, so that the curve (z,ys3(2))

1

for W < z < 1 is constituted by points of maximum for the

solution z(y) of (37) passing through them and then y(m) cannot come
from a point of this curve.

Furthermore §(z) cannot come from a point of the curve (z,ya(2))
for 2 > m because it is also a solution of (37) and does not

- contain critical points; then ys(z) < §(2) < ya(z) for -@—h—_l_?jz_ <z<l,
that, for z — El_l_—lfﬁz— proves that §(z) comes ﬁqu Q.

Let us prove at last that the hyperbolicity requirement holds. To
this end we can see that for 0 < 2 < (2h + 3)~2 we have

y1(2) > ya(z) > ya(2) > ya(=)

so that .
yi(2) — g(z) > 0;9(2) — ya(z) > 0; 9(z) — ya(z) < 0
and then (A.2), (A.3), (A.44) are verified.

For (2h+3)~% < z < 1 we have y;(z) > y3(z) and then y1(z)—g(z) > 0
7() — ys(2) < 0; §(z) — ya(z) > 0 and then (A.2), (A.3) and (A.4) hold.
' 3, 2h+3

For ¢ = (2h + 3)~% and y/[(2h + 3)~%] = ———h s Ve have that

the first member of (36a) is 6(h + 1)(h + 2)(2h + 3)~2 and then (36a) is
verified; moreover (34) is equal to v*B2E?+2 (2h + 3)~! and then (36b)
is verified.

In all these cases the convexity of entropy holds and consequently
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our system is hyperbohc The remaining case is when z = (2h + 3)~2

and y'[(2h + 3)~ ] = —-—(h 1) ?}z ii in this case (36b) does not hold,

but the hyperbohc1ty requirement is valid as it has been proved in
Appendix 1, case iii). :
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