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NEUTRAL SURFACES IN NEUTRAL FOUR-SPACES
GARY R. JENSEN (St. Louis) - MARCO RIGOLI (Milano) (*)

Properties of the Gauss map of neutral surfaces in neutral four-
spaces are studied. Special attention is given to surfaces of parallel,
or zero, mean curvature. Bilagrangian structures are defined and
used in ways analogous to the use of complex structures in the
Riemannian case. The nonsimplicity of the structure group SO(2,2)
is used to factor the Gauss map and to construct analogs of the
twistor space, called in this context reflector spaces.

Introduction.

Surfaces with parallel mean curvature in Euclidean space R*
exhibit many special properties throught the splitting of the Gauss
map. This spliting is a consequence of the biholomorphic and isomet-
ric isomorphism between the Grasmanniann of oriented 2-planes in
R* and the product of two constant curvature 2-spheres. The twistor
space of an oriented Riemannian 4-manifold provide the means to
generalize most of these properties to a general 4-dimensional am-
bient space, or at least to identify the curvature properties needed
for a satisfactory generalization (cf. [4], [6] and [7]).

The complex structure induced on an oriented surfaces by a

(*) Entrato in redazione il 13 febbraio 1990.
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Riemannian metric plays a fundamental role in understanding the
properties of surfaces with parallel mean curvature. The twistor
spaces consist of all the oriented almost complex structures on a
4-manifold. Curvature quantization result for such surfaces depend
on the maximum principle for subharmonic functions on them.

In this paper we shows that essentially all of these results carry
over, in the appropriately defined.form, to the case of neutral surfaces
of parallel mean curvature in neutral 4-spaces. (Neutral metrics,
defined in §1.1, have signature zero: equal numbers of plusses and
minuses). At first glance this seems very unlikely, as a neutral
surface has no relevant complex structure and its Laplace-Beltrami
operator is hyperbolic rather than elliptic. However, characteristic
coordinates, whose existence depends only én the Frobenius Theorem
(see §1.1), take the place of isothermal coordinates and account for
the existence of a bilagrangian structure on any oriented neutral
surfaces. The set of all almost bilagrangian structures on an oriented
neutral ‘4-maniflod constitute the reflector space, the neutral space
analogs of the twistor spaces of R1emann1an geometry.

Neutral surfaces in Minkowski space have been studied by
T. Milnor (cf. [9] ‘and references cited there). In that case the
simplicity of the Lorentz group SO(3,1) prevents any isometric
decomposition of the relevant Grassmannian of oriented planes
in Minkowski space R*!. However, SO(2,2), like SO(4), is at the
Lie algebra level a direct sum of ideals which in this case are
isomorphic to the Lorentz group Lie algebra o(2,1). As a consequence
the Grassmanman S0(2,2)/50(1, 1) x SO(1,1) of orlented ‘neutral
planes in R2? is 1somorph1c as bilagrangian neutral spaces, to
the product of neutral spaces forms, 51! x Sbl. The Riemannian
results carry over exactly to the case prov1ded complex structures
and holomorphic maps are replaced throughout by b1lagrang1an
structures and bllagrang1an maps. |

If H is the mean curvature vector of a neutral surface in R? 2
then I =0 is the wave equation, which in this case is the umform
Vlbratmg string equation. Surfaces with H = 0 are called strings in
the literature (cf. [2]) and we follow that termmology In theorems
1 and 2, in §2 3, we show that bilagrangian maps are strings and
we characterize strings which are bilagrangian. This is done in
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terms of the concept of isotropy, which is defined in terms of the
vanishing of certain components of the second fundamental form
which decomposes into types because of the bilagrangian structure
in the surface.

Theorem 3, in §2.4, shows that a neutral surface with nonzero
mean curvature vector has a parallelizable normal bundle. Theorem
4 is a surprising quantization of curvature result for such surfaces.

Theorem 5, in §3.2, summarizes the ten essential features of
the Gauss map, and its factors, called the reflector maps, for a
neutral surface in the flat neutral space R?*?. These properties are
formulated in a way that makes transparent thelr analogy with the
Riemannian case. ’

In §4 we construct the reflector boundles of an oriented neutral
4-space. Theorem 6, in §4.2, generalizes to the neutral case a theorem
of Friedrich and Grunewald [5]. It shows the existence of a pair
of Einstein metrics on the reflector spaces of an Einstein self-dual
neutral space. Theorem 7, in §4.3, is the neutral space version of
theorems of Atiyah, Hitchen and Singer [1] and Eelles and Salamon
[4] concerning the integrability of the two natural bilagrangian
structures on the reflector spaces. Comparable results of the latter
two authors have been announced in [3], p. 446. Theorem 8, in
§4.4, shows the conformal invariance of one of these bilagrangian
structures. _ a

In §4.5 we 1nvest1gate the essential properties of the reflector
lifts (which are the factors of the Gauss lift) for an oriented neutral
surface in an arbitrary oriented neutral 4-spaces. Theorem 7 contains
the generalization of eight of the results from R?? contained in
Theorem 5. These properties hold for any neutral 4-space. The
remaining two properties, concerned with the harmonicity of the
reflector lifts, are contained in theorem 10, which assumes the
ambient space is +self-dual and Einstein in order to obtain sharp
results. o
The method of moving frames is used throughout thls paper.
This allows all calculations to be made in terms of the structure
equations of SO(2,2), or more precisely, the structure equations of the
Levi-Civita connection on the principal bundle of oriented null frames
on the neutral space. These frames, rather than the orthonormal
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frames, are the natural tools for neutral spaces. The Einstein
summation convention is used throughout..The index ranges, which
change from place to place, are defined at the beginning of each
section.

1. Neutral Spaces and Associated structures.
1.1 Basic Definitions.

Let V be a vector space over R of dimension 2n. A neutral
metric on V is a non-degenerate symmetric bilinear form g on V of
signature zero. This means that there is a basis e = (e1,...,es,) of
V such that the matrix (gq) = L,, where g, = g(eq,ep) and

0 I,
L= ( ook > .
In the first two section we use the index ranges

1<, j<n; 1<a,be,d<2n.

Any basis of V with respect to which the matrix of ¢ is L, will be
called a null frame. Given a null frame e, any other is given by
&€ = eK, where K belongs to the Lie group O(n,n) = {T € GL(2n;R) :
*TLor = Lyn}. The frames e and é have the same orientation if and
only if K € SO(n,n) = O(n,n) N SL(2n;R). For future réf_erence the
Lie algebra of O(n,n) is |

o(n,n) = {(g jx) XY, ZERVM 17 = _ 7Y = —Y} .

If ¢ is a null frame of V, and if # = (¢%,0"*%) denotes the basis
of V* dual to e, called the null coframe dual to e, then using the
symmetric product we have g = 2% gignte, |

A product structure on V is a linear operator J on V for which
J? = idy. We restrict our attention to those product structures whose
eigenvalues, {£1}, each occurs with multiplicity n. A bilagrangian
structure J on V,g is such a product structure which satisfies
g(Jz,Jy) = —g(z,y) for every z,y € V. The name for such a J comes
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from its spectral decomposition V = V_®V,, because each eigenspace
V4 is a Lagrangian subspace (i.e., totally isotropic and of dimension
n).

Using a null frame e and its dual coframe ¢ of a neutral metric
g on V, we can define a bilagragian structure J, on V by J.e; = —e;,
and J.e,4; = enq4. Regarding a basis e of V as an isomorphism

e: R V, we see that Je = GOIn,n Oe—l, where ]”’n = <—~0Lz IO )

It is easily checked that any bilagrangian structure of V,g is
given by J. for some null frame e of V. If € = eK for some K € O(n,n),
then J; = J. if and only if K1, ,K~' =1, ,: It is convenient to state
this in therms of certain relevant matrix groups. Let

G(n,n) ={T € GLEWR) : Tl nT™" = Ip ) =

:{<61 g) :A,BEGL(H;R)}

=GL(n; R) x GL(n; R)
and let

B(n).= O(n,n) N G(n,n) = {(g | ,AQI) A ‘ G;(n;R)}

~ GL(mR).

Notice that actually B(n) C SL(2n;R), and that B(n) = SO(n,n)N
G(n,n). Now we have that J; = J. if and only if & = ek for some
K € B(n).

If V,g¢ is oriented, then the bilagrangian structures J divide into
two disjoint categories, those of the form J. where e is positively
oriented, and those of the form J. where e is negatively oriented.
Call J of each category positively or negatively oriented, respectlvely
The set of all positively oriented bilagrangian structures on V,g is
then

50(n,n)/B(n).

The case n =1 will be of special interest to us. In that case

0(1,1) = SO(1,1) U L1SO(1, 1),
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B(l):SO(l,l):{(é t91> :0;£t€R}.

Thus on V? g there are exactly two bilagrangian structures. One
of these is distinguished by choosing an orientation on V. Namely,
take J = J., where ¢ is any oriented null frame, and then the other
one is —J. o

A linear transformation T :V — V between vector spaces with
bilagrangian’ structures J and J, respectively, is called +bilagrangian
if ToJ =+JoT. ' :

All of this can be extended in the usual way to even ranked
vector bundless over smooth manifolds. We are concerned only with
the tangent bundle of an even dimensional manifold N?*. A neutral
space N,g is a 2n-dimensional manifold N with a smoothly varying
neutral metric ¢ on its tangent bundle 7'N. An almost product
structure on N is a smooth (1,1) tensor field J on N which defines a
product structure on the tangent space of each point of N. It is an
almost bilagrangian structure on a neutral space N,g if it defines
a bilagrangian structure on each tangent space.

Let T denote the pseudo-group of transformations of R?"
consisting of all C* diffeomorphisms F  of an open subset of R*?
onto an open subset of R** such that at every point of the domain of
F its Jacobian matrix belongs to G(n,n). A bilagrangian structure on
a smooth manifold N?* is an atlas of C* charts on N compatible with
I'”. In detail, this means that if U,z = (2/,2"*") and V,y = (¢, y**?)
are two charts in this atlas, then at any point of U NV we have

and

ayi _o0= ay_n—i-i
dxnti T fgd

A bllagranglan structure on N canomcally induces an almost

bllagranglan structure J as follows. If U,z is a chart in the structure,

then at any pomt of U, J 6(33 ——~—(?—.— and J 9 = 9 ‘In

dzt xnti dgntt
other words, the bilagrangian splitting of the tangent space of N at
any point of U is given by the equations {dz’ = 0} and {dz"*¢ =0},
respectively.
Conversely, we are interstead in knowing when a given almost

bilagrangian structure J on N is induced by a bilagrangian structure
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on N. This is an integrability condition expressible in terms of the
Nijenhuis torsion tensor of J (cf. [8]). To described this we observe
that an almost bilagrangian structure J on N is a geometric structure
on N characterized as follows. There exists an open covering {Uq}
of N such that on each U, there exists a smooth coframe field

]
0o = ( 02 +2> If U, ﬂUg # 0, then on their intersection 6, = K65,

where K is a smoth map into G(n,n). The relationship between this
description and J is that at any point p € Uy, Jp = Je,(p), Where e, is
the null frame field dual to 6,. We say that an almost bilagrangian
structure is integrable if it is induced by a bilagrangian structure.

PROPOSITION 1.1.1. An almost bilagrangian structure {Uy,04}
is integrable if and only if do', =0 (mod ¢¢) and do7+ =0 (mod 67+%)
for every «.

Proof. If an almost bilagrangian structure is induced by the
bilagrangian structure whose atlas of charts is A = {U,, 2z}, then
its system of local equations is U,,0,, where 6, = dz,, for which the
integrability condition clearly holds.

Conversely, if the integrability condition of the almost blla-
grangian structure {U,,0,} holds, then each of the n-plane distru-
butions {6}, = 0} and {2+ =0} is completely integrable. Let p € N.
Then p € U, for same «, and there exists local coordinates V,z
and V,y about p, such that the integrable submanifolds of ¢, = 0
(respectively, 621! = 0) are given in V by z’ = constant (respectively,
y*+ =constant). It follows that on V, the dz' are a linear com-
bination of the 4% and the dy**® are a linear combination of the
g7+, In particular, da’,dy”*® are linearly indipendent at p, and thus

2i y"+i are local coordinates on some neighbochood V of p. By this
construction we cover N by charts V,,z, = (2%,27"*) such that. for
each a there exists an « such that V, C U, and the dz’ are a linear
combination of the ¢! and the dz"*! are a linear combination of the
gntt, Consequently, if V,NV; # 0, then at each point this intersection
the Jacobian matrix of 2, o2;' must lie in G(n,n), since the dz?
must be a linear combination of the dzi and the dz?*’ must be a
linear combination of the al:c”Jrz Hence the atlas {U,,z,} defines a
bilagrangian structure on N Whic_h clearly induces the given almost
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bilagrangian structure. | » : [ |

Let F: N — N be a C® map between manifolds with almost
bilagrangian structures J and J, respectively. We say that F is
bilagrangian if its differential 7, is bilagrangian at every point of
N. Suppose that J and J are induced by bilagrangian structures
with atlases A4 and A, respectively. Then F is bilagrangian if and
only if for any chart (U,z) € A and (U,%) € A for which F(U) c U,
the functions #' o F' depend only on the z’ and the functions :L"+" oF
depend only on the z"*7.

1.2 Geometry of Neutral Spdcés.
Let N,g be a connected neutral space of dimension 2n. Let
7:0(N)— N

denote the principal O(n,n)-boundle of null frames. If N is oriented
we let SO(N) denote the principal SO(n,n)-boundle of oriented null

frames. Let 6 = QSJrZ) and w = (wf), denote the canonical form and
Levi-Civita connection form, tespecti,vely, on O(N). Recall that w is
characterized by being o(n,n)-valued and satisfying the structure
equations

df = —w A G.

The curvature form Q is the o(n,n)-valued 2-form on O(N) defined
by |

Q =dw +wAw.
The components of the curvature tensor Rj,, are defined by

| 1 a vc d

Qb = ERbch A 6
where R}, = —Rj;,. If we use the matrix (ga) = Ln"and its inverse
(9°*) = L, to raise and lower indices, then the Riemann curvature
tensor Rgupcd = gae R,y satisfy all the usual symmetries. The compo-
nents of the Ricei tensor are defined by R. = RS, = Ry, and the
scalar curvature is s = R? = ¢* Ry;. o
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By definition N,g has constant curvature ¢ if
Q% =0 A 0P,
where Q¢ = Q%g°d. This conaition is equivalent to

Raped :'E(Gacf/bd - _gadgbc)-

We call a neutral space with constant curvature a neutral space
form. For neutral space forms there is no meaningful difference
between positive and negative curvature, since if N,¢ has constant
curvature ¢, then N,—g¢ has constant curvature —e.

The standard models for the space forms are given in [10]:

(1) R™" is the flat space, which is R?" with the neutral metric
g = 2de*de™*. The neutral proper motion group E(n,n) = R* x
SO(n,n) acts transitively on R™" as orientation preserving
isometries. Its isotropic subgroup at the origin is SO(n,n).

(2) s™™ = {v € R™*!: (v,v) = 1} where R™"*! is R¥+! with the
inner product (z,y) = ziy™ + 2"tiyt 4 gty of signature
(n,n+1). The induced metric ¢ on S™" is neutral with constant
curvature ¢ = 1. Thus S™”,—y has constant curvature ¢ = —1.
The group SO(n,n+ 1) acts transitively on S™” as orientation
preserving isometries. Its isotropy subgroup at €s,4, is SO(n,n),
so S™" = S0(n,n + 1)/SO(n,n). Diffeomorphically S*" = R™ x S,

1.3 Surfaces.

Let N,g be an oriented 2-dimensional neutral space. A local
oriented null frame field in N is a C* map e: U — SO(N), where
U is an open subset of N. At each point p € U, e = (e1,e3) is an
oriented null frame at p. Its dual coframe is e*0 wich we will always

1
write as simply 6 = <g ) Then g = 2002, and vy = 6* A2 is the
. 2
volume form of N,g.
As now B(l) = SO(1,1), it follows that J; = J, for any other

oriented null frame & = ¢K, where K takes values in SO(1,1). Thus
g and the orientation of N induce a unique almost bilagrangian
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structure J. As the dimension of N is two, J is automatically
integrable, so that N~ has an atlas A such that for any chart
(U,(z,y)) € A, the oriented null coframe field in U defined by e is
given by

6! = ade, 0% = bdy,

for some positive C* functions a and b on U. Then
g-—29 19?2 = 2abdedy = 2Fdzdy,

where F is a positive C°° function on u. We call the charts of A
local characteristic coordinates in N, g. /

The bilagrangian structure J determmed on N by ¢ and the
orientation is unchanged if ¢ is replaced by a conformally equivalent
metric \g, for any positive C* function X on N. If g is replaced
by —g (which is still a neutral metric), and if the orlentatlon is

unchanged, then J is replaced by —J.
It is easily verified that the Levi-Civita connection form w = (w®)
with respect to e (i.e., e*w) is given by

where b, = —

(log F)

Qi:dw%:-—- I3 ZY 9t A 62,

The expression for the Laplace-Beltrami operator of ¢ in terms
of characteristic cogrdinates is easily veriﬁed to be

_ots
Af =22

for any class C? function f on U.
We will use the following lemma, which is proved in [2], as an
aid in computing this Laplacian. :

LEMMA 1.3.1. If h and k are fitnctionsﬂ on N satisfying

(dh+hr)AG =0 and (dk—kT)A 0> =0
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for some 1-form r, where 0',0? is any oriented null coframe field,
then

Alog |hk|0F A 6% = —2dr
wherever hk # 0.

Proof. The Hodge *-operator on forms on M is given by
Kl AG%, #0 =01, 67 =02, L A0% =1,

(See §1.4 below for more details on the x-operator.) By hypothesis,
there exist locally defined functions ¢ and b such that dh + hr = a6?
and dk — kv = bg%. Multiplying the first equation by &, the second by
h, and adding therm together we have d(hk) = ka6 + hbg%. Thus

«d(hk) = —ka0® + hb0? = —2hkT + hdk — kdh.
Dividing through by k% and applying d we have
Alog |hk|0* A6 = d* dlog |hk| = —2dr.

The first equation is the definition of A, which is equivalent to
Au = —*dx*du for any functions v on M. | | n

We define the Gaussian curvature K of ¢ by dw{ = Q] = K6 A0?,
so that K = R},, = Ro112 = —Ry212. It is a globally defined function
on N. For g = 2Fdzdy, we have
_ (log F)sy 1

= ——Alog F.

K= F 2

Then ¢ has constant curvature ¢ if and only if K is' constant, equal
to ¢. Notice that the opposite orientation on N is given by replacing
z by —z in each chart, with results in replacing ¢ by —¢g whose
Gaussian curvature is —K. -

The 2-dimensional space forms are RY! and SU!, with Gaussian
curvatures of 0 and 1 respectively. In this dimension S*»!' =~ R x S1,

which is not simply connected. A simply connected model is R? with
r+Yy

the metric g = sech’ —5 dzdy. The metric of constant negative

curvature —1 is —g = sech’ (g_—%@_) d(—z)dy.



418 GARY R. JENSEN - MARCO RIGOLI

1.4 Four-dimensional neutral geometry.

 For this section we fix the index conventions
1<4,5,6<3; 1<a,bec<4.

On R* with its standard basis {¢,} let g denote the neutral metric
defined by (g(c4,€3)) = Lo. With the standard orientation on R#, it
follows that {¢,} is a positively oriented null frame for R%g¢. In
AzR?* let €45 = €4 A€y, In the ususal way ¢ induces a metric on A;R?
which in this case has signature (4,2)= (- — — — ++4). By definition,
g 1is invariant under the action of S0(2,2) on R* The induced
metric-on A,R* is invariant under the action of SO(2,2) given by
uNv— Aun Av for any A € SO(2,2). '

The Hodge *-operator on A,R* is defined by a A xb = g(a,b)e; A
-+« Negq for any a,b € A;R*. As in the Riemannian case, 2 = 1. The
+1 eigenspaces of x, denoted A, have bases E¥, respectively, where

€13+ € -
Ef = —'19‘\7—5—?1, Ef =15, EF =34
(1) ~ _ €13 — €24 - -

With respect to the bases the metrics induced on A, have matrix

/=1 0 0
q=(g;) = 0 0 11].
0 1 0

These subspaces are invariant and irreducible under the action
of SO(2,2), and thus they give rise to a 2:1 surjective homomorphism

p:S0(2,2) — SO(2,1) x SO(2,1)
(1.2)
K~ (Ky, K2, -

where for K € 50(2,2), K1 is the matrix of K|A.+ with respect to the
above bases.

Recall that X = (X}) belongs to 0(2,2) if and only if X Lo+ L, X =
0. In terms of components, if we set X* = (XL;")® = X2, then
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X €0(2,2) 1f and only if X* = -X". There is an isomorphism
0(2,2) 2A,R*

XeX= %X“beab
under which the adjoint action of SO(2, 2) on 0(2 2) corresponds to

the action of SO(Q 2) on A;R* by
KXK'« KX,

Let N, g be an oriented connected four-dimensional neutral space.
As in §1.2, Letf and © denote the canonical formi and the curvature
form of the Levi-Civita connection on O(N). Define A4-valued 2-forms
ol ®Ei on O(N) by

A1 A 13 2 A p4 ' '
CACHONGT  p _ging?, o2 =5 n0®

C{"l.: - )
s V2
: 1 03_02 4 ' :
al_:g/\ /\0’ ol =0t A%, o =63 Ap2
V2

For any K € SO(2,2), the transformation rule R}._,8 = K¢ translates
into :

Rpox = Kyoy = thjcvziE;t.

The curvature form transforms by RKQ = K~1QK, which trans-
lates into

Rj:(fz =K.

Now Q = —;—Q“beab, where Q% = R“bé’c AG¢, and R = gbeRecd Using
(1.3) and (1.1), we have

(1.4) Q= Ef @ Ao} + E; @ Bicd, + Ef ® Diod. + Ef © Cial,

where A = (4}), B = (Bi), C = (C}) and D = (Di) are 3 x 3 matrix
valued functions on SO(N). If K € SO(2,2), then

Ry-1A= K, AK{', Ry_..B=K_BKI

Rj-.D=K{DKZ', R}_.C=K_CK>'
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For any point p € N the curvature operator
R(p) : AQTPN - AQTPN

is defined by Q as follows. Let ¢ = (e1,...,e4) be an oriented null
frame field defined on a neighborood of p in N. Its dual coframe
field is e*0. As usual we interpret a basis e(p) of T,N as a linear
isomorphism e(p) : R* — T, N given by e(p)z = z%q(p). Thus e(p)E*
are bases of ALT,N, the £1 eigenspaces of the Hodge * operator on
T,N. Then

1 g
R(p) = 5 REH(e(®))ea A er @ (67 A 0%,

which in terms of the basis e(p)E* is given by
R(p) = eE+®A(e)é*a++eE“®B(e)e*a++eE+®D(6)6fd_+eE"®C’(e)e*a_.

Since the curvature tensors Rg.s satisfy the usual symmetries,
it follows that the curvature operator is symmetric with respect to
the inner product induced on A,T,N from that on T,N. In terms of
the bases we are using, this translates into the conditions

Aij = Aji,  Bji = Dij, Gy = Cji

where the indices were lowerd with ¢, (ie., 4;; = qz'kAf, ete.),

Furthermore,
s

4
where the trace is defined by Ai, etc; and N,¢ is Einstein if and
only if B = 0. ,

The Weyl curvature form is the o(2,2)-valued 2-form ¥ = (¥§)
defined by

Trace A = Trace C =

g = Qo %(Rgec A B + R209 A 6°) + %9@ AP
so that
ot ab ® 3 ha b ape b
V=0 @e,hey =0+ (6-9 AO® ~ R20° N 60) @ eq Ao,
In terms of our special frames we have

t=rte (A— %I) oy +E- ® (C—-Tsé-[) o,



NEUTRAL SURFACES IN NEUTRAL FOUR-SPACES 421

where I is the 3 x 3 identity matrix.

Defining the Weyl curvature operator W(p) at p € N in the
same way as we defined the curvature operator, it is evident that
W (p) preserves the eigenspaces of the Hodge  operator. If W#(p)
denotes 'the restriction of W(p) to A+T, N, then

W) =eB* @ (A0 - 1) ey

W-(p) = eE~ ® <C’(e) _ %I) o,

The oriented neutral space N,g is +-dual (read self-dual and
anti-self-dual, respectively) if at every point of N we have W~ =0,
respectively W+ = 0. | '

PROPOSITION 1.4.1. Let N,y be an oriented neutral space. Then

(1) N,g is + dual if and only if C = —f—Q—I on SO(N)

s

(2) N,g is — dual if and only if A= v

I on SO(NV).
2. Irhmersed Neutral surfaces.
2.1. Basic Formulas.
In this section we follow the index conventions
iijak'7m = 1a3> aaﬁ)7’5 = 2’4, 1 S CL,b,C S 4.

Let N,g be a four dimensional neutral space and let M be a
connected surface. Let

f:M—N

be an immersion whose induced metric ds* = f*g has signature (—+).
A Darboux frame field along f is a map e: U C M — O(N) such that

21 e* 9% = 0.

We will usually omit the ¢* in such expressions since the context
will make its presence understood.
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For a Darboux frame e
ds? = 2016,

so that 6!, 6% is a null coframe field for ds? in M.If M and N are
oriented, then e is called oriented if it takes values in SO(N) and
0 A 63 is positive on M. | o

From the structure equétions of §1.2, with respect to a Darboux
frame ¢ we have

(2.2) df* = —wi A and (w}) € o(1,1),

ie., wi+wd =0 and w} = w? = 0. Thus the wi are the Levi-Civita

conenctlon forms of ds? with respect to 6%, §3.
- From the exterior derivative of (2.1) we have

(2.3) wf = h307, g, = b,

where the functions hg are the components of the second funda-
mental tensor

Il = h;?;.eiaf R eq.
The mean curvature vector iVS

H = %gzj ha ea _ h136a,

where, as in §1.1, (g.) = Ly so that (9;5) = L1 = <(1) (1)> The
immersed timelike surface f is called a string if H = 0.
The Levi-Civita connection of N,y induces a metric connection

in the normal bundle TM*' of f given by
Veo =wh @ eg.
The covariant differential of II is given by
VII=hi0 90 @ 0" ® e,

where the functions A2, are deﬁned by

ik

(2.4) dhi; — hijwf — hGwt + hwg = hg, 60",
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From hf = h$; we have
hie = h,
while from differentiating (2..3)_‘ we have
(2.5) _ _ hisy = hix; — Rf}k
Since the metric is parallel, we have
26) VH = é_.gif hE0" @ eq = hey0%eq.

We say that f has parallel mean curvature.vec_tor if VH =0..

Applying the structure equations of N to dw! = K6' A 63 and to
iw? = K+0' A 03 we obtain the Gauss equations

(2.7) K =Rz - hiyhis — hishty + 2h35hts,

where K is the Gaussian curvature of ds? on M; and the Riceci
equations

(2.8) K* = —Rigys — hgh, + b3 B,

where K+ is the curvature in the normal bundle. Taking the exterior
derivative of (2.3) we obtain the Codazzi-Mainardi equations

09) [dh) + h3y (w5 — 2w1)] A G + iy 00 A 6% = QF
[dhds — hia(w? — 2w A 6% — hE 00 A 65 = QF

(2.10) [dhiy + R (205F + w)] A 6T + hig 01 A 6% = Qf
| [dh35 = h3g(23 + W] A 67 = K130 A 6° = 02

The first term in each of these equations is also a covariant
derivative. For example, dh%, + h%, (2wd — w}) = h?,6*. From these
equations one derives (2.6). We derive some additional consequences
in the next section. -
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2.2. Change of Darboux frame.
The second fundamental tensor of f can be rewritten as
IT = LO'0' + Hds* + L6363,
where the local normal vector fields L and L are defined by
L = h{ieq, L = h$5e,.

If & is any oriented Darboux frame along f on U, then & =
eK where K takes values in SO(1,1) x SO(1,1), so has the form
K = diag(r~%,¢t%,r 1), for some real functions r and ¢ on U. Then
0* = rg!, and 63 = r~163, from which it follows that

L= P2, L= r?L.

In general the components of the second fundamental tensor
transform by

7"111 =r’th},, 71‘1;3 = this, 7‘%3 = r7*th3;.
Thus
"g(L,L) and LAL

are globally defined, and the zveros of ¢(L,L) and ¢(L,L) are well-
defined (independent of choice of oriented Darboux frame).

It is convenient to set

_ LAL
S+ = g(L) L) B (2] A €q
. LAL
~=qlL. L
s- = g(L, )+62/\e4’

globally defined functions on M whose local expressions with respect
to an oriented Darboux frame field are ‘

(2.11) s =2h%h3; and s, = 2h2,h%,.
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In terms of ‘these invariants the Gauss and Ricci equations
become

(54 +8-)=—Rizi3— K +g(H, H)
(2.12) |

—(S+ - S._) = —R1324 - [X’“L.

2.3. Isotropy.

Let e be any oriented Darboux frame field along f. We say that
f is isotropic at a point p € M if eitehr .

(2.13) K (p) = 0=his(p)  (—spin)
or
(2.14)  Bs(p)=0=hii(p)  (+spin)

This is well defined since the vanishing of any component hg;
is independent of choice of oriented Darboux frame. We say that f
is isotropic if it is isotropic at every point of M.

We refer to conditions (2.13) and (2.14) as isotropy with Z-spin,
respectively. A reversal of the orientation in the normal bundle of
f reverses the spin. '

Isotropy at p € M implies that L(p) and L(p) are null vectors.
The converse is true if we assume the nondegeneracy condition that
L(p) and L(p) span the normal space of f at p. Notice that p is an
umbilical point of f if and only if L(p) = 0= L(p).

Isotropy has a geometric interpretation in terms of the hyperbola
of curvature. At a point p € M consider the curve X(¢) =te; +t les,
where e is an oriented Darboux frame at p. This curve is a constant
radius hyperbola in 7,M in the sense that ds*(X(¢),X(¢)) = 2 for all
t € R. The hyperbola of curvature of f at p is the curve

II(X(#)=t*L+2H +t72L

in the normal space T,M*. It is a non-degenerate (i.e., does not lie
in a line) constant radius hyperbola if and only if f is isotropic at
p, which case its center is at 27 and its radius squared is 2¢(L, L).
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Although isotropy. is defined without the presence of any bila-
grangian structures, it is a property intimately related to them.

"THEOREM 1. Let N,g,J be a four-dimensional oriented neutral
space with a parallel almost bilagrangian structure. Let. M,ds? be
an oriented neutral surface, and let Ju; denote its unique positively
oriented bilagrangian structure. If f: M — N is isometric and =+
bilagrangian, then it is an isotropic string.

Proof. Let e be an oriented Darboux frame field along f defined
on a connected open set U C M, with dual coframe 6. Then ¢!, 43 is an
oriented null coframe field in U, and df = ¢%¢;. We have 1o Jyy = —6*
and 6o Jyr = 63, If f is bilagrangian (the anti-bilagrangian case is
similar), then Jodf = df o Jyr = —0¢; + 03¢5 so that Je; = —e; and
Jez = e3. Thus J must satisfy either

J€2:—62 and J64:€4

or

Jeg =e; and Jes = —eq.

We assume that the former case holds on U. A similar ai‘gument
applies for the latter case.

Using the notation of §1.1 we have now along f that J = J,
and

VJ = 2w3(0%; — 0%e)) + 2wi(0%es — 9164)

As J is parallel it follows then that w3 = 0 = w}, which ertten
out in terms of components becomes

0=h3 = h3s = iy = hi

These are precisely the conditions that f be an isotropic string. M

THEOREM 2. Let R*? denote R* with the standard neutral
metric g = 2(dz'dz® + dz?dz*) and standard orientation. Let M, ds* be
an oriented neutral surface. An isometric immersion f: M — R?>? is
bilagrangian with respect to some constant bilagrangian structure J
on R®% if and only if f is an isotropic string.
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Proof. By Theorem 1 it suffices to prove the implication begin-
ning with the assumption that f is an isotropic string. Let ¢ be
an oriented Darboux frame field along f on the connected open set
UC M. Then f is a string means that 2% = 0, and f is isotropic
means that either h%; = 0 = A}, or A2, = 0 = ht;. We dssume the
former case as the argument for the latter case is similar.

‘A constant product structure J is given on R?%? by specifying
its spectral decomposition. It will be bilagrangian if and only if
these eigenspaces are null spaces. To this end consider the two-
dimension‘al_ subspaces of R* spanned by e;(p), e2(p) and es(p), es(p),
for each p € UU. These subspaces are constant, independent of p,
because

dle; Aes) = (wi +w2)e; Aeg + wiley Aey —ep Nes)

dles Aes) = (w3 +wies Aea +wi(es Aeg —es Aey)

Our assumptions above amount to wi =0 =w? on U. Hence, as

mappings from U into the projective space P(A.R?), both [e; A ey]
and [e3 Aeq] are constant. Define J by making the former subspace
its —1 eigenspace, and the latter subspace its +1 eigenspace. From
the proof of Theorem 1 we see that f is bﬂagranglan with respect
to J and JM |

2.4. Parallel Mean curvature Vector.

THEOREM 3. If the isometric immersion f : M,ds®> — N,g has
a nonzero parallel mean curvature vector, then the normal bundle
TM* is parallelizable, thus trivial and flat.

Proof. Let e be a local oriented Darboux frame field along f.
Suppose that the mean curvature vector H = h?;es+h}seq is non-null,
which implies that g(H, H) is a nonzero constant. Then the normal
vector field ‘

H= ——h13€') + hiseq

is globally deﬁned parallel, and H,H are hnearly 1ndependent at
every point of M, since HAH = g(H,H)es Aeq # 0 at every point- of
M. Hence TM+* is parallelized by H, H.
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Suppose now that ¢g(H,H) = 0 on M. As H(p) # 0 at some
point p € M, it follows that H is nonzero at every point of M,
because parallel translation along any curve of M is an isometry,
thus nonsingular. At any point of M one of h%; h}; must be zero,
the other non-zero; Assuming that the domain of definition U of e
is connected, it follows by a simple continuity argument that the
same component must remain zero throughout U. As M is assumed
connected, it follows from the change of frame formulas that the
same component vanishes identically for any oriented Darboux frame
field e.

To be definite, let us suppose_thét_ H = hije, for any such e. Ad
h2, is never zero on U, we may replace e by another oriented Darboux
frame field defined on U such that H =¢; on U. M can be covered
- by the domains of such frame fields. As H = ¢, = ¢é, for any pair of
such frame fields, it follows that e, = é; as well. Thus H =e4 is a
globally defined null vector, never zero, linearly independent of H.
it is parallel because 0 = VH = Ve, = wle, implies that w} = —w? =0,
and thus Ve, = wjies = 0. Hence, TM* is parallelized. [

‘Let N(¢) denote a four-dimensional neutral space form with
constant curvature c.

~ PROPOSITION 3.4.1. Let f : M — N (¢) be an isometric immersion
with paralell mean curvature vector H. Then on the open set where
the argument of log is nonzero in each case, we have

Alog|s_| = 2(2K — K*)

Aloglsy|=2(2K + K*)

Proof. These follow from an apphcatlon of Lemma 1.2.1 to- (2.9)
and (2.10), respectively. |

THEOREM 4. Let f: M,ds* — N(c) be an isometric immersion
with nonzero parallel mean curvature vector H. If the Gaussian
curvature K of M is constant, then either K =0 or K = e+ g(H,H).

Proof. We have K+ =0 by Theorem 3, and thus by (2.12) and
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that R1324 =0 we have
s+ =s-=-K+e+g(H H),

which is constant. If K # e+ g(H, H), then Proposition 3.4.1 implies
that 0 = Alog|sy| = 4K. - |

3. Neutral surfaces in R??,
3.1. The Grassmannian.

Let G1,1(2,2) denote the set of all oriented neutral planes in
R?2, The group SO(2,2) acts transitively on G :(2,2), and its isotropy
subgroup at o = [¢1, €3] is

Go = SO(1,1) x SO(1,1) = {diag(s,¢,5~,¢"1) : 0 # 5,1 € R}.

Thus G1,:(2,2) = SO(2,2)/Go, which is a pseudo-Riemannian sym-
metric space with SO(2,2)-invariant metric g defined as follows.

If w = (w§) denotes the Maurer-Cartan form of SO(2,2), then by
§1.1,

3 2 4 __ 1
Wy = —Wy, Wz = —Wy,
2 1 4 3

The symmetric left invariant bilinear form
Q = 2(wswi + wiw?)

on SO(2,2) descends to an SO(2,2)-invariant neutral metric ¢ on
G1,1(2,2) such that =*¢ = @, where

(31) ' (L 50(2,2) — G1,1(2, 2)
is the projection. If u is any local section of (3.1), then

u {w3>w37wl’wl}
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is a local oriented null coframe field for g in G;,(2,2), where the
orientation is defined by

U:wg/\wf/\wgl\w‘f;

There is an SO(2,2)-invariant bllagranglan structure J deﬁned
on G1 1(2 2)

wiold = —wi, wiolJ=-uwl wiol =w? wiolJ=uwi

It is integrable by Proposition 1.1.1, since by the structure
equatlons of S0(2,2), :

~ dof = ~(wi —w) Awd, do} = —(w] - wd) A
(3.2)

dw? = (Wi —wd) Aw?, dw} = (w2 —wd) Awi,

This local product structure is global. Let B, = B(2), as defined
in §1.1, and let B. = {4 € SO(2,2) : AI. = I_A}, where I_ =
diag(—1,1,1,-1). It is evident that B_ is conjugate in O(2,2) to B,.
Let Sy = S0(2,2)/Bx+, and let ‘ e

s 1 SO(2,2) — SO(2, 2)/Bi =Sy
denote the progectlons The symmetrlc left invariant b1hnear forms
Q- = wiv?, Q= 2wl

descend to SO(2,2)-invariant neutral metrics g_ and g4 on S_ and
S+, respectively. Each has constant Gaussian curvature equal to 2,
as one sees from (3.2) and the equations

dwi —w3) = 2wi Aw?,  d(w? —wl) = Ww? Awt.
We orient these spaces by

vo =ws Aw? and vy =wiAwi

respectively, which uniquely determines bllagranglan structures on
each.
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LEMMA 3.1.1. There is an SO(2,2)-equivariant isometry
= (Yo, y)  Gra(2,2) — S- x S

Geometrically, given an oriented neutral plane P C R??, then (P) is
the pair of bilagrangian structures (J-,Jy) on R*»? whose restriction to
P is the unique bilagrangian structure determined by its orientation,
and whose restriction to the orthogonal complement P+ is, respectively,
minus or plus the bilagrangian structure determined by its orientation
(inherited from P and R?*?).

Proof. Let e = (e1,...,e4) € SO(2,2) be an oriented null frame
such that e;,e; is an oriented null frame for P. Then ey, eq is an
oriented null frame for PL, and J, = J, (as defined in §1.1) while
J. = Je, where ¢’ = (e1,e4,€3,e2). The map ¢ is an isometry since

Q=0Q-+0Q4. u

3.2. The Gauss Map.

- Let f: M — R?? be an isometric immersion of an oriented
neutral surface. define its Gauss map to be

“)’f ZM b G1,1(2,2)-,

where v;(p) is the tangent plane f,7,M parallel translated to the
origin of R*%. From the splititng of the Grassmannian the Gauss
map factors into v; = (¢-,¢+), where i = 91 oy;. We call o1 the
reflector maps of f. These are the analogues of the twistor maps for
surfaces in R*. The name change seems justified by the fact that a
bilagrangian structure on an oriented neutral plane is a reflection,
whereas an orthogonal complex structure on an oriented Euclidean
plane is a quarter turn, that is, a twist.

THEOREM 5. Let H, v;, ¢+ denote the mean curvature vector,
Gauss map and reflector maps, respectively, of f. Then:
(1) f is isotropic with =*spin if and only if ¢i is bilagrangian.
(2) f is totally umbilical if and only if v; is bilagrangian.

(3) f is a string if and only if ¢_ is anti-bilagrangian if and only
if ¢+ is antibilagrangian if and only if v; is anti-bilagrangian.
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(4) If [ is a string then ¢igs = —;—sidsz.

o . : 1
(5) If f is isotropic with xspin then ¢igs = gg(H, H)ds?
(6) f is an isotropic string with +spin if and only if ¢4 is constant.
(7) 4 is harmonic if and only if VH : TM — TM*' is +bilagrangian.

(8) f has paralell mean curvature. vector if and only if vy is
harmonic.

(9) phvy +prv. = Kuy.
(10) g_oizx+ —o*v_ = Ktvy.

Proof. Let u be a local section of (3.1). Then uoys = e is a local
oriented Darboux frame field along f. Consider the local oriented
null coframe field ‘

(33) U {C‘)S,w?nwl) }

in G11(2) and let {F,...,F4} denote the oriented null frame field
which is its dual. We may regard u*{wj,w?} as a local oriented
null coframe field in S-, and u*{w?,w{} as one in S;, with dual
frame fields {F}, F3} and {F,, Fy}, respectively. (To be more precise,
oriented null coframes exist in Si which pull back by ¥} to these
forms in Gy:(2,2).) The metric on G1,:1(2,2) is g = g- + g4+, Where
g~ = 2wiw? and gy = 2wiwi. The positive volume element in G, ,1(2,2)
is v = v_+vy, where (omitting v* and ¥3) v_ = wiAw? and vy = wiAw}
are the positive volume, elements in Sy, respectively.

Since e is an oriented Darboux frame field along f, we have
vt = {e1,es}, 4 = J. and ¢ =J_, where J_ is given by J_e; = —e;,
J_eq =eq, J_e3=e3, J_eqg = —e4. :

Then

(3.4) dp_ = Wil +wiFs = (h4 0 + has0°)Fy + (hllﬁl + h2,0%) Fy,

(35) Cl(p+ = ngg +w‘fF4 = (hgl@l + h.gBQS)FQ (h?lgl + h4 93)F4,
and dvy; = dp- + dpy. Furthermore,

(3.6) @tg- =2wiw! = (h3 hl5 + hizh))ds® + 2h3 ki1 6'0" + 2h33hT50°0°,
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and
(3.7) @hgt = wiwt = (A3 hly + hisht,)ds® + 2h2 k%, 010" + 2h3;h%,6%03,

where 6',6% is the oriented null coframe field induced in M by e.

If J denotes the bilagrangian structure on one of G11(2,2) or
St, then JF; = —F; and JF, = F,. The structure on M satisfies
' oy = —0' and 630 Jy = 63. Hence ¢_ is bilagrangian < Jodp_ =
de- o Jy < hiz =0=h} & f is isotropic with —spin by (2.13). The
proof for ¢, goes the same way, and ¢; is bilagrangian < ¢_ and
v+ are bilagrangian & f is isotropic with + and — spin < f is
totally umbilical. |

Similarly, ¢_ is anti-bilagrangian < Jodp_ = —dp_oJy < hiy =
0=hi; < H=0<« fis a string. The proofs for ¢, and v¢ are similar.

If f is a string, then (2.11), (3.6) and (3.7) prove (4). If f is
isotropic with +spin, then (5) follows from (3.6) and (3.7); Clearly
(6) follows from (3.4) and (3.5), respectively.

Using (2.4), (2.6), (3.2) and (3.4)-(3.7), we compute the tension
fields of p. to be

T(QD_):HgFl-{-Hi?Fg, T(§0+):H§F2+HfF4

The covariant differential of # is a bundle map VH : TM —
TM*, given in terms of e by VH = HZ0*®e,. Then VH is bilagrangian
& JoVH=VHoJ & HE =0= H} & ¢, is harmonic. Similary, VH
~is antibilagrangian < Hf = 0 = H} < ¢_ is harmonic.

Since 7(¢-) and 7(p,) are linearly independent, v; is harmonic
< 0 =17(y) = 1(p=) + 7(¢+) < ¢~ and ¢, are harmonic < H is
parallel. .

Since ¢+ = 94 ovs, wWe have

2
iy = yput (w3 Awy) = (A3 his — h3shty)var
and
plv. = 7}‘u*(w§ Awi) = (hg hiz — hashii)var.

Now 9) and 10) follow from these equations together with (2.7)
and (2.8). ' ||
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4. The presence of holonomy.
4.1. The Grassmann and Reflector Bundles.

If a four-dimensional neutral space N,g has holonomy, then
there is no unambiguous way to parallel transport tangent 2-planes
to a fixed origin of N. In order to generalize the Gauss map for an
oriented neutral surface

(4.1) f:M,ds* = N,g
we consider sections of the Grassmann bundle
G1,1(N) = {(p,P) : Pis an oriented neutral plane in T,N}.
Using the standard action of SO(2,2) on Gy :(2,2), we have
G1,1(N) = SO(N) Xg0(2,2) G1,1(2,2) = SO(N)/50(1,1) x SO(1,1).
The Gauss lift of f is given by
i M — Gl,l(N)

where v;(p) = (f(p), £ T, M).
The splitting of G1,1(2,2) given in Lemma 3.1.1 leads us to
consider the reflector bundles

(4.2)  rsiZy— N
defined by
Zy = {(p,J): J is a bilagrangian structure on

(4.3) T,N,g, of + orientation}

= SO(N) xs0(2,2) S+ = SO(N)/Bx,
where r1(p,J) = p. We let
(4.4) ot : SO(N) — Z4 :SO(N)/B:E
denote the prpjection. There are natural maps

(4.5) Vi 1 Gri(N) — Zy,
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where ¢+(p, P) = (p,J+). To describe Ji, let e be an oriented null
frame of T, N such that P = {e;,e3}. Then as in Lemma 3.1.1, J, = J,
while J_ = J.., where ¢’ = (e1,e4,e3,¢5).

The reflector lifts of f are ¢4 =44 ov;, so that

(4:6) o1 M — 7y

are sections of (4.2) in the sense that riopyi = f (ie., they are
sections of f~1Z; — M). In terms of a local oriented Darboux frame

field e along f they are given by i = (f,J1).

4.2. The Metrics on Zx.

To construct our 1l-parameter family of neutral metrics on Z.,
recall the notation of §1.2: ¢ = (6%) is the canonical form and w = (wf)
is the Levi-Civita connection form on SO(N). Consider the symmetric
bilinear forms

Q+ = 2wiwi and Q. = wiu?
on SO(N). For any nonzero real number ¢, the form

(4.7) 2001 0° + 0%0%) + tQ+

descends to a neutral metric g; on Z. = SO(N)/B..
It u is any local section of (4.4), then u* of

(4.8) : 6’1,92,rw§,93,04,6rw;}
and
(4.9) | 0*, 0%, rws, 02,63, erw?

are oriented null coframe fields for ¢; on Z, and Z_, respectively.
Here r >0, e = £1 and er? =t¢.

LEMMA 4.2.1. Let u be any local section of (4.4). The Levi-Civita
connection forms of g: on Zy with respect to the null coframe field
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u*(4.8) = (t,...,9%) are u* of the forms on SO(N) (here i,j =1,2):

. N 6 3+j
¢; = wj = 5 (Risrijee” + Ringij¢®) = =931

0 = “%(R‘fz-}-i]’ o+ R1112+i2+j ©°H) = =8
90.?3-{-3' = W§+j - %(szﬁzﬂ e’ + R§2+i2+j ©°)
0 = —‘—;‘(Rgzwfpj + R3si04; 903?”')’ = —p3,
0F = —%(R§Jz¢7 -+ R§2+ji803+j) = "<Pg+i
P35 = wi — w3 =~
Yg=0= ‘Pg

3+ 241 r 2 6
P = WP~ L (REe0® + REyo?)

: re . ~ '
3t = “—2‘“(lez'j¢7 + Rijpy;9°1) = — 8.

The Levi-Civita connection forms of g; on Z_ with respect to the
null coframe field u* (4.9) are given by similar formulas on SO(N).

Proof. Using the structure equations of SO(N), one checks
directly that de? = —¢b Ap? and that (¢7) € 0(3,3), for 1 <p,¢ <6 W

Computing the Ricci tensor of ¢; as in [JR 1], and adapting
the proof of Theorem 1 of [5] to the neutral case, one can prove

"THEOREM 4. Let N,g be an oriented neutral space which is

Einstein and self-dual (respectively, anti-self-dual). Then g; on Z_

. . . . . 12
(respectively, on Z4) is Einstein if and only if t = — or t = £, where
S

s is the scalar curvature of g on N.

4.8. Bilagrangian Structures on Z7..

On the reflector spaces Zi,¢: there exist a pair of bilagrangian
structures J; and J,. Described geometrically, at a point (p,J) € Z4
the tangent space decomposes as T, )72+ = T,N @ T;5¢ so that
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Ji|T,N = J, for ¢ = 1,2, and J1|TySy = Jx& while J3[TyS: = —Jg,
where Ji is the natural bilagrangian structure on Si (cf. §3.2). An
analytical description of J; and J, is given in the proof below.

THEOREM 5. The bilagrangian structure J, on Z, (respectively,
7Z_) is integrable if and only if N,y is anti-self-dual (respectively,
self-dual). The bilagrangian structure J, on Z4 is never integrable.

Proof. Let u be a local section of (4.4); so that (¢',..., %) = u*(4.8)
is a local oriented null coframe field in Z;. Let F = (Fy,..., Es)
be the dual frame field. Then J;, = Jg while J, = Jg/, where
E = (Eh EZ) EG) E4a E5) EB)-

The +1 and —1 eigenspaces of J, are the subspaces annihilated
by (¢!, 02, ¢%) and (p*, ¢°, ©?), respectively. By the structure equations
of SO(N),

dp' = —¢® A @® (mod ¢!, p?)
which is never zero modulo (¢!, ?, ¢%). Hence J, is never integrable.

The +1 eigenspaces of J; are the subspaces annihilated by
(o, 0%, ¢%) and (¢*, ¢° ¢°), respectively. Now

de' = 0(mod !, 2, %), i=1,2

dp® = Qf = Riz,0% A p°(mod ‘901,902, %)
dp®tt = O(moa 0, 0%,0%), i=1,2

dp® = Q} = Rij0' A p*(mod ¢*, 0%, %)

Hence, J; is integrable if and only if R%;, = 0 = R{;, on SO(N),
because this must hold for any section u. From §1.4, we see that
R%,, = R3 = —A? and R}, = R = —A3. Thus, J; is integrable if and
only if

(4.10) AR =0= Al

on SO(N).
If wue SO(N) and K € SO(2,2), then from §1.4,

(4.11) AwK) = KJ'A(WKy
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where K, is the projection of SO(2,2) onto SO(2,1) defined in §1.4.

By an elementary calculation, using (4.11) as K. ranges over
S50(2,1), one shows that for fixed u € SO(N), (4.10) holds for all
K € 50(2,2) if and only if |

Aw) = M),

where ) is a function on SO(N) constant on each fiber, thus a
function on N. But then Trace A = 3\ = %, so that A = i -. Hence
J1 is integrable if and only if N,g is anti-self-dual by Proposition
1.4.1.

The proof for Z_ goes the same way. The spectral decomposition
of J; has equations u*(#',0%,w3) and ux(9?,6%,w?). Using the structure
equations of SO(N), we see as above that J;, on Z_ is integrable
if and only if Ri);; = 0= R}, on SO(N). But Ri,; = RY = C? and
R2,, = RM = —C3. As above then, J; on Z_ is integrable if and only

if C = —i—z—Ig on SO(N) if and only if N,g¢ is self-dual. [ |

4.4. Conformal Invariance.

Given an oriented neutral space N,y consider the conformally
related metric § = A\?g, where ) is any smooth positive function on
N. Since the null spaces of § and g are the same, it follows that
the reflector bundless Z. for § are the same as those for g.

Using the bundle isomorphism

F:SO(N,§) — SO(N, )
defined by F(éi,...,é&) = %(él,;..,é‘;), the argument of §5 of [6]
carries over to prove the following theorem.

THEOREM. The bilagragian structure'Jl on Zy does not change
with a conformal change of metric on N. The structure J, is invariant
only under homothetic change of metric on N.

Remark. Both J; and J; are unchanged when g is replaced
by —g.
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4.5. The Reflector Lifts.

Let f be an isometric immersion (4.1). We consider now the
generalizations of Theorem 1 in §3.2. All properties but (7) and (8)
carry over to a general N,g.

Observe that the 2-forms w? Aw} and wi Aw? on SO(N) descend
to 2-forms vy on 7., respectively, so that for any section u of (4.4) .
we have

wwiAwd)=vy and w(wiAw?) =,
THEOREM 7. Let ¢y : M — Zy be the reflector lifts (4.6) of f;
Then
(1) f is isotropic with +spin if and only if ¢+ is J,-bilagrangian.

(2) f is totally umbilical if and only if both ¢, and ¢_ are
Ji-bilagrangian. | ,

(3) f is a string if and only if ¢_ is J,-bilagrangian if and only if
w4 1s Jo-bilagragian.

(4 If f is a string, then ¢ig; = <1+ —;—si> ds?.

(6) If f is isotropic with +tspin, then ¢ig, = (1 + %g(H, H)) ds?.
(6) f is an isotropic string with +spin if and only if ¢4 is horizontal.

(7) vy +rve = Kuy.

(8) iy — v, = KLvyr.

Proof. Let u be a local section of (4.4); Then e = uoyy is a local
Darboux frame field along f. Using the coframes (4.8) and (4.9) we
have (omitting »* and e* as usual)

0 =0 pi0tt =0,i=1,3
(4.12) _ _
plws = h3;0°, plut = k00

Thus, by (4.7),

(4.13)  ¢%ge = (1+2(hg hls + hgshiy))ds® + 26(h, 111 610" + h3;his6%0°).
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Similarly,
PO =08, ot 0T =13
(4.14) - ,
‘ p*ws = h3;0°, prwi = h%:0°
and thus

(4.15)  ¢%gs = (1 +t(h3 h25 + hazh?))ds® + 20(hE, 2, 0% 0" + hish?,036%).

Let B = (Ey,...,Es) be the frame field in Z, dual to u*(4.8).
Then

(4.16)  dy = (By + rhi, Es + erh?  Eg)0" + (B + rhis By + erhy Fg)0°,
On Z,, we have J, = Jg, so that |

(4.17) Jiodpy = (—Ey —rh3 Es + erhi Eg)8' + (B4 — rh2, Es + erh‘l"3E§)(93.
Since 0! o Jy = =6, and 630 Jy; = 03, we have |

(4.18) dpy o Jar = (= E1rh3, B — erh}y Eg)0 + (Ey + rh2,Es + erhi, Bg)65.

Therefore, ¢, is Ji-bilagrangian < a4, = 0 = h%, < f is isotropic
with +spin by (2.14). This proves (1) for v+. The proof ¢_ is similar.
For the proof of (2), recall from §2.3 that f is totally umbilical
< hfy =0="h%; for « =2,4 < both ¢, and ¢_ are J,-bilagrangian.
On Z,, Jo, = Jg/, where E' = (E\, Ey, Es, By, Es, E3), so that

(4.19) Jyodpy = (=Ey +rhi Es— 6rh‘f1E§)(21 + (Es+rhi3Es — erhiy E6)63.

Hence, comparing (4.18) and (4.19) we see that pr 18 Jo-
bilagrangian < h3 =0=ht; & H=0« f is a string. This proves
(3) for ¢4. The proof of (3) for ¢_ is similar.

Assertions (4) and (5) follows from (4.13) and (4.15), respectively.

To prove assertion (6), recall that by definition ¢, is horizontal
means that

dpy C span {Ei, Ey, E4, Es},
which by (4.16) is equivalent to f being an isotropic étring with
+spin. We observe further that if ¢+ is horizontal, then it is
Ji-bilagrangian. The proof for ¢_ is completely similar.
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By (4.12) and (4.14),
Pive = (hahiy — hishi Jvm
ol = (hy his — hashii)var.

Thus (7) and (8) follow from these equations combined with (2.7)
and (2.8). |

To generalize the remaining statements of Theorem 1 requires
additional assumptions about N;

THEOREM 9. Let f: M,ds?> — N, g be an isometric immersion into
a neutral Einstein space N,g. let pi : M, ds® — Z4, g, be the reflector
lifts. Suppose that N,y is anti-self-dual (respectively, self-dual). If
st = 24, then ¢, (respectively, ¢_) is harmonic if and only if VH
is bilagrangian. If st # 24, then ¢, (respectively, ¢_) is harmonic if
and only if f is a string. '

Proof. We summarize the calculations only for ¢, as those for
¢_ are very similar. To calculate the tension field (¢, ), let u be a
section of (4.4) and use the local null coframe field for g,

(!, ..., 95) = u* (81,0, rw3, 03,64, erwy),

where, as in (4.8), r >0, e= %1 and er® = t. Let (E1,...,Es) denote
the dual frame field in Z,. The corresponding Levi-Civita connection
forms for g; are given by Lemma 4.2.1.

If we write

6
dpy =) (B0 — 36%)E,

p=1
~and compare this with (4.16) we see that
by=1,b5=0, b7 =0, =rh2, b3 =rh2,

(4.20) | o
bi=1, b5 =1, 03 =0=85, 65 = crhd), b8 = erhd,

Then

6
T(py) = Z b3 Ep,
p=1
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where

dbh — Pw! + s qu(¢+¢4) = b0 0 + 1P 6%,
q=1
Carrying out these calculations and using (1.4) in §1.4, we find

that X . , .
t A%+ B A+ B
bl — _ ( 1 3 p2 1 2 p4 >
13 2 V2 33 V2 13

t [A
1y =y (1= £A3) = (44,53 + 11,43 + 1, B2)

1A+B%>
ba=r(h —_—

o ’"<313 27 V2
i(,ﬂMMz A:i)
e\ T TR

1 t
by = ity (1= 543) = (133 + 13,55 + b, B9

4 _
blB'—

-1 A3+ B
b, = er | A? -—3> :
13 67’( 113 7 3 NG
By (2.5) and (1.4) we have that
A3BlL
h‘lilS - hlSl 1723
In terms of the oriented Darboux frame field e = uo ¢, along
f, we have
VH:TM — TM*

given by (reintroducing the index ranges i =1,3 and o = 2,4)
VH = Hf0'e, = h%,0%,,

where the last equality comes from (2.6). The orientations (from M
and N) and neutral metrics in 7'M and TM+* determine bilagrangian
structures Jyy and J;. Then VH is bilagrangian means VH o Jy =
J1 o VH, which occurs if and only if H} =0 = H2.

Suppose now that N,g is anti-self-dual and Einstein. Then by

Proposition 1.4.1, we have A = —1%— and B = 0. Thus

ts i
m(py) = hi; (1 — 52) E; +rHZEs + b, (1 zi > Es + erH} Es.
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The theorem now follows from this formula, since by definition,
¢+ is harmonic if and only if 7(¢;) = 0. [
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