APPLICATION OF THE MONOTONE-ITERATIVE TECHNIQUES OF V. LAKSHMIKANTHAM TO THE SOLUTION OF THE INITIAL VALUE PROBLEM FOR FUNCTIONAL DIFFERENTIAL EQUATIONS

SNEZHANA G. HRISTOVA (Plovdiv) - DRUMI D. BAINOV (Sofia) (*) (**)

In the paper a techniques of approximate finding of extremal quasisolutions of an initial value problem for systems of functional differential equations is justified.

1. Introduction.

The monotone-iterative techniques of V. Lakshmikantham represents a fruitful combination of the method of upper and lower solutions and a suitably chosen monotone method [1]-[9].

In the present paper by means of this techniques extremal quasi-solutions of the initial value problem for systems of functional differential equations are obtained.

^(*) Entrato in Redazione il 3 ottobre 1989

^(**) The present investigation is supported by the Ministry of Culture, Science, and Education of People's Republic of Bulgaria under Grant 61.

2. Statement of the problem. Preliminary notes.

Consider the initial value problem for the system of functional differential equations

$$\mathring{x}(t) = f(t, x(t), x(h(t)) \text{ for } t \in [0, T]$$

(1)

$$x(t) = \varphi(t)$$
 for $t \in [-a, 0]$,

where $x = (x_1, x_2, ..., x_n)$, $f : [0, T] \times \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$, $f = (f_1, f_2, ..., f_n)$, $\varphi : [-a, 0] \to \mathbb{R}^n$, $h : [0, T] \to [-a, T]$, a = const > 0, T = const > 0.

Let $x = (x_1, x_2, ..., x_n)$, $y = (y_1, y_2, ..., y_n)$. We shall say that $x \le (\ge)y$ if for any $i = \overline{1, n}$ the inequalities $x_i \le (\ge)y_i$ hold.

With any integer $j = \overline{1, n}$ we associate two nonnegative integers p_j and q_j such that $p_j + q_j = n - 1$ and introduce the notation

$$(x_{j}, [x]_{p_{j}}, [y]_{g_{j}}) = \begin{cases} (x_{1}, x_{2}, \dots, x_{p_{j}+1}, y_{p_{j}+2}, \dots, y_{n}) & \text{for } p_{j} \geq j \\ (x_{1}, x_{2}, \dots, x_{p_{j}}, y_{p_{j}+1}, \dots, y_{j-1}, x_{j}, y_{j+1}, \dots, y_{n}) & \text{for } p_{j} < j \end{cases}$$

According to the notation introduced problem (1) can be written down in the form $\mathring{x}_j(t) = f_j(t, x_j(t), [x(t)]_{p_j}, [x(t)]_{g_j}, x_j(h(t), [x(h(t))]_{p_j}, [x(h)(t))]_{g_j})$ for $t \in [0, T], x_j(t) = \varphi_j(t)$ for $t \in [-a, 0], j = \overline{1, n}$.

DEFINITION 1. The functions $v, w \in C([-a,T], \mathbb{R}^n)$ $v, w \in C^1([0,T], \mathbb{R}^n)$, $v = (v_1, v_2, \dots, v_n)$, $w = (w_1, w_2, \dots, w_n)$ are said to be a couple of lower and upper quasisolutions of the initial value problem (1) if they satisfy the following inequalities

(2)
$$\mathring{v}_{j}(t) \leq f_{j}(t, v_{j}(t), [v(t)]_{p_{j}}, [w(t)]_{g_{j}}, v_{j}(h(t)), [v(h(t))]_{p_{j}}, [w(h(t))]_{g_{j}})$$

$$for \quad t \in [0, T],$$

(3)
$$w_{j}(t) \geq f_{j}(t, w_{j}(t), [w(t)]_{p_{j}}, [v(t)]_{g_{j}}, w_{j}(h(t)), [w(h)(t))]_{p_{j}}, [v(h(t))]_{q_{j}}), \\ v_{j}(t) \leq \varphi_{j}(t) \leq w_{j}(t) \quad \text{for } t \in [-a, 0], \ j = \overline{1, n}.$$

DEFINITION 2. In the case when (1) is an initial value problem for a scalar functional differential equation, i.e. n = 1, $p_j = g_j = 0$, the couple of lower and upper quasisolutions of problem (1) are called lower and upper solutions of the same problem [7].

DEFINITION 3. The couple of functions $v, w \in C[(-a, T], R^n)$, $v, w \in C^1([0, T], R^n)$ is said to be a couple of quasisolutions of the inital value problem (1) if (2) and (3) are satisfied as equalities.

DEFINITION 4. The couple of functions $v, w \in C([-a, T], \mathbb{R}^n)$ $v, w \in C^1([0, T], \mathbb{R}^n)$ is said to be a couple of minimal and maximal quasisolutions of the initial value problem (1) if it is a couple of quasisolutions of the same problem and for any couple of quasisolutions (u, z) of (1) the inequalities $v(t) \leq u(t) \leq w(t)$ and $v(t) \leq z(t) \leq w(t)$ hold for $t \in [-a, T]$.

Remark 1. We shall note that in general for the couple of minimal and maximal quasisolutions (v, w) of problem (1) the inequality $v(t) \leq w(t)$ holds for $t \in [-a, T]$ while for an arbitrary couple of quasisolutions (u, z) of (1) an analogous inequality relating the functions u(t) and z(t) may be not valid.

Remark 2. If for any $j = \overline{1,n}$ the equalities $p_j = j-1$, $g_j = n-j$ hold and the functions v(t), w(t) are a couple of quasisolutions of the initial value problem (1), then they are solutions of the same problem. If in this case problem (1) has a unique solution u(t), then the couple of functions (u,u) is a couple of minimal and maximal quasisolutions of (1).

For any couple of functions $v,w\in C([-a,T],R^n)$, $v,w\in C^1([0,T],R^n)$ such that $v(t)\leq w(t)$ for $t\in [-a,T]$ define the set of functions

$$S(v, w) = \{ u \in C([-a, T], \mathbb{R}^n), \ u \in C^1([0, T], \mathbb{R}^n) :$$

$$v(t) \le u(t) \le w(t) \quad \text{for} \quad t \in [-a, T] \}.$$

3. Main Results.

LEMMA 1. Let the following conditions hold:

- 1. The function $h \in C([0,T],[-a,T])$ and satisfies the inequalities $t-a \le h(t) \le t$ for $t \in [-a,T]$.
- 2. The function $m \in C([-a,T],R)$, $m \in C^1([0,T],R)$ satisfies the inequalities

(4)
$$\mathring{m}(t) \leq -M m(t) - N m(h(t)) for t \in [0, T]$$

(5)
$$m(0) \le m(t) \le 0 \text{ for } t \in [-a, 0],$$

where M and N are positive constants.

3. The following inequality holds

$$(6) NTe^{MT} < 1.$$

Then the inequality $m(t) \leq 0$ holds for $t \in [-a, T]$.

Proof. Consider the auxiliary function $g(t) = m(t)e^{MT}$. The function g(t) satisfies the inequalities

(7)
$$\mathring{g}(t) \le -Ne^{M(t-h(t))}g(h(t)) \quad \text{for} \quad t \in [0,T]$$

(8)
$$g(0) \le g(t) \le 0 \text{ for } t \in [-a, 0].$$

We shall prove that $g(t) \leq 0$ for $t \in [-a, T]$. Suppose that this is not true, i.e. that there exists a point $\xi \in (0, T]$ such that $g(\xi) > 0$. Consider the following three cases:

Case 1. Let g(0) = 0 and $g(t) \ge 0$, $g(t) \ne 0$ for $t \in [0, \varepsilon]$ where $\varepsilon > 0$ is a sufficiently small number. From inequality (8) it follows that $g(t) \equiv 0$ for $t \in [-a, 0]$. Then by assumption there exist points $\xi_1, \xi_2 \in [0, T], \xi_1 < \xi_2$ such that $g(t) \equiv 0$ for $t \in [-a, \xi_1]$ and g(t) > 0 for $t \in (\xi_1, \xi_2]$. From inequality (7) it follows that $\mathring{g}(t) \le 0$ for $t \in (\xi_1, \xi_2]$

wich shows that the function g(t) is monotone nonincreasing in the interval $(\xi_1, \xi_2]$, i.e. $g(t) \leq g(\xi_1) = 0$ for $t \in (\xi_1, \xi_2]$. Last inequality contradicts the choice of the point ξ_2 .

Case 2. Let g(0) < 0. By assumption there exists a point $\eta \in (0,T]$ such that $g(t) \leq 0$, $g(t) \not\equiv 0$ for $t \in [-a,\eta)$, $g(\eta) = 0$ and g(t) > 0 for $t \in (\eta, \eta + \varepsilon)$, where $\varepsilon > 0$ is a sufficiently small number. Introduce the notation

$$\inf\{g(t): t \in [-a, \eta]\} = -\lambda, \ \lambda = \text{const} > 0.$$

From the continuity of the function g(t) it follows that there exists a point $\zeta \in (0, \eta)$ such that $g(\zeta) = -\lambda$. Then

(9)
$$\mathring{g}(\bar{t}) = \frac{g(\eta) - g(\zeta)}{\eta - \zeta} = \frac{\lambda}{\eta - \zeta} > \frac{\lambda}{T},$$

where $\bar{t} \in (\zeta, \eta)$.

From (7) it follows that the following inequality holds

(10)
$$\ddot{g}(\bar{t}) \leq -Ne^{M(\bar{t}-h(\bar{t}))}g(h(t)) \leq \\ \leq N\lambda e^{M(\bar{t}-h(\bar{t}))} \leq N\lambda e^{MT}.$$

From inequalities (9) and (10) we obtain

$$(11) TNe^{MT} > 1.$$

Inequality (11) contradicts inequality (6).

Case 3. Let g(0) = 0 and $g(t) \le 0$, $g(t) \not\equiv 0$ for $t \in [0, b]$ where $0 < b \le T$ is a sufficiently smal number. By arguments analogous to those in Case 2 we again get to a contradiction.

Hence $g(t) \leq 0$ for $t \in [-a, T]$ which shows that $m(t) \leq 0$ for $t \in [-a, T]$.

This completes the proof of Lemma 1.

LEMMA 2. Let the following conditions be fulfilled:

- 1. Conditions 1 and 2 of Lemma 1 hold.
- 2. The following inequality holds

$$(M+N)T < 1.$$

Then $m(t) \leq 0$ for $t \in [-a, T]$.

The proof of Lemma 2 is analogous to the proof of Lemma 1 but we do not introduce the auxiliary function g(t) and consider instead the function m(t) itself.

THEOREM 1. Let the following conditions hold:

- 1. The functions $v, w \in C([-a, T], \mathbb{R}^n)$, $v, w \in C^1([0, T], \mathbb{R}^n)$ are a couple of lower and upper quasisolutions of the initial value problem (1) and satisfy the inequalities $v(t) \leq w(t)$ for $t \in [-a, T]$ and $v(0) \varphi(0) \leq v(t) \varphi(t)$, $w(0) \varphi(0) \geq w(t) \varphi(t)$ for $t \in [-a, 0]$.
- 2. The function $h \in C([0,T],[-a,T])$ satisfies the inequalities $t-a \le h(t) < t$ for $t \in [0,T]$.
- 3. The function $f \in C([0,T] \times \mathbb{R}^n \times \mathbb{R}^n, \mathbb{R}^n)$, $f = (f_1, f_2, \dots, f_n)$, $f_j(t,x,y) = f_j(t,x_j,[x]_{p_j},[x]_{g_j},y_j,[y]_{p_j},[y]_{g_j})$, is monotone nondecreasing with respect to $[x]_{p_j}$ and $[y]_{p_j}$ and monotone nonincreasing with respet to $[x]_{g_j}$ and $[y]_{g_j}$ and for $x,y \in S(v,w)$, $x(t) \leq y(t)$ satisfies the inequalities $f_j(t,x_j,[x]_{p_j},[x]_{g_j},x_j(h(t)),[x(h(t))]_{p_j},[x(h(t))]_{g_j}) f_j(t,y_j,[x]_{p_j},[x]_{g_j},y_j(h(t)),[x(h(t))]_{p_j},[x(h(t))]_{g_j}) \geq -M_j(x_j-y_j)-N_j(x_j(h(t))-y_j(h(t)))$, $j=\overline{1,n}$, $t \in [0,T]$ where M_j and $N_j(j=\overline{1,n})$ are positive constants such that

$$N_j T e^{M_j T} \le 1.$$

Then there exist monotone sequences of functions $\{v^{(k)}(t)\}_0^\infty$ and $\{w^{(k)}(t)\}_0^\infty$, $v^{(0)}(t) \equiv v(t)$, $w^{(0)}(t) \equiv w(t)$ which are uniformly convergent for $t \in [-a,T]$ and their limits $\bar{v}(t) = \lim_{k \to \infty} v^{(k)}(t)$ and $\bar{w}(t) = \lim_{k \to \infty} w^{(k)}(t)$ are a couple of minimal and maximal quasisolutions of the initial value problem (1).

Moreover, if u(t) is a solution of the initial value problem (1) such that $u \in S(v, w)$, then the inequalities $\bar{v}(t) \leq u(t) \leq \bar{w}(t)$ hold for $t \in [-a, T]$.

Proof. Let $\eta, \mu \in S(v, w)$, $\eta = (\eta_1, \eta_2, \dots, \eta_n)$, $\mu = (\mu_1, \mu_2, \dots, \mu_n)$ be arbitrary functions. Consider the initial value problems for the linear scalar functional differential equations

where

$$\sigma_{j}(t, \eta, \mu) = f_{j}(t, \eta_{j}(t), [\eta(t)]_{p_{j}}, [\mu(t)]_{g_{j}}, \eta_{j}(h(t)),$$

$$[\eta(h(t))]_{p_{j}}, [\mu(h(t))]_{q_{j}}) + M_{j}\eta_{j}(t) + N_{j}\eta_{j}(h(t)), \quad j = \overline{1, n}.$$

The initial value problems (12) have a unique solution for each fixed couple of functions $\eta, \mu \in S(v, w)$.

Define the map $A: S(v, w) \times S(v, w) \to S(v, w)$ by the equality $x = A(\eta, \mu)$, where $x = (x_1, \ldots, x_n)$, $x_j(t)$ is the unique solution of the initial value problems (12) for the couple of functions $\eta, \mu \in S(v, w)$.

We shall prove that $v \leq A(v, w)$. Introduce the notations $g(t) = v(t) - v^{(1)}(t)$ and $v^{(1)} = A(v, w)$. Then the following inequalities hold

(13)
$$g_j(t) \le -M_j g_j(t) - N_j g_j(h(t)) \quad \text{for} \quad t \in [0, T]$$

$$g(0) \le g(t) \le 0 \quad \text{for} \quad t \in [-a, 0].$$

From Lemma 1 it follows that the functions $g_j(t)$, $j = \overline{1,n}$ are nonpositive, i.e. $v \leq A(v, w)$. In an analogous way it is proved that $w \geq A(w, v)$.

Let $\eta, \mu \in S(v, w)$ be such that $\eta(t) \leq \mu(t)$ for $t \in [-a, T]$. Set $x^{(1)} = A(\eta, \mu)$, $x^{(2)} = A(\mu, \eta)$ and $g(t) = x^{(1)} - x^2$, $g = (g_1, g_2, \dots, g_n)$. By Lemma 1 the functions $g_j(t)$, $j = \overline{1, n}$ are nonpositive, i.e. $A(\eta, \mu) \leq A(\mu, \eta)$.

Define the sequences of functions $\{v^{(k)}(t)\}_0^\infty$ and $\{w^{(k)}(t)\}_0^\infty$ by the equalities

$$v^{(0)}(t) \equiv v(t),$$
 $w^{(0)}(t) \equiv w(t),$ $v^{(k+1)} = A(v^{(k)}, w^{(k)}), \quad w^{(k+1)} = A(w^{(k)}, v^{(k)}), \quad k > 0$

The functions $v^{(k)}(t)$ and $w^{(k)}(t)$ for $k \ge 0$ and $t \in [-a, T]$ satisfy the inequalities

(14)
$$v^{(0)}(t) \le v^{(1)}(t) \le \dots \le v^{(k)}(t) \le \dots \le$$
$$\le \dots \le w^{(k)}(t) \le \dots \le w^{(1)}(t) \le w^{(0)}(t).$$

Hence the sequences $\{v^{(k)}(t)\}_0^\infty$ and $\{w^{(k)}(t)\}_0^\infty$ are uniformly convergent for $t \in [-a,T]$. Introduce the notations $\bar{v}(t) = \lim_{k \to \infty} v^{(k)}(t)$ and $\bar{w}(t) = \lim_{k \to \infty} w^{(k)}(t)$. We shall show that (\bar{v},\bar{w}) are a couple of minimal and maximal quasisolutions of the initial value problem (1). From the definition of the functions $v^{(k)}(t)$ and $w^{(k)}(t)$ it follows that the functions (\bar{v},\bar{w}) are a couple of quasisolutions of the initial value problem (1). Let $u_1,u_2 \in S(v,w)$ be a couple of quasisolutions of (1). From inequalities (14) it follows that there exists a positive integer k such that $v^{(k-1)}(t) \leq u_1(t) \leq w^{(k-1)}(t)$ and $v^{(k-1)}(t) \leq u_2(t) \leq w^{(k-1)}(t)$ for $t \in [-a,T]$. Introduce the notation $g_j(t) = v_j^{(k)} - u_{1j}, \ j = \overline{1,n}$. By Lemma 1 the functions $g_j(t), \ j = \overline{1,n}$ are nonpositive, i.e. $v^{(k)}(t) \leq u_1(t)$ for $t \in [-a,T]$.

In an analogous way it is proved that the inequalities $u_1(t) \leq w^{(k)}(t)$ and $v^{(k)}(t) \leq u_2(t) \leq w^{(k)}(t)$ hold for $t \in [-a, T]$, which shows that the couple of functions (\bar{v}, \bar{w}) is a couple of minimal and maximal quasisolutions of the initial value problem (1).

Let u(t) be a solution of (1) for which $u \in S(v, w)$. Consider the couple of functions (u, u) which is a couple of quasisolutions of the initial value problem (1). From the fact that the couple (\bar{v}, \bar{w}) is a couple of minimal and maximal quasisolutions of (1) it follows that the inequalities $\bar{v}(t) \leq u(t) < \bar{w}(t)$ hold for $t \in [-a, T]$.

THEOREM 2. Let the following conditions be satisfied:

- 1. Conditions 1, 2 and 3 of Theorem 1 hold.
- 2. The following inequalities hold

$$(M_j + N_j)T \le 1, \quad j = \overline{1, n}.$$

Then there exist monotone sequences of functions $\{v^{(k)}(t)\}_0^{\infty}$ and $\{w^{(k)}(t)\}_0^{\infty}$, $v^{(0)}(t) \equiv v(t)$, $w^{(0)}(t) \equiv w(t)$ which are uniformly convergent in the interval [-a,T] and their limits $\bar{v}(t) = \lim_{k \to \infty} v^{(k)}(t)$ and $\bar{w}(t) = \lim_{k \to \infty} w^{(k)}(t)$ are a couple of minimal and maximal quasisolutions of the initial value problem (1). Moreover, if u(t) is a solution of (1) such that $u \in S(v,w)$, then the inequalities $\bar{v}(t) \leq u(t) \leq \bar{w}(t)$ hold for $t \in [-a,T]$.

The proof of Theorem 2 is analogous to the proof of Theorem 1 using Lemma 2 instead of Lemma 1.

REFERENCES

- [1] Deimling K., Lakshmikantham V., Quasisolutions and their role in the qualitative theory of differential equations, Nonlinear, Anal., 4 (1980), 657-663.
- [2] Ladde G.S., Lakshmikantham V., Vatsala A.S., Monotone iterative techniques for nonlinear differential equations, Pitman, Belmont, CA (1985).
- [3] Lakshmikantham V., Monotone iterative technology for nonlinear differential equations, Coll. Math. Soc. Janos Bolyai, 47, Diff. Eq., Szeged, (1984), 633-647.
- [4] Lakshmikantham V., Leela S., Existence and monothone method for periodic solutions of first order differential equations, J. Math. Anal. Appl. 91 (1983), 237-243.
- [5] Lakshmikantham V., Leela S., Remarks on first and second order periodic boundary value problems, Nonlinear Anal., 8, (1984), 281-287.
- [6] Lakshmikantham V., Leela S., Oguztorelli M.N., Quasi-solutions, vector Lyapunov functions and monotone method, IEEE Trans. Autom. Control, (1981) 26.

- [7] Lakshmikantham V., Zhang B.G., Monotone technique for delay differential equations, Applicable Analysis (to appear).
- [8] Lakshmikantham V., Leela S., Vatsala A.S., Method of quasi upper and lower solutions in abstract cones, Nonlinear Anal., 6 (1982), 833-838.
- [9] Lakshmikantham V., Vatsala A.S., Quasi-solutions and monotone method for systems of nonlinear boundary value problems, J. Math. Anal. Appl., 79, (1981), 38-47.

P.O. BOX 45 1504 SOFIA Bulgaria