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ON THE EXISTENCE OF WEAK SOLUTIONS
OF THE STATIONARY SEMICONDUCTOR EQUATIONS
WITH VELOCITY SATURATION

JOACHIM NAUMANN (Berlin) (*)

In the present paper we prove the existence and differentiability
of weak solutions to the stationary semiconductor equations where the
mobility coefficients model the effect of saturation of drift velocity.
The proof of existence relies on approximation by uniformly bounded
mobility coefficients.

1. Introduction.

Let Q C RV (N > 2) be a bounded domain which is assumed
to represent the cross-section (V = 2) or the spatial region (V = 3)
occupied by a semiconductor device(!). The stationary distribution of
carriers in Q can be described by the following systems of PDFE’s:

(1.1) div(u(Vy)e¥Vu) = R(e¥u, é—¢u)(uv —1),

(*) Entrato in Redazione il 18 dicembre 1989 |
(1Y Physically, of course, N = 2 and N = 3 make sense only. However, most of
our discussion in valid for any dimension of space N > 2.
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(1.2) div(u(V)e ¥ Vu) = R(e¥u, e Yv)(uv — 1),
(1.3) Ap=eby—eVy— f
where ¢, = —logu and pp = logv are the electron and hole quasi-

Fermi potentials, respectively, ; and v are the electron and hole
mobilities, respectively, 1 is the electrostatic potential, R is a given
function on [0, +00) x [0, +00) [R(e¥u, e %v) (uv — 1) represents the rate
of carrier recombination-generation], f is the net impurity (doping)
concentration ().

The above system of equations involves the assumption that
Boltzmann statistics can be used to model the semiconductor behavior;
accordingly, the electron and hole densities are given by

n= e"y/}*'ﬂan, D= e‘pp““l)

b

respectively (cf. e.g. [2], [13], [17]).
Let 0Q denote the boundary of Q. Without further reference,
throughout we suppose:

0Q is Lipschitzian,

0Q=ToUT; with TiNT; =@, meas Ty > 0.

Then we complete (1.1)-(1.3) by the following boundary conditions:

(1.4) U =1uo, v =10, 1 =1 on [,
Ju Ov Oy
1.5 —=—==—=0onT
(1.5) on On On ol
where ug,v9 and 1y are given functions on I'y (n =unit outward
normal along I'y (cf. [13], [15], [17]). ]

(®>) Fornotational simplicity, units are choosen such that the elementary charge
and the dielectric constant are equal to one.
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In semiconductor physics it is well-known that the linear
proportionality of the electric field F = -~V to the drift velocities
[vd] = p|E| (electrons) and |vi| = v|E| (holes) is only true at low
electric field strength. At high electric field strength, however, the
drift velocities saturate:

() A (o5 = v, Bm Jop] = v
here v,; and v, are the so-called saturation velocities (cf. [2], [13;
pp. 18-19], [17; p. 93], [20D). '

The aim of the present paper is to study (1.1)-(1.3) under the
following conditions on y and v:

(1.6) u,v € C(RY),
{0 <pr <pOA+EP2 <pr <o VECRY,
(1.7) | |
0<u <v@OA+[EH P <m<oo VEERY,

(g, v; =const; 1 =1,2).
| Simple examples which obey (1.6), (1.7) and model the effect of
velocity saturation (*), are given by

S0

W (o = const > 0),

u€) =

KO
A+ [EPA+[ED+EP2

(€ € RN; uo =const> 0) (cf. [2; p. 121], [17], [20]).

p€) =

Remark. Let u,v satisfy (1.6). Then (1.7) is readily seen to be
equivalent to the following system of conditions: '

(1.8;) u(€) >0, v() > 0VE e RY,

(1.82) wE|E] < wo, VO] < vo VE € RY,
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(1.85) liminf w(©l¢] > 0, liminfu(©)le] > 0

(0, vo =const> 0).
We note that (1.6), (1.7) are essential for our mathematical
analysis below; these conditions need not, however, imply (*). |

The paper is organized as follows. Section 2 presents our main
results on the existence (Theorem 1) and interior differentiability
(Theorem 2) of weak solutions to (1.1)-(1.5) with mobility coefﬁments
satisfying (1.6), (1.7). In the following section we prove the existence
of weak solutions to (1.1)-(1.5), the mobilities of which being assumed
continuous and uniformly bounded on RM from above and below
by positive constants. Although of preparatory character to our
subsequent discussion, this existence result may be of interest in
itself. In Section 4, we prove Theorem 1 by replacing 4 and v by e+ u
and e +v (¢ > 0), respectively, solving (1.1)-(1.5) with the mobilities
e +u and e+ v, establishing estimates on the solutions Ug, Ve, ¥e and
then letting tend £ — 0. Finally, Section 5 is devoted to the proof of
the interior differentiability of v and v.

The existence of weak solutions to (1.1)-(1.5) with constant or
uniformly bounded mobilities has been proved in [4], [5], [9]-[11],
and [13]-[15]. Similar existence results may be found in [16]. The
case of mobility coefficients which model velocity saturation, is briefly
discussed in [11; pp. 586-587].

2. Statement of main results.

Let W) (m =1,2,...,1 < p < oo) denote the usual Sobolev
space of all functions in LP(Q) having their generalized derivatives
up to order m in LP(Q). Define

V={ueW,Q:u=0ae. onIy}.
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Then
2

1/2* 1/
2.1) (/Iu[z*da:> < ¢o (/IVu]%iz) VueV
(o Q

where 2* denotes the Sobolev imbedding exponent (i.e. 1 < 2* < oo if

2
N=2 2= N]—\-[2 if N > 3) (co =const> 0).

We consider the following conditions on the data:

(ug, vo € W (),

(2.2) J 0 < essinf up < ess sup up < oo,
' Ty To
0 < essinf vy < ess sup vg < 00,
\ FO Fo
(2.3) Yo € WZI(Q), ess sup |yo| < oo,
Io
(2.4) R € C([0,00) x [0,00)), E(s,t) > 0Vs,t € [0, 00),
5 N
(2.5) f € L. ()N LP(Q) [ p > 5 )

With the data (2.2) we associate the positive reals

To T
6, = min{ess inf vo, (ess sup ug)~'}.
o T

61 = min{ess inf uop, (ess sup vo)‘l}\,
(2.6)

1
Obviously, §; < —.
)

We then have

THEOREM 1. Let (1.6), (1.7) and (2.2) -(2.5) be satisfied.
Then there exist functions u,v € Wzl,loc(Q) and 1 € Wi(Q) N LX(Q)
such that '
1 1 :
2.7) hh<u< —, <v< —ae in
| 62 61
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(2.8) Y =1 a.e. on Iy,

2.9) w(VVu, v(V)Vo € [LAQY, V2 e (L2 Q1M &),

(2.10) / u(Vi)e¥Vu, Vodz = /R(e%, eV v)(1 — wv)pdzs Vo € V,
Q ' Q

(2.11) /U(Vw)e“/’v'u -Vpdz = /R(e"’u,e"’/’v)(l — uv)pdz Yo €V,
Q Q .

(2.12) Ay = ey — e Yy — f a.e. in Q.

Remarks. 1. Condition (2.4) is satisfied by the well-known
Shockley-Read-Hall and Auger recombination-generation terms

ao

Rspu(s,t) = (a; =const > 0; :=0,1,2, 3),

a1 +aszs + ast

Ra(s,t) =bis+ byt (b; = const > 0; 1=1,2)
(s,t > 0; cf. [2], [13], [17] for further details),

2. Integral identities (2.10), (2.11) represent the weak formulation
of (1.1), (1.2), respectively. Indeed, let u,v,9 be a sufficiently regular
solution to (1.1)-(1.5). Multiplying (1.1), (1.2) by p € V, integrating
over () and integrating by parts the term on the left we get (2.10),
(2.11).

3. Theorem 1 does not yield any information on the boundary
behavior of u and v. A discussion of the regularity of u, v and v near
the boundary will be given in a forthcoming paper. ‘ ' |

G) Vo ={ps,..., 0z, }, Vip = {055, } (=matrix of second derivatives).
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The natural question arises whether (2.10), (2.11) do imply
the local square integrability in ©Q of the second derivatives of u
and v (provided that 4 and v possess appropriate differentiability
properties). Notice that once u,v € Wfloc(Q) is established then by a
standard argument from (2.10), (2.11) we conclude (1.1), (1.2) to hold

a.e. in Q.
Let N =2. We then have

THEOREM 2. Let p,v € CL(IR?) satisfy (1'. 7) and
ou ov
5e ) |38
(1 =1,2). Assume (2.4) and f € L} (Q) N LP(Q) (po > 1).

Let u,v € Wy NLYQ) and ¢ € WHQ) N LX) satisfy
(2.10)-(2.12). Then:

(2.13)

)

(f)l <c=const < oo V&€ IR?

(2.14) Uy ¥ € Wioo(€D).

3. Uniformly bounded mobilities.

This section is concerned with the existence of weak solutions of
(1.1)-(1.5) with mobility coefﬁcients w and v which are continuous and
bounded from above and below by positive constants on the whole
RV,

To begin with, we note a well-known result on the boundedness
from above of weak subsolutions of elliptic equations(*)

LEMMA 1. (Stampacchia [18], [19]). Let f € LP(Q)) <p > -]K> Let

2
u € WHQ) satisfy

0 < esssup u < oo,
Io

(*) For the sake of simplicity, we present this result in a form already speciali-
zed for our later purposes.
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/Vu -V(u — k)tdz < /f(u — k)Y'dz Vk > ko > ess sup u.(s)
Q Q o
Then:

w(z) < ko + 2571 3| f|| oy (meas Q)L for a.a. z € Q,

where
( 2qg — 1 +1
o= qp <p > <qg<p arbitrary> if N =2,
P,
N(p—-1) .
= — N>3
\. “ pN . lf 2
(co according to (2.1)). |

We begin by solving (1.3) under the mixed boundary conditions |
(1.4), (1.5) on 7. To this end, let 6,8, be arbitrary (fixed) positive

1
reals such that §; < 5 Suppose we are given:
2

u, v measurable in Q,

(3.2) ’1 .
h<u<l —, Hh<v< —ae in Q,
Iy b1
(3.3) Yo € W5 (Q), ess sup || < oo,
o
N
(3.9) feLP@ <p S —2—> |
We have

PROPOSITION 1. Let (3.2)-(3.4) be satisfied. Then there exists
exactly one i) € W (Q) such that

3.5) ‘ P =10 a.e. on Iy,

() t* =max{0,t} (¢t € R).
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(3.6) Y] <X ae inQ,

3.7) /V'w -Vpdz = /(e‘wv — e%u + flpdz VpeV,
Q Q

where

A =max{—log i, —logé,, —ess inf 1, ess sup o}
I, T

'+ 2577 ¢f|| ]| 1o(y (meas )~

(co and « according to (2.1) and (3.1), respectively).

This result can be easily obtained by using the cut-off procedure
as in [5], [13], establishing the existence of a weak solution via the
theory of pseudo-monotone operators (cf. e.g. [12]) and then proving
the bound (3.6) by applying Lemma 1. ]

The following proposition is fundamental to our subsequent
discussion. We note that a similar existence result has been proved
in [13; Chap. 3.2] under stronger hypotheses on the data and by a
technically slightly different reasoning (cf. also [4], [6], [10]). Therefore

we omit the proof.

PROPOSITION 2. Let u,v € C(RN) satisfy

O<pr <u@ <pr<oo VEEIRY,
(3.8)
O< <v@) <m<oo VEeRY,

(i, vi = const; 1=1,2). Let (2.2)-(2.4) and (3.4) be fulfilled.
Then there exist functions u,v,v € W} (Q) such that

(3.9) U =1uo, v=wg, Y =1 a.e. onTy,

: 1
(3.10) 6 <u< b <v< 5 W] < X a.e inQ.
1

1
5’

(3.11) / w(Vip)e¥Vu - Vodz = / R(e¥u, e Yu)(1 — uv)pda,
Q Q
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(3.12) / v(Vp)e¥Vu - Vodz = / R(e%u, e ¥u)(1 — uv)pdz,
Q Q
(3.13) /V’l/) -Vpdz = /(e—’% —e¥u+ Dpdx
' Q Q

for all ¢ € V (61, &, according to (2.6), \ according to Prop. 1). ||

4. Proof of Theorem 1.
First of all, we note that (1.6), (1.7) imply

4.1) 0 < u(é),v(€) < u* =const < oo V€ € RV,

1. Approximation.

Let 0 < € < 1. By Prop. 2. there exist functions ug, ve, ¥, € W, (Q)
such that

(42) Ug = UQ, Ve = V0, ’QDE': 1,00 a.e. on F(),
1 1

(4.3) 513%3-5-, 62 < ve 5— [he] < X a.e. in Q,
2

4.4) /(a + u(Vipe)e¥Vu, - Vpdr = /R(e'pzus, e VYeu ) (1 — Ue Ve od T,
Q Q

(4.5) / (e + v(Vpe))e¥*Vu, - Vpdz = / (% ug, e P u:)(1 — uev,)pdz,
Q Q

(4.6) /V@bg -Vpdz = /(e“l";vg —eYeu, + PHpdz

Q Q
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for all p € V (6§ and \ according to Prop. 2).

2. Estimates.

Inserting ¢ = 1), — 1o into (4.6) and observing (4.3) we get

2 Y 1 1 2
@) é Vs < 2 é ( (5—1+5)+m) O+ [hol) + 4 Viol2da

for all 0 < e < 1.
Let Q'@ Q" Q). Then the method of difference quotient gives

2
4.8) | |V |2ds < c/ [sz + <e>‘ <i + i) + m) J dz < (')
(0 61 52

QI

(cf. e.g. [7], [8]) for all 0 < & < 1, where the constants tend to +oo if
dist (',0Q") — 0 or dist(Y’, 6Q) — 0.

Next, taking ¢ = u, — up in (4.4) and making use of (2.4) and
(4.1), (4.3) we find

Vue|*dz =

/ (e + w(Vip))e P
Q
= / (€ + u(We)e¥ Ve - Vuodz
Q
+ /R(e’psus, e—.’/’sve)(l — UgUe (e — up)dz
Q
<A1+ p*e?? / &+ u(Vipe)e¥*|Vu,| |[Vuo|dz
9]

+( max ,R(s,t))((measQ)]A]/Iuold,m).
0<s e>‘152_1 o

<8<
ogtgekal‘ 1

&) Q' Q means: & open, Q' C Q.
(") In what follows, by ¢ we denote positive constants which possibly change
their numerical value from line to line, but do not depend on «.



270 JOACHIM NAUMANN

An analogous reasoning applies to (4.5). Thus,

.
/(8 + (V)| Vue)Pde < ¢ V0<e <1,
Q

4.9) )

/(8 + (V)| Vel?dz < ¢ V0O <e< 1.
L Jo

Let Q@ Q, and let ¢ € CY(RY) satisfy ( =1 on @, 0< (< 1
in IRY and supp(¢) C Q. Then ¢ = u (1 +|V|*)/%¢? is admissible in
(4.4). By (1.7) and (4.3),

uleq/quEIz{zda; <
Q
< / (e + p(V))e?s | Vue 2 (1 + |V )¢ dz =
Q
=- / (e + p(VPe)e¥ ueguc(l + [V D™ 2 hes, Yenis, ¢ dz(®)
Q
2 / (& + BV teaie( + VeI,
Q
+ /R(e’l’sus, e Y )1 — ueve)(1 + ]v¢€|2)‘/.242dz
Q
1 .
< —Z—ule_k/IVu5|2§2d:c+c;
Q.

here we have used (2.4), (4.1), (4.3), (4.7) and (4.8). Inserting
o = v.(1 + |V [H/%¢? into (4.5) we obtain an analogous estimate on
Vg.

Thus,

(4.10) /(]Vugl2 +|Vue[Dde < ¢ V0o<e< 1.
QI

(8) Throughout, a repeated index implies summation from 1,..., N.
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3. Passage to limit.

By passing to a subsequence if necessary, from (4.3), (4.7), (4.9)
we may infer that

(4.11) Us = u, Vg — v Weakly in LY(Q) (V1 < ¢ < o),
(4.12) 4, — ¢ weakly in W} (Q), $o(z) — ¥(z) for aa. o c Q

(4.13) Elgg; — 0, Evgq; — 0 strongly in L2(Q),

(4.14) ViV tes, — X, VV(Ve)ver, — wi  weakly in L2(Q)

as e -0 (¢=1,...,N). Then (2.7) and (2.8) are straightforward; in
addition, [¢| < \ a.e. in Q. By a standard argument, (4.10) and (4.11)
imply u,v € Wj,,,(Q).

Next, let {4} (k=1,2,..)) be a sequence of domains such that

QpC 41,09, is smooth and UQk = Q. Therefore the imbedding
k=1
WL () C L2(€y) is compact. Using repeatedly (4.8) and (4.10) with

€2, in place of Q/, we gét_ by the aid of a diagonal procedure the
existence of a subsequence (not relabelled) such that

(4.15) Vipe(z) — Vip(z) for a.a.z ¢ Q
(4.16) ue(z) — u(@), ve(z) - v(z) for aa.z € Q
as ¢ — 0.

We have:

(Ve )Vue — u(Vyp)Vu  weakly in [L2(Q)]V,
4.17)
v(VYe)Vue — v(V)Vo  weakly in [L2(Q)V
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as £ — 0. It suffices to prove the first claim. Let Q' Q. By (1.6) and
(4.15),

(4.18) Vi (V) — (Vi) strongly in LH(Q).

Hence, by (4.10), (4.11), V/up(V)tes, — Vu(V)u,, weakly in
LXY)ase —0(G=1,...,N). Then (4.14) implies x; = /u(V)u,, a.e.
in €/, and thus a.e. in Q. Combining (4.14) and (4.15) gives the first
claim in (4.17).

Finally, using (4.12), (4.13), (4.16) and (4.17) we may let tend
e — 01in (4.4), (4.5), (4.6) to obtain (2.10), (2.11) and

/V¢ -Vipdz = /(e"/’v —ebu+ fods Yo eV
Q Q

The latter equation implies ¢ € sz’m(Q) (independently of (4.8);
cf. [7], [8]) and (2.12). n

5. Proof of Theorem 2.

We begin by introducing some notations. Let Q C RY be any
bounded domain, and let 0 < 6 < 1. define

: N 2
W5(©Q) = {u € LX(Q): / / D) L dwdy < OO}-
, QYO |z — vl

Set
B,r = BT(Qjo) = {{E € |RN . |:1; - :EO! < ,r})

Apju(z) = u(z + he;) — u(z)
(e; ={0,...,0,1,0,...0} with 1 at the i-th place; 1=1,...,N).

For our discussion below, we need the following

LEMMA 2. Let u € L*(By,) satisfy

.
/ |h| 1420 (/ lAh,iuldeI?) dh <oo (i=1,...,N).
— Br
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Then v € W{(B,) and .

u(z) —w@)P Yot NTTRA
|z — g T <e) | [120 [Ansul"dz
Br Br 1=1 -T Br

with ¢ = const > 0 independent of r (cf. e.g. [1; pp. 209-210], [3;
Lemma I1.3]). |

We divide the proof of Theorem 2 into four steps.

1° Let Q'€ Q' Q with Q" € C2. Fix ¢ € C*(R?) with ¢ =1 on
Q,0<¢<1in IR? and ¢ =0 in R2\Q"().

Set f1 = (e7¥v — e¥u+ f){ — Vo - V¢ — AL ace. in Q7. We obtain
P¢ € WAQ"), ¢ =0 a.e. on HQ" and |

VW) Vedz = [ fipds
Q/l Q/l

for all p € W3 (Q") with p =0 a.e. on 9Q" (cf. (2.12)). The theory of

linear elliptic boundary value problems implies ¢¢ € W2(Q") and

Sllwzen < ellfillzs@n +1lb¢ln@n)

(cf. e.g. [7], [8]). Thus, ¢ € WZ(Q') and

Wllhzan <3 [

QII

2
(Je™¥v — e¥u+ f|* + |yho|*dx + ( |V¢olzdw>

QI 1

This estimate can be used in (5.5) below in order to evaluate
V2u, V?v in terms of bounds on u,v,? and integrals of f, 10, Vibo;
we shall, however, dispense with these details. |

(9) In order to simplify the presentation, from now on we suppose N = 2. We
note that the reasoning in step 1° continues to hold for any N > 2 (with ¢{ €

W2(Q") (s =4if N =2,3,4;s = if N > 5)), while the discussion both

N -2

in step 2° and 3° remains true for N = 2, 3.
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2° Set Q = R(e¥u,e ¥v) (1 —uv) a.e. in Q. Then (2.10), (2.11) take
the form

(5.1) /M(Vzp)e”qu . Vdz = /ngd,ac Vo €V,
Q Q

(5.2) : / v(V)e¥ Vv - Vpdz = / Qudr Yy eV,
Q Q

respectively.

From the preceding step we obtain by virtue of Sobolev’s
imbedding theorem V1 € [CV2(Q)]2. Hence, given Q'@ €, there exist
positive constants u), vf such that u(Vy) > u) v(Vy) > v for all
z e Q.

Then (5.1), (5.2) imply higher integrability of Vu, Vv via reserve
Holder inequality, i.e. there exists a gg > 2 such that

(5.3) Vu,Vv € [LIOC(Q)]

(cf. [6; pp. 136-150]). |

3° If go > 4 in (5.3) we may apply the well-known difference
quotient method to (5.1), (5.2) to obtain (2.14) (cf. e.g. [7], [8]).

Otherwise suppose that Vu, Vv € [L] (Q)]* for a certain 2 < g <4.
We are going to prove that Vu, Vv € [Wf,,(Q)]* for all 0 < 0 < 1= 2
(obviously, it suffices to consider Vu only, for an analogous reasoning
applies word by word to Vuv).

Let Q' Q" Q be arbitrary. Consider B, = B,(z;) where 0 <

r< 3dlst(Q’ 0Q") and zo € Q. Let ¢ € C*(R?) be a cut-off function

for Byr:¢=1o0n B,, (=01in R*\By, and 0 < ¢ < 1, V¢ < — in IR?
(co = const > 0 independent of 7).

Set X = [[]|=. The function v =A_,;(¢(?Ayu) (h] < ri=1,2)
is an admissible test function in (5.1). Observing that u(Vi) > pi =
const > 0 for all z € Q" (cf. step 1° with Q" in place of Q') we find
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u’{e"k/ ]Ah,,-Vu|2§2dx§/ w(Vp)e? | A Vul*¢Pdz
Bzr B2r

= — [ (Bau(VY)e?COIVu(g + he;) - (A Vu)(ide
B2'r

(5.9) — [ BTt — he - (B, T
B,

—2 [ [Ani(u(V)e?Vul - (V) Ay iu) ds

BZr

— | QA_i(PApwde =T+ L+ I3 + Iu.
BZr

To estimate [; we note that (2.13) gives

1

|Aniu(V(@))] < / ?-“—(Vzb(w) + T4V P(2)) | AT|Ap s, (7))
0

0¢;
< c|Ani V()|

2
(z € B,,). Taking into account (4.1) and —q2 > ¢, we obtain by the
; : q-— ,
aid of Holder’s inequality

o]
(

(g—2)/2q
A i (V)2 @‘”dz) x

1/q 1/2
Vu(z + he¢)|qd:z> ( / |Ah,;Vu]2§2dz>
2r

BZr

1
< guﬁ'e“A |An:Vul*¢*dz
B2r

(g—2)/q 2/q
+c|h|i7? ( |V2¢[qdw> ( |Vu|qd:n> .
BB’r B3r
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Analogously,

b < u* / |Anse?] [Vl + he)]| |An s Vul¢2da
B2r

y’l’e_x/ 1A Vul*¢?dz
BZr

+c|h]i? (/9

3r

<

| =

2/q

(@-2/q , \
IV1/)|qda;> (/B%WU; )

and

2
<=2 | (BTt V)| |Apul da
BZr .

1
< —pfe™ 1Ay i Vul|*¢CPdz + ch?r? |Vu|?dz
5 BZT B3r

(a-2)/2¢
+ c|h|92r 2 < (V|9 + fvzw)dm)

B3r

2/q
X ( ]Vu]qdz>
BSr

(without loss of generality, we may assume that r < 1).

Finally,

1/2
|A_ni(C zAh,iu)’2d$>
B2r

Is < er||Ql =@ <

1/2
< erlhl [|Q)lz=w) ( I(CzAh,,-u)x,-lzdz>

B3r

1

< 75-/.&/1/6_'\ |An i Vul>¢2dx
BZf

+ ch?||Q|| 1 <¢2 +r2 IVulzdz) .



ON THE EXISTENCE OF WEAK SOLUTIONS,... 277

Inserting these estimates into (5.4) gives
(9-2)/q
/ |Ani Vul*dz < cW{( (|V¢|q+|V2¢|q)dm>
Br B3'r .

' ‘ (4—2)/2q
(5.5) +r2e ( (IV|?+ |V2¢|q)d:z> }
B3r
2/q |
X ( |Vu|qda:> +ch? (,rz +fr"2/ |V|2da:>
B3,- B3r

for all |h| < r, where the constant ¢ depends neither on r nor on h.
Thus, ‘ '

r

(i=1,2). | | | m

4° From (5.6) we obtain- Vu € [I/Vze.(BT)]2 (cf. Lemma 2 above).
Hence, by Sobolev’s imbedding theorem, Vu & [L%~9(B.)]2. Obser-

» -2 -2
ving that ¢ > 2 (= N) one can choose g <0< 5 to get
q
2 >
—o %
: S 2 —4
We repeat this argument. To begin with, define w(t) = ym

(2 < t < 4). The function w is strictly increasing.

‘We start by considering (5.5) with ¢ = g9 (g0 according to (5.3);
2 < go < 4). There follows (5.6) with 6y = w(qo), hence Vu € [L9(B,)]?
2 :

with ¢; = > go.

1 — w(qo)
If g1 > 4, we have finished. If, however, ¢; < 4 we again consider

(5.5) with ¢ =g to obtain Vu € [L%(B,)]* with ¢, = o@D >q -1
- 1

We may therefore define reals ¢x (k = 1,2,...) as follows: if .

2 < qr <4 set 5

= (k=01,2,..).
qk+1 1——w(qk)( )
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It is readily seen that
Gk > Qk—1 = Qk+1 — Gk > qk — Qk—1

(k=1,2,...). Hence, gx.1 > qo + (k + 1)(q1 — qo)-

Let ko be the positive integer such that qko, < 4 and ggp+1 > 4.
Then we consider (5.5) with ¢ = ¢, and obtain Vu € [L%*(B,)]?.
Whence Vu € [L% Q). N

loc
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