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ON THE POINT LINEAR ARBORICITY OF A GRAPH

: FRANK HARARY (Las Cruces)
RANDALL MADDOX (Missisippi) - WILLIAM STATON (Missisippi) (*)

In a linear forest, every component is a path. The linear arboricity
of a graph G is the smallest number of edge disjoint linear forests whose
union is G; this concept has been much studied. We now introduce the
point linear arboricity of 3, defined as the smallest number of parts in
a partition of V' = V(G) such that each part induces a linear forest. We
prove an analogue to the classical theorem of Brooks for this invariant:
For all r such that 2 < r < 2A/2, if G does not contain Kore1, and t

is defined as |(1+A)/ (_27”+ 1)|, then the point linear arboricity of G is
at most |(A —¢+3)/2]..

1. Introduction.

In recent literature, a variety of vertex partition problems,
modeled on the chromatic number, have been considered. The general
description of these problems is as follows. Suppose P is an hereditary
property, that is, a property inherited by subgraphs. For a graph
G one asks for the smallest n so that the vertices of ¢ may be

(*) Entrato in Redazione il 4 giugno 1990
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partitioned into n sets each of which induces a subgraph with property
P. If P is the property of being independent, then = is the chromatic
number. If P =acyclic, then = is the point arboricity, a(G), introduced
in [6] and studied further in [2]. If P = k-degenerate, i.e., for every
induced subgraph H of G the minimum degree §(H) < k, then n
is the point partition number pg(G), introduced in [15]. If P is the
property of having maximum degree not exceeding k, then = is the
k-chromatic number x:(G) considered in [1, 4, 13]. The concept of
conditional colorability in graphs was apparently introduced first in
[12] and then independently in [10]. It was studied intensively in [3]
and more generally in [9, 11]. All the examples above, and several
others, are special cases of conditional colorability x(G: P), as is the
new invariant we now introduce.

The point linear arboricity of G is denoted by Eo(G) as the (edge)
linear arboricity, introduced in [8], is denoted by E(&). Our purpose
is to prove the analog of Brook Theorem about this parameter.

In general we follow the notation and terminology of [7].

A linear forest is a graph G such that every component of G is a
path. The point linear arboricity Eo(G) is the smallest integer n such
that the vertices of G may be partitioned into n sets each of which
induces a linear forest.

2. Bounds on the point linear arboricity.

Since a graph with maximum degree A =1 is certainly a linear
forest, and since a linear forest has maximum degree not exceeding
2, we see that for any graph G,

(1) | (@) < Eo@x1(G).

We use the second of these inequalities to get the following easily
proved assertion whose main purpose is to motivate the Brooks-type
theorem which follows it.
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A simple upper bound involving the maximum degree A for all
graphs (' is given by:

) Eo(G) < 1+[A/2

Proof of (2). By Theorem 1 of [13], the vertices of may be
partitioned into 1+|A/2] classes so that each class induces a subgraph
of maximum degree 1, which is of course a linear forest as each
component is K; or K;. |

The bound in this theorem is sharp as it is achieved in cycles
and complete graphs. We now show that these are the only connected
extremal graphs in the case where A is even.

THEOREM 1. If G is a connected graph which is neither a cycle
nor a complete graph of odd order, then

3) Eo(G) < [8/2].

Proof. By Theorem 7 of [14], the vertices of ¢ may be partitioned
into [A/2] classes, each of which induces a forest. Among such
partitions, choose one which maximizes the number of external edges,
that is, the number of edges which join vertices of different classes.
Suppose now that some partition class C1 has a vertex v of degree 3
or more. Then there are at most A — 3 external edges incident with v.
Hence the remaining [A/2] — 1 = [(A — 2)/2] classes receive at most
A —3 edges from v, and it follows that some class (&, receives at
most one edge from v. Moving v from C; to C, increases the number
of external edges, and, since v will have degree 1 in (,, each class
still induces a forest. This contradicts the choice of partition. Hence,
each partition class has maximum degree 2, and is therefore a linear

forest. ]

Thus we have improved the theorem of Kronk and Mitchem [14]
by showing that their upper bound remains valid with strengthened
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requirements on the partition classes. We remark that Maddox [17] -
has provided examples which show that any Brooks-type theorem for
the parameter y; will necessarily be considerably more complicated.
Our next theorem is an upper bound for Ey(G) in terms of the
maximum degree A and the clique number w, the maximum order of
a complete subgraph. It is convenient to phrase the theorem in terms
of excluded complete subgraphs. The proof of Theorem 2 follows a
technique used by Catlin [5]. We shall need the following theorem of
Lovasz [16].

THEOREM A. Let t be a positive integer and let ki, ki,..., k:
constitute the partition: '

4 ki+ky+...+ki=A—t+1.

Then the vertices of G may be partitioned into sets Vi,V,...,V;
so that the subgraph induced by each V; has maximum degree at most
k;.

THEOREM 2. If G is a graph containing no subgraph Ko+ for a
fixed v, 2 < r < 2A/2, and we write t = |[(1+A)/(2r +1)|, then
(s) 20(@) < [-A—‘—gﬁJ

Proof. For 1<i<t—1,let k;j=2r.Let by =A—2r+1) ¢t —1).
Then ki+ka+...+k =@t —1) @)+A—Qr+ 1Dt —-1)=A—t+1 By
Theorem A, we may partition the vertex set of into V; U...U Vi
with each V; inducing a subgraph of maximum degree at most k;. By
Theorem 1, we may partition V;, 1 <4 < t—1, into r linear forests and
by (1) we may partition V; into |(A — (2r + 1)(t — 1))/2] linear forests.
This yields a partition of G into [(A— Q2r+1)(t—1))/2] = [(A—t+3)/2|
linear forests. |

The next inequality follows at once.

COROLLARY 2a. If G does not contain K., then
(6) , Eo(@) < m+ |rA/Q2r +1)].
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