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OSCILLATORY BEHAVIOR OF DIFFERENCE EQUATIONS
WITH POSITIVE AND NEGATIVE COEFFICIENTS

G. LADAS - C. QIAN (*) (Kingston) (**)

We obtain sufficient conditions for the oscillation of all solutions of
linear difference equations with positive and negative coefficients of the

form

Untl — Yn + Dn¥nk — Guyn-t =0, n=0,1,2,...
where k and [ are nonnegative integers and the coefficients {pn} and
{gn} are sequences of nonnegative real numbers.

1. Introduction and Preliminaries.

Consider the linear difference equation with positive and negative
coefficients of the form
(1) Yntl = Yn +DnYntk — Gn¥n1 =0, n=0,1,2 ...

where k and [ are non negative integers and the coefficients {p} and
{gn} are sequences of nonnegative real numbers which are defined
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for n> 0. Our aim in this paper is to obtain sufficient conditions for
the oscillation of all solutions of Eq. (1).

Let m = max{k,[}. By a solution of Eq. (1) we mean a sequence
{y»} which is defined for n > —m and which satisfies Eq. (1) for
n=0,1,.... Clearly, if a_,, ..., ap are given real numbers, then Eq. (1)
has a unique solutions {y,} satisfying the initial conditions

yn=aun fOI"n:""m,...,O.

A solution {y,} of Eq. (1) is said to oscillate if for every np > O
there exists an n > mp such that

YnYnsl < 0.

Otherwise the solution is called nonoscillatory.

When k£ and [ are nonnegative integers, then Eq. (1) is a linear
difference equation of order m + 1 where m = max{k,!}. We may also
look at Eq. (1) as being a first-order linear delay difference equation
with delay m + 1.

In general, if k¥ and [ are integers and if we set

K =max{0,k,l} and L =max{l,—k,—I[},

then Eq. (1) is a difference equation of order (K + L). When K >0
and L =1, Eq. 1) is a delay difference equation with delay (X + L).
When K =0 and L > 2, Eq. 1) is an advanced difference equation.
Finally when K > 1 and L > 2, then Eq. (1) is of the mixed type.

The oscillatory behavior of delay, advanced and mixed type
difference equations with constant coefficients has been investigated
in [2] and [4]. Difference equations with positive and negative
coefficients which are asymptotically constant were studied in [3].
Sharp conditions for the oscillation of all solutions of difference
equations with variable coefficients of the form

Yntl — Yn + DaYnk =0
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where obtained in [5]. See also [1]. The results in this paper are
discrete analogues of the results in [1] for differential equations with
variable coefficients. ‘

Let N denote the set of nonnegative integers, {0,1,2,...}. The
following lemmas which are extracted from [2], [4] and [5], will be
usefull in the proofs of our theorems.

LEMMA 1. Consider the delay difference equation‘

m

2 Tl ~xn+zp¢mn_k,. =0, ' n=0,1,2,...
i=1

where

(3) pi € (0,00) and k; € N for 1=1,2,... m.

Assume that one of the following two conditions is satisfied:

@) H) Yo o 1
_ i=1 i
or
m 1 (/C + 1)k+1
(5) , (H2) sz' m T > 1
i=1
where

Then every solution of Eq. (2) oscillates.
LEMMA 2. Consider the delay difference equation
(6) Toal — Ty + DTt =0

where k € N and {p,} is a sequence of nonnegative real numbers.
Assume that one of the following two conditions is satisfied:

n—1
(7 (H;) k>1and lim inf > opi> <E%>k+1
. i=n—k
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or

(8) (Hs)  k>0and liminf > p; > 1.
i=n—k

Then every solution of Eq. (6) oscillates.

LEMMA 3. Let k be a positive integer and let {p,} be a sequence
of nonnegative real numbers such that

n—1
) E p; > 0 for all large n.

i=n—k

Then the delay difference inequality
(10) Tptl — Tn + PpnTn—k S 07 n=07132)"'

has an eventually positive solution if and only if the delay difference

equation
(11) Yl — Yn +Pu¥nk =0, n=0,1,2,...
has an eventually positive solution.

Remark 1. Lemma 1 when (H;) holds and Lemma 2 when (Hj)
holds are from [1]. Lemma 1 when (H,) holds is from [4]. Lemma 2
when (H3) holds and Lemma 3 are from [5]. '

2. Asymptotic Behavior of Nonoscillatory Solutions.

In this section we study the asymptotic behavior of the
nonoscillatory solutions of Eq. (1) where

k, l € IN and p,, g, are sequences of nonnegative
(12)

real numbers defined for n=0,1,2,...
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LEMMA 4. Assume that (12) holds,

(13) k>,

(14) Pn— Gn-k+t > 00Ut pp —qn gy 20 forn>k—1

and
k
(15) Dot <1 forn>k
J=l+1

Let {y,} be an eventually positive solution of Eq. (1) and set
k
(16) = Yn = D GujYneg  for n> kL.
J=l+1

Then {z,} is an eventually positive and decreasing sequence.
Proof. Assume that ng > 0 is such that
Yn >0 for n > ng.

Then for n > ny + k,
Zpyl — Rp T (yn+1 - yn) - (q'rzyn—l ~ Qntl—k Yn—k )
= _(pn — Qn+l-;k )yw—k < 0.

Hence {z,} is a decreasing sequnce for n > ng + k and so either

(17) lim 2, = —oo
n—o0
or
(18) lim 2z, = L € R.
n—ro0

First assume that {y,} is an unbounded sequence. Then there
exists a subsequence {y, } such that

Un, =max{yp:n< ny} for m= 1,2,....
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From (16) we ﬁnd,

k
2ty = Yy — E :qmn+l—f Yrm—j
J=l+1

k
> | 1- Z Qup+l—j | Yny,
7=l+1

> 0.

As {z,} is decreasing, it follows that z, > 0 and the proof is complete
when {y,} is unbounded.

Next assume that {y,} is a bounded sequence. Then (18) holds

and also
= limsupy,

N—0o0
- exists and is finite. Let {y, } be a subsequence of {y,} such that

lim g, = 4.

§—00

Then for & > 0 and sufficiently small and for n» sufficiently large,

k
Zny = Yn, — E :Qn,+l—k Yng—j
J=l+l

> Un, — (U +E).

By taking limits as s — oo we see that L > —&. As € > 0 is arbitrary,
it follows that L > 0 and so z, > 0. The proof is complete.

The next result provides sufficient conditions so that every
nonoscillatory solution of Eq. (1) tends to zero as n — co.

THEOREM 1. Assume that (12)-(15) hold and that one of the
following two conditions is satisfied. '

(Hs) there exist a positive constant « such that

(19) Dn — Quil—k 2> @ for n>k—1
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or
(Hg) There exist a positive constant B € (0,1) such that
. .
(20) Doty <16 forn>k
' J=l+1
and
(21) > @i~ i) = 0.
1=k+{

Then every nonoscillatory solution of Eq. (1) tends to zero as n — oo.

Proof. 1t sufficies to show that every eventﬁally positive solution
{yn} of Eq. (1) tends to zero as n — co. By Lemma 4 it follows that
the sequence {z,}, which is defined by (16), is eventually decreasing
and positive. Hence

(22) lim z, = L ¢ R,

n—0o0

Summing up both sides of

Zp4l — B = _(pn — ntl—k YUn—k

from m; to oo, for n; sufficiently large, we find

(23) L=z =— Y (0i — Givimk)Vivk-

i=n

First assume that (19) holds. Then (23) implies that

[oe]
Z Yi—k < 00.

1=n

Hence
lim ¢, =0

n—00

and the proof is complete when (19) holds.
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Next assume that (20) and (21) hold. From (23) it follows that

liminfy, = 0.

n—o0

Also (16) implies that 2z, < y, and in view of (22), L = 0. Now we
claim that {y,} is a bounded sequence. Otherwise, there exists a
subsequnce {y, } of {y,} such that

Un, =max{y,in<n} forr=12,... and lim g = oco.

T—00

Then by (16) and (20),

= ?/n, E Qn.+l—j Yn.—j
J=l+1

k
> | 1- Z Quetl—j | Yn—j

J=l+1

> BYn — 00 @S T — 00

which contradicts the fact that L = 0 and establishes our claim that

{yn} is bounded. Set
| p = limsup y,

n—o0

and let {y, } be a subsequence of {y,} such that

lim =U.
$—00 yn, /JJ

Then for £ > 0 and sufficiently small and for s sufficiently large, it
follows from (16) and (20) that

(‘ E Iy +l—7 Yng—j

J=l+1

—(u+e)d-p).

By taking limits as s — oo and by using the fact that L. = 0 we obtain

0< us = (u+e)1—p).
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As e > 0 is arbitrary, we conclude that u = 0 and the proof is complete.

3. Sufﬁcienﬁ Conditions for Oscillation.

In this section we will establish sufficient conditions for the
oscillation of all solutions of Eq. (1).

THEOREM 2. Assume that (12)-(15) hold and that one of the
following two conditions is satisfied:

= k o\

24) () limint 37 01 gk > ()
or

( n—1

(Hg) E (psi — qi—k+1) > 0 for all large n and
25) ) i=n—k ]
lim sup Z (0i — Gi—ks) > 1.
L 0 mn—k

Then every solution of Eq. (1) oscillates.

Proof. Assume, for the sake of contradiction, that Eq. (1) has
an eventually positive solution {y,}. By Lemma 4 it follows that the
sequence {z,} which is defined by (16) is eventually positive and

Zntl — Zn ¥ (Pn — Guai—k)Yn—k = 0.
Also eventually,
(26) 0< 2, < yn
and so,

(27) Znyl — Zp t (pn — On+l—k )Zn—k < 0.
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However, by Lemma 3 and 2, inequality (27) cannot have an eventually
positive solution. This contradicts (26) and the proof is complete.

Before we can establish the next oscillation theorem we need the
following result about difference inequalities which is interesting in
its own right.

LEMMA 5. Assume that for 1=1,2,... N, k; € N and {rV} are
sequences of nonnegative real numbers such that for every ng € IN
there exists an ip € {0,1,...,IN} with the property that

n0+ki0

(28) > (o) > 0.

J=no

Let k = max{ko, ki1,...,kn} and assume that the inequality

N o0
(29) SN Dbk < bo for n>m

1=0 j=n

has a positive solution b= {bn};';_k such that
(30) , bn1<bn fornl—k§n<n1.~

Then there exist a positive solution ¢ = {cn}g‘l’_,C of corresponding

equation
N o .
3D Z ZT](-OC]'_]W =c, forn>mn.
1=0 j=n

Proof. Define the set of nonnegative sequences
A ={¢={Cr}00n=m, :0 < &, < b, for n>m }.
For every ¢ € A define the sequence ¢ = {c, o —k DY

c, n>m
Cyp = ~
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Clearly
O0<Len<by, forn>m—k

and in view of (30)
(32) '_ cn >0 form —k<n<m.

Now define the mapping T" on A as follows: For every ¢ = {&,} € ),
let the nth term of the sequence T°¢ be

N o
EE:AEE:‘t?)CI—k;~

1=0 j=n

Then one can see that 7' is monotone in the sense that if &V, 6@ ¢ A
and &9 < @ (that is, &P < & for n > n;) then T¢? < Té®. From
(29), Tb < b, from which it follows that

T:A — A.

Set
&9 ={b,}2, and & =TV form=12....

Then one can see by induction that the sequence {&(m)} of elements
of A is such that

Thus,
&, = lim & n>m

exists and ¢ = {¢,}32, belongs to A. Also T'¢ = ¢ and so c is a solution
of Eq. (31). It remains to show that =~

(33) cn >0 for m>mn —k.

In view of (32), if (33) were false there would exist some np > n
such that

Cn, =0 and ¢, >0 for m —k < n<m.
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Then from (31)
N oo ‘
3 S5 e =0
i=0 j=m

But by (28) there exists an 1, € {0,1,..., N} such that

n2+k,-2
Z (‘12) > 0.
J=m
Hence
n2+k
S ez 3 e
1=0 j=mp J=m

which contradicts (34) and completes the proof.

THEOREM 3. Assume that (12), (13), (15), and (19) hold and that
there exists a nonnegative number () such that

k
(35) Z gn-j > Q for nlarge.
J=l+1

Suppose also that there exists a nonnegative integer N such that every
solution of the delay difference equation

(36) Bu1 = Bn+ ) (Pn — Gnti—k)Q Bug—it =0
i=0
oscillates. Then every solution of Eq. (1) also oscillates.

Proof. Assume, for the sake of contradiction, that Eq. (1) has
an eventually positive solution {y,}. By Lemma 4 and Theorem 1 it
follows for m sufficiently large the sequence {z,} which is defined by
(16) satisfies

(37) 0<zn<yn
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and
(38) Zntl < Zn.
Also

s
39) lim 2, = hm yn = 0.
From (1) and (16) we see that

2%
Zprl — 2t (pn — Quti— k)zn—k + (pn Antk— l) 2 Qntl—j Yn—j = O n > 2k
J=l+k+1

and by induction we find that for m =1,2,... N,

(40) Zptl — 2p + (Pn — Qn+l—k )Zn——k+
k+] k+1;_)
— Qntl—k) g E Grtl—j E Gnti—j, E Grtl—j; Zn—j;
=1 | j=l+k+1 Ji=l+i+] Jislgr+1 N
k+j k+jm
+(p'n, — dn+l— k) E : Qn+l—] E : q‘n‘*'l"“]l § : qn+l—].m+1 yn—jmﬂ
J=l+k+1 Ji=l+i+l Jm1=l pm+1

= 0, n> (N +2)k.

In view of (35) and thedecreasing character of {z,}, by replacing
Zn-j; DY Zp-i—j,_, in the sum we find from (40) that {z,} satisfies the

delay difference inequality

N
(41) Zptl — 2p T E(pn — Qn+l—k )Qizn—k—il < 0.

i=1
By summing up from n to oo both sides of (41) and by using (39) we
obtain

—Zn + E Z(P]’ - C_Ij+L—lc)QiZj——k—il <0

=]l j=n
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or
N o _

(42) > D 0 = Q2 it < 2n.
1=0 j=n

In view of (12), (37) and (38) it is easy to see that the hypotheses of
Lemma 5 are satisfied. Then the equation

N o

Z E(Pj — ¢j+1-t)Q*Bj_k—i1 = B

1=0 j=n

has a positive solution {B }. Clearly {B, } is also a positive solution

of the equation

N
Bpyi — By + Z(pn — Qntl—k )QiBnr—k—il =0
1=0

which contradicts the hypothesis and completes the proof.

Remark 2. From the proof of the theorem it is easy to see that
under the conditions of Theorem 3 if every solution of the difference
equation with constant coefficients

N
Bn+1 — By + E O‘QiBn——k—il =0

oscillates then every solution of Eq. (1) also oscillates.

Now we consider the delay difference equation with constant

coefficients

(43) YUntl = Yn + DYn-k — qUn—t =0
where

(44) p,g €R* and k,lcN.

If =0 or k =, Eq. (43) reduces to the equation

(45) | Yntl — Yn + (0 — QYn—sk =0
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for which it is known, see [2], that

/{:k

P“q>m fOI'/C21

and
p>1 for k=0

is a necessary and sufficient condition for the oscillation of all
solutions.
The following result is a corollary of Theorem 3.

COROLLARY 2. Assume that
(46) p>q¢2>0, £>1>0, qk—-1)<1
and that there exists a nonnegative integer N such that every solution
of the delay difference equation

N
47) Bui — Ba+ Y (0 — )¢k = )'Bp it =0
-

oscillates. Then every solution of Eq. (43) also oscillates.
The next corollary gives an explicit sufficient condition for the
oscillation of all solution of Eq. (43).

COROLLARY 1. Assume that (46) holds and that either

- i i (b + 40+ 1yFrit]
(48) %Oj(p ~ '~ ) > 1
or
m o
' ; ; (K + 1)K+1
(49) lim [H(p— g’k - z)} > 1
1=0

where

1
K=/c+§ml.
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Then every solution of Eq. (43) oscillates. |

Proof.. If (48) holds, then there exists a ndnnegative integer N

such that
(/C +14l + 1)k+il+1

N
> -k - )= e

i=0
Also if (49) holds, then there exists a nonnegative integer N such
that

1
:l N+l (K+ 1)K+l

N
[H(p — 9)g'k — 1" > |
i=0
where L _
K=k+ 5 l

Hence by Lemma 1 every solution of Eq. (47) oscillates. Therefore by
Corollary 1 every solution of Eq. (43) also oscillates.

Remark 3. In [4] it was shown that if (46) holds and
k)k

(50) P.— g > G+ DF

then every solution Eq. (43) oscillates. Clearly condition (48) is a
substantial improvement of (50).

Example 1. The delay difference equation
(51)

. o M 1 nw
Untl — Yn +2 (Slnz —6——> Yn—5 — g (COSZ _é"> Yn-2 =O;' n=0, 1;2,...

satisfies the conditions (12)-(15) and (24). Therefore by Theorem 2
every solution of Eq. (51) oscillates.

Example 2. The delay difference equation

31 2 1 1
(52) Ynel — Yn + <§ + m) Yn—2 — (-2* + m) Yn-1 =0

satisfies the hypotheses of Theorem 3. Therefore every solution of
Eq. (52) oscillates.
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