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AN EXACT VALUE FOR THE PATH-CHROMATIC INDEX
OF A COMPLETE GRAPH

FRANK HARARY (Las Cruces) - ZSOLT TUZA (Budapest) (*) (**)

We prove that the edge of K, cannot be partitioned into less than
(n— 1)/t Pjyp-free subgraphs. We show that this inequality is sharp
and characterize the edge partitions which attain it. In the process, we
point out a surprising connection between combinatorial designs and
the conditional chromatic index.

Coloring problems are among the most frequently, studied
questions in graph theory. They are often easy to state and difficult to
solve. The most general treatment of the subject was proposed in [5],
and independently in several other articles. Let G = (V, E) be a graph
with node set V and edge set F, and let Pbe a property of graphs. The
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conditional chromatic number with respect to this property, written
x(G:P), is the smallest number of colors in a node coloring f:V — N
(the natural numbers) such that the subgraph induced by the node
set f~1(3) has property P for every color i. Similarly, the conditional
chromatic index, x'(G:P), is the smallest number of colors in an edge
coloring f: E — N such that the subgraph formed by each edge set
£~1(3) has property P. The study of x(G:P) and x’ (G: P for various
properties P was discussed in [3, 6, 8], and other papers.

In an interesting particular case, Pis defined in terms of forbidden
subgraphs. For a fixed forbidden graph F, x(G:—F) and x'(G:—F)
denote the conditional chromatic number and index, respectively,
where the property is that no monochromatic subgraph isomorphic to
F' occurs.

We now consider F' = P; the path on ¢ nodes, following the
notation and terminology of [4]. Note that x(@) = x(G: —P,) and
' (@): x'(G: —Ps). The study of x(G: —P;) was initiated in [1]. Here we
investigate x/(G:—P;), proving a general lower bound and pointing
out a surprising connection between combinatorial designs and the
conditional chromatic index.

Recall that a Steiner System S(2,t,n) is a collection B of t-subsets
B (called blocks) of an n-set X, such that any two distinct elements
z,7’ € X are contained in precisely one block B € B. In a resolvable
system, there is a partition B= B; U...U B, into «parallel classes»
with BN B' =0 for B,B' € B; and Up g B = X for each i (1 <1< g)

THEOREM 1. For every grapgh G with n nodes and m edges, and
every positive integer t < n— 2,

¥ (G: —Pi2) > 2m/nt.

In particular,
X (Kn: —Pi2) > (n— 1)/t

with equality if and only if there exists a resolvable Steiner System
S2,t+1,n). |
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Proof. Let us begin with the upper bound. Assume that B,U...UB,
1s a resolution of §(2,¢ + 1, n). Identify its point set X with the node
set V' of K,. Then each pair of nodes u, v € V' is contained in just
one block B € B, and B belongs to a unique parallel class. Hence, we
can define an edge coloring f: E — {1,...,q} by the rule f'(uv) =1 if
and only if edge uv € B for some B ¢ B;. »

~ Since each parallel class B; consists of pairwise disjoint blocks,
the monochromatic connected subgraphs in f’ have precisely ¢t+1 nodes
each. Thus, f' is Py-free, and this fact implies that x/(K,: —Pi2) < ¢.
To determine the exact value of g, note that each B; consists of
n/(t + 1) blocks (since those blocks are mutually disjoint), and each
block covers exactly t(t +1)/2 pairs of nodes. Thus, the number of
edges of color i is equal to nt(t + 1)/(2t +2) = mt /2. If the n(n— 1)/2
edges of K, are partitioned into ¢ color classes, then n(n—1)/2 = gqnt/2
must hold, implying x'(K,: —Pu2) < g = (n— 1)/t.

We deduce the lower bound from a more general inequality as
follows. Let F' be an arbitrary fixed graph and n a natural number.
The Turdn number, T'(n, F), has been defined as the largest integer
h for which there is a graph with n nodes and A edges that does
not contain a subgraph isomorphic to F. To complete the proof we
require the following inequality.

LEMMA 1. For any two graphs F and G,

(G —F) > m/T(n, F).

Proof. By the definition of T'(n, '), every F-free subgraph of
G has at most T'(n, F') edges. Thus, an edge-coloring without any
monochromatic subgraph isomorphic to F' must use at least m/T'(n, F')

colors.

To continue the proof Theorem 1, we recall the following important
result of Erdos and Gallai [2].

LEMMA 2. For n>t > 1, the Turdn number ofva path is bounded



348 FRANK HARARY - ZSOLT TUZA

by T(n, Pia) < nt/2. Moreover, equality holds if and only if n=k(t+1)
for some integer k > 1, and in this case the unique extremal graph is
kK41, the node-disjoint union of k copies of K.

Putting F = P, and substituting n{/2 into Lemma 1, as
the upper bound for T'(n, F'), we obtain the desired inequality
X'(G: Piy2) > 2m/nt. When G = K,,, we have m = n(n — 1)/2 implying
X' (Kn: —Pi2) > (n— 1)/t

If ¥/(Kn:—Pi2) = (n— 1)/t, then equality holds throughout the
above computation. In particular, T'(n, Piy2) = nt/2, and in the P;,,-free
edge-coloring f' of K, eéch color class is isomorphic to n/(t + 1) K1
Let a set B of nodes be a block if and only if it induces a
monochromatic component in the edge-coloring f’ of K,. By Lemma
2, each bloch has size t+ 1 and each pair of nodes is contained in
precisely one block. Hence, a Steiner System S(2,¢+1,n) is obtained.
Moreover, the set B; of blocks belonging to edges of color i consists
of n/(t+ 1) pairwise disjoint blocks for each i, 1 < i < ¢g=(n— 1/t
Thus, B, U...U B, is a resolution of S(2,t + 1,m).

‘We conclude with three classic examples of combinatorial
structures, showing that Theorem 1 is sharp for infinitely many
values of n and t. ‘

Example 1. n=6k+3 >9,t=2.

For every such n there exists a resolvable Steiner Triple System
B of order n. The number of its blocks is n(n—1)/6 = 2k + 1)(3k + 1),
and the size of each parallel class is n/3 = 2k + 1. Hence, B provides
a Py-free edge coloring of K, with (n— 1)/2 =3k + 1 colors.

Example 2. n= @, t=q— 1, ¢ a prime power.

For every such n there exists a finite affine plane AG(2, q) of order
g on ¢°> points. The number of its lines (viewed as g-element blocks)
is ¢(¢ + 1), and each parallel class consists of ¢ lines. Hence, AG(q)
provides a P,;-free edge coloring of K, with (n—1)/(g—1)=¢g+1
colors.
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As generalization, we obtain

Example 3. n=q% t=q— 1, ¢ a prime power, d > 2.

For every such n and d there exists a d-dimensional finite affine
space AG(d,q) of order ¢ on ¢¢ points. The number of its lines is
g(g+1), and each parallel class consists of (nz_n)/ (¢> - ¢) lines. Hence,
a Pyyi-free edge coloring of K, with (n—1)/(g—1) = ¢ +¢%2+...+1
colors is obtained.

Fig. 1 displays the isomorphic factorization [7] of three disjoint
triangles into Ky, written 3K3|Ky. This edge partition corresponds to
the (unique) resolvable Steiner System S(2,3,9), isomorphic to the
affine plane AG(2,3).

Fig.l - Monochromatic edge classes in the unique Pj-free 4-edge-coloring of K.
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