COMPOSITION OPERATORS ON SUMMABLE FUNCTIONS SPACES

VIRGINIA DE CICCO - GIUSEPPE MARINO (Cosenza) (*)

A composition operator is a linear operator C_T on a subspace of \mathbb{K}^X by a point transformation T on a set X (where \mathbb{K} denotes the scalar field) by the formula

 $C_T f(x) := f \circ T(x)$.

We give some necessary and/or sufficient conditions under which the map T induces a continuous composition operator on suitable topological subspaces of summable functions of \mathbb{K}^{X} as L^{p} or $W^{1,p}$.

0. Introduction.

Let (X, S, m) be a measure space; We assume X is a standard Borel space, i.e. X is isomorphic to a Borel subset of a complete separable metric space and S is the σ -algebra of Borel subsets of X. The measure m will be finite or σ -finite.

Let $Y \subseteq X$ be a measurable subset of X and let T be a measurable transformation of Y into X, i.e. T is function $T:Y\to X$

^(*) Entrato in Redazione il 15-12-1988

such that

$$T^{-1}(E) \in S$$
 whenever $E \in S$.

We define the linear operator C_T on the space of the measurable complex valued functions on X by

(1)
$$C_T f(x) : \begin{cases} f(T(x)) & \text{if } x \in Y \\ 0 & \text{if } x \notin Y \end{cases}$$

 C_T is said composition operator.

Remark 1. We observe that $C_T(f) = 0$ a.e. whenever f = 0 a.e. if and only if $mT^{-1} \ll m$ (i.e. the measure mT^{-1} is absolutely continuous with respect to m).

We can ask the following question:

Question: «Under what circumstance does C_T induce a bounded operator on $L^p(m)$?».

The complete answer is in the following two theorems:

THEOREM 1. ([1]). Necessary and sufficient condition for a measurable transformation T to induce a bounded operator C_T on $L^p(m)$ with $1 \le p < \infty$, defined by (1), are:

- (i) $mT^{-1} \ll m$;
- (ii) the Radon-Nikodym derivative dmT^{-1}/dm of mT^{-1} with respect to m is bounded.

In this case

$$||C_T||_{L^p} = ||dmT^{-1}/dm||_{\infty}^{1/p}.$$

Remark 2. We underline that if $mT^{-1} \ll m$, by using the transformation of integral formula

$$\int_X |f \circ T|^p dm = \int_X |f|^p (dm T^{-1}/dm) dm$$

([1], pag. 38), one can deduce that the invariance of $L^p(m)$ with respect to C_T implies the boundedness of C_T , i.e.

$$C_T(L^p(m) \subseteq L^p(m)$$

implies that there exists M > 0 such that

$$||C_T f||_{L^p} \leq M||f||_{L^p}.$$

From on, thus, we use indifferently

«T induces an operator C_T on $L^p(m)$ »

or

«T induces a bounded operator C_T on $L^p(m)$ ».

THEOREM 2. ([2]). Are equivalent:

- (a) T induces the bounded operator C_T on $L^{\infty}(m)$.
- (b) $mT^{-1} \ll m$.
- (c) T induces the bounded operator C_T on $L^{\infty}(m)$ and $||C_T||_{L^{\infty}} \leq 1$

In the section 2 of the present paper we give some partial answers to the *Question* above with $L^p(m)$ substituted by the Sobolev space $W^{1,p}$, whereas in the section 1 we obtain some little but nice results concerning:

- (a) the existence of an element in the point spectrum of C_T ;
- (b) a necessary and sufficient condition for $||C_T||_{L^p} \leq 1$;
- (c) the injectivity of C_T .

1. Composition operators on $L^p(m)$.

Let (X, S, m), Y, T be as in the introduction and $\mathbb{K} = \mathbb{C}$. In this section we assume that T induces the composition operator C_T on $L^p(m)$.

(a) Existence of eigenvalues.

The following propositions give two conditions assuring that a complex number $\lambda \in \mathbb{C}$ belongs to point spectrum of C_T on $L^p(m)$ with $1 \leq p < \infty$ and $L^{\infty}(m)$ respectively.

PROPOSITION 1. We assume that there exists a subset E of Y with m(E) > 0 such that if $E_0 := E$, $E_{n+1} := T(E_n)$ and $\tilde{E} := \bigcup_{n \in \mathbb{N}} E_n$, we have:

- (i) $T(C\tilde{E}) \subset C\tilde{E}$;
- (ii) $m(E_h \cap E_k) = 0$ whenever $h \neq k$;
- (iii) $\sum_{n \in \mathbb{N}} |\lambda^p|^n m(E_n) < \infty, \lambda \neq 0.$

Then λ belongs to point spectrum of C_T on $L^p(m)$ with $1 \leq p < \infty$.

Proof. If we define $f_{\lambda}: X \to \mathbb{C}$ by

(2)
$$f_{\lambda}(x) := \begin{cases} 0 & \text{if } x \notin \tilde{E} \\ \lambda^{k} & \text{if } x \in E_{k} \end{cases}$$

then we have, (from (ii)), that f_{λ} is well defined; moreover it is easy to verify, using (i), that $C_T f_{\lambda} = \lambda f_{\lambda}$. It remains to show that $f_{\lambda} \in L^p(m)$. For this, we have

$$\int_{X} |f_{\lambda}|^{p} dm = \int_{E} |f_{\lambda}|^{p} dm = \sum_{n \in \mathbb{N}} \int_{E_{n}} |f_{\lambda}|^{p} dm = \sum_{n \in \mathbb{N}} \int_{E_{n}} |\lambda^{n}|^{p} dm = \sum_{n \in \mathbb{N}} |\lambda^{p}|^{n} m(E_{n}) < \text{ (from (iii))} < \infty$$

PROPOSITION 2. Let T be such that induces composition operator C_T on $L^{\infty}(m)$. We assume that there exists a subset E of Y with m(E) > 0 such that if $E_0 := E$, $E_{n+1} := T(E_n)$ and $\tilde{E} := \bigcup_{n \in \mathbb{N}} E_n$, we have

(i) $T(C\tilde{E}) \subset C\tilde{E}$:

(ii) $m(E_k \cap E_h) = 0$ whenever $h \neq k$.

Then the spectrum $\pi(C_T)$ of C_T is the complex unit ball $B_1 := \{\lambda \in \mathbb{C} : |\lambda| \leq 1\}.$

Proof. From Theorem 2(c) we have $\pi(C_T) \subseteq B_1$. Since $\pi(C_T) \supseteq \overline{\pi_0(C_T)}$, where $\overline{\pi_0(C_T)}$ denotes the closure of the point spectrum $\pi_0(C_T)$ of C_T , it is enough to show that $\pi_0(C_T) \supseteq \{\lambda \in \mathbb{C} : 0 < |\lambda| < 1\}$. For this, let $0 < |\lambda| < 1$. Then, if we define f_{λ} as in (2), we have $C_T f_{\lambda} = \lambda f_{\lambda}$ and $f_{\lambda} \in L^{\infty}(m)$

EXAMPLE 1. Let $X = \mathbb{R}$, $Y = \mathbb{R}^+$, $S = \text{Borel } \sigma\text{-algebra}$, m-Lebesgue measure. If $t \in \mathbb{R}^+$ is fixed, we define $T: Y \to X$ by

$$T(x) := x + t$$
.

Then $mT^{-1} \ll m$ and

$$(dmT^{-1}/dm)(x) = \begin{cases} 1 & \text{if } x \ge t \\ 0 & \text{if } x < t. \end{cases}$$

It follows that $||C_T||_{L^p}=1$ for every $1\leq p<\infty$ (on the other hand, $||C_T||_{L^\infty}=1$ also).

The hypotheses (i) and (ii) of Propositions 1 and 2 are verified taking, for instance, E := [t/2, t].

From $m(E_n)=t/2$ for each $n\in\mathbb{N}$, it follows that (iii) of Proposition 1 is satisfied for every λ with $0<|\lambda|<1$, in such a way that $\pi_0(C_T)\supseteq\{\lambda\in\mathbb{C}:0<|\lambda|<1\}$. On the other hand, it is straighforward to verify that $\pi_0(C_T)=\{\lambda:|\lambda|<1\}$ on $L^p(m)$ with $1\leq p<\infty$ and $\pi_0(C_T)=B_1$ on $L^\infty(m)$, and so $\pi(C_T)=B_1$ on $L^p(m)$ with $1\leq p\leq\infty$.

EXAMPLE 2. Let $X = \mathbb{R} = Y$, $S = \text{Borel } \sigma\text{-algebra}$, m-Lebesgue measure. If $t \in \mathbb{R}^+$ is fixed, we define $T: X \to X$ by

$$T(x) := \begin{cases} x+t & \text{if } x > 0 \\ x-t & \text{if } x < 0. \end{cases}$$

Then $||C_T||_{L^p} = 1$ for $1 \le p \le \infty$ and one can use the Propositions 1 and 2 to see that $\pi_0(C_T) = \{\lambda : |\lambda| < 1\}$ on $L^p(m), 1 \le p < \infty$, $\pi_0(C_T) = B_1$ on $L^\infty(m)$ and $\pi(C_T) = B_1$ for $1 \le p \le \infty$.

(b) C_T non-expansive.

We recall that a map $f: N_1 \to N_2$, N_1 , N_2 normed spaces, is said non-expansive if $||f(x_1) - f(x_2)|| \le ||x_1 - x_2||$, $\forall x_1, x_2 \in N_1$. Of course a composition operator C_T is non-expansive iff $||C_T|| \le 1$ and Theorem 2 affirm that any composition operator in $L^{\infty}(m)$ is non-expansive. The following proposition characterizes the maps T for which C_T is non-expansive on $L^p(m)$, $1 \le p < \infty$. First, we need a definition.

With suggestive words, we can say that the map $T: Y \to X$ is m-expansive if $m(E) \leq m(T(E))$ for each $E \subseteq Y$, $E \in S$.

PROPOSITION 3. Let $1 \le p < \infty$. Are equivalent:

- (i) $||C_T||_{L^p} \leq 1$;
- (ii) C_T is non-expansive on $L^p(m)$;
- (iii) T is m-expansive
- (iv) $mT^{-1} \le m$, i.e. $m(T^{-1}(E)) \le m(E)$ for each $E \in S$.

Proof. We prove only (i) iff (iv).

Let $||C_T||_{L^p} \le 1$ and $E \subset X$, $E \in S$. If $m(E) = \infty$, we are done. If $m(E) < \infty$, then

$$mT^{-1}(E) = \int_X \chi_{T^{-1}(E)} dm = \int_X |C_T \chi_E|^p dm$$
$$= ||C_T \chi_E||_{L^p}^p \le ||C_T||_{L^p}^p ||\chi_E||_{L^p}^p \le ||\chi_E||_{L^p}^p = m(E).$$

Let now $mT^{-1} \leq m$. We must to prove that

(*)
$$||C_T f||_{L^p} \le ||f||_{L^p} \text{ for each } f \in L^p(m).$$

If $f = \chi_E$, $m(E) < \infty$, then

$$||C_T \chi_E||_{L^p}^p = \int_X |C_T \chi_E|^p dm = \int_X \chi_{T^{-1}(E)} dm = mT^{-1}(E) \le m(E) = ||\chi_E||_{L^p}^p.$$

At this point, the general case follows by standard arguments.

(c) C_T injective.

We say that $T: Y \to X$ is essentially surjective if $m(X \setminus T(Y)) = 0$.

PROPOSITION 4. C_T is injective iff T is essentially surjective.

Proof. Sufficience. If $X = T(Y) \cup A$, where m(A) = 0, then $\ker C_T = \{ f \in L^p(m) : f_{/T(Y)} = 0 \} = \{ 0 \}.$

Necessity. Let

 $X_0 := \{x \in X : (dmT^{-1}/dm)(x) = 0\}, L^p(X_0) := \{f \in L^p(m) : f(x) = 0\}$ a.e. on $X \setminus X_0\}$ and $A(f) := \{x \in X : f(x) \neq 0\}$ for each $f \in L^p(m)$.

Step 1. $L^p(X_0) = \{ f \in L^p(m) : (dmT^{-1}/dm)_{/A(f)} = 0 \text{ a.e.} \}.$ Indeed,

$$L^p(X_0) = \{ f \in L^p(m) : f(x) = 0 \text{ a.e. on } X \setminus X_0 \} =$$

$$= \{ f \in L^p(m) : A(f) \subseteq X_0 \text{ a.e.} \} =$$

$$= \{ f \in L^p(m) : (dmT^{-1}/dm)_{/A(f)} = 0 \text{ a.e.} \}.$$

Step 2. $L^p(X_0) = \ker C_T$.

Let $f \in L^p(X_0)$. Then $\int_X |f|^p (dmT^{-1}/dm)dm = 0$ from step 1, and so

$$\begin{split} \int_X |f\circ T|^p dm &= \int_X |f|^p \circ T dm = \int_X |f|^p dm T^{-1} = \\ &= \int_X |f|^p (dm T^{-1}/dm) dm = 0, \end{split}$$

concluding that $C_T = f \circ T = 0$ a.e., i.e. $f \in \ker C_T$.

Viceversa, let $f \in \ker C_T$. Then $f \circ T = 0$ a.e., so that $0 = |f \circ T|^p = |f|^p \circ T$, hence $0 = \int_X |f|^p \circ T dm = \int_X |f|^p (dmT^{-1}/dm)dm$, from which $(dmT^{-1}/dm)_{/A(f)} = 0$ a.e. concluding that $f \in L^p(X_0)$ (step 1).

Step 3. T essentially surjective.

If C_T is injective, then $L^p(X_0) = \{0\}$ (step 2), i.e. f = 0 a.e. if $(dmT^{-1}/dm)_{/A(f)} = 0$ a.e.. If follows that $dmT^{-1}/dm \neq 0$ a.e., i.e. $m(X_0) = 0$.

At this point it is sufficient to prove that $X \setminus X_0 = T(Y)$. Indeed, $X \setminus X_0 = A(dmT^{-1} \setminus dm)$ is contained in T(Y), since $E \subseteq X \setminus T(Y)$ implies $0 = mT^{-1}(E) = \int_E (dmT^{-1}/dm)dm$ and so $(dmT^{-1}/dm)_{/E} = 0$.

2. Composition operators on $W^{1,p}(I)$.

In this last section we label:

- -I=]a,b[bounded interval of \mathbb{R} .
- -m Lebesgue measure on I.
- $-T:I\to I$ Borel transformation such that $mT^{-1}\ll m$ (by Remark 1, §0, this last condition assures that C_Tf depends only on the equivalence class of f).
- $-W^{1,p}(I)\coloneqq\{f\in L^p(I):\exists \tilde{f}\in L^p(I) \text{ such that } \int_I fg'dm=-\int_I \tilde{f}gdm \text{ for each } C^\infty\text{-function } g \text{ with support in } I\}.$

For $f \in W^{1,p}(I)$ we write $\tilde{f} = f'$. The Sobolev space $W^{1,p}$ endowed with the norm $||f||_{W^{1,p}} := ||f||_{L^p} + ||f'||_{L^p}$ is a Banach space for $1 \le p \le \infty$.

$$-W_0^{1,p}(I) := \{ f \in W^{1,p}(I) : f(a) = f(b) = 0 \}.$$

Remark 1. It is well known (for instance see [3] Theorem VIII. 2) that if $f \in W^{1,p}(I)$, then there exists a unique function $\bar{f} \in C[a,b]$ such that $f = \bar{f}$ a.e. on I; In this section with $\langle f \in W^{1,p}(I) \rangle$ we understand that f belongs to C[a,b]; this clarifies the above definition of $W_0^{1,p}(I)$.

Our purpose here is to give a kind of answer to question: «Under what circumstances does T induce bounded composition operator on

 $W^{1,p}(I)$?».

The obtained results are very partial, but they are the first (that we know!) in the literature on composition operators.

We begin observing that if T induces bounded C_T on $L^p(I)$, then T not necessarily induces bounded C_T on $W^{1,p}(I)$ and viceversa.

Indeed, if I =]-1, 1[and $T : I \rightarrow I$ is defined by

$$T(x) := \begin{cases} -x & \text{if } x \le 0 \\ x - 1 & \text{if } x > 0, \end{cases}$$

then $mT^{-1} \ll m$ and $dmT^{-1}/dm = 1$, so that T induces bounded C_T on $L^p(I)$ for $1 \leq p \leq \infty$, whereas T does not induce C_T on $W^{1,p}(I)$: in fact, as will see, if T induces C_T on $W^{1,p}(I)$, then $T \mid \in W^{1,p}(I)$, while this is not the case here (see Remark 1).

Viceversa, let I =]0, 1[and $T : I \to I$ defined by $T(x) := x^2$. Then T does not induce C_T on $L^1(I)$. Neverthless T induces bounded C_T on $W^{1,1}(I)$ as one can see using Proposition 5 below.

Remark 2. Let $1 \leq p \leq \infty$. Assume that $C_T(W^{1,p}(I)) \subseteq W^{1,p}(I)$. Then T belongs to $W^{1,p}(I)$. This result is peculiar of boundedness of I: if I is unbounded and T is the identity function on I, then T induces the identity operator on $W^{1,p}(I)$, but $T \notin W^{1,p}(I)$.

PROPOSITION 1. Let $1 \leq p_0 < \infty$. We suppose that T induces bounded C_T on $L^{p_0}(I)$. Moreover we assume that $T \in W^{1,\infty}(I)$. Then T induces bounded C_T on $W^{1,p}(I)$ for any 1 .

Proof. We observe first of all, that from hypothesis that T induces C_T on $L^{p_0}(I)$, it follows that T induces bounded C_T on $L^p(I)$ for any $1 \leq p < \infty$ (Theorem 1, §0). Now, let $f \in W^{1,p}(I)$. Then from $W^{1,p}(I) \subseteq L^p(I)$ and $T \in W^{1,\infty}(I) \subseteq W^{1,p}(I)$, we have that the functions $f \circ T$ and $f' \circ T$ both belong to $L^p(I)$. Moreover, also $(f' \circ T)T'$ belongs to $L^p(I)$, since $\int_I |(f' \circ T)T'|^p dm \leq ||T'||^p_{L^\infty}||f' \circ T||^p_{L^p} < \infty$. Finally, from the fact that $f \circ T \in W^{1,p}(I)$ for each $f \in W^{1,p}(I)$ and $(f \circ T)' = (f' \circ T)T'$ ([3], Theorem VIII. 6 and Corollary VIII.10), the claim follows.

For $p = \infty$, we obtain the stronger result:

PROPOSITION 2. T induces bounded C_T on $W^{1,\infty}(I)$ if and only if $T \in W^{1,\infty}(I)$.

Proof. Let $f \in W^{1,\infty}(I)$. Then $f \circ T$ belongs to $L^{\infty}(I)$. In order to prove that $f \circ T \in W^{1,\infty}(I)$, it is sufficient to show that there exists a constant c > 0 such that

$$|(f \circ T)(x) - (f \circ T)(y)| \le c|x - y|$$
 a.e. on I ,

and this is true since f and T both belong to $W^{1,\infty}(I)$.

At this point the proof proceeds as the proof of Proposition 1 using Theorem 2, §0.

Remark 3. In the hypotheses of Proposition 1 one has

$$||C_T||_{W^{1,p}} \le ||C_T||_{L^p} \max(1, ||T'||_{L^\infty}).$$

Such inequality remains true also for $p = \infty$.

The following proposition shows that the assumption of Proposition 1 is also necessary in order T to induce bounded C_T on $W^{1,p}(I)$ if T induces *surjective* C_T on $L^p(I)$.

PROPOSITION 3. Let $1 \le p \le \infty$. We suppose that T induces bounded surjective C_T on $L^p(I)$. Then T induces bounded C_T on $W^{1,p}(I)$ iff $\in W^{1,\infty}(I)$.

Proof. By Proposition 2, it is sufficient to consider the case $1 \le p < \infty$.

Sufficience. It is proved in Proposition 1.

Necessity. We assume that T induces bounded C_T on $W^{1,p}(I)$. Then by Remark 2 we have $T \in W^{1,p}(I)$. It remains to show that $T' \in L^{\infty}$. Now, $(f \circ T)' = (f' \circ T)T'$ belongs to $L^p(I)$ for every $f \in W^{1,p}(I)$; on the other hand, from Theorem VIII.2 of [3], we have that for every $h \in L^p(I)$ there exists $f \in W^{1,p}(I)$ such that f' = h. It follows that for every $h \in L^p(I)$ we have that $(h \circ T)T'$ belongs to $L^p(I)$ also.

From surjectivity of C_T on $L^p(I)$ one has that gT' belongs to $L^p(I)$ for every $g \in L^p(I)$ and this is sufficient to conclude $T' \in L^{\infty}(I)$ (see [4], Theorem 20.15 for the case p = 1 and its suitable modifications for p > 1).

In the previous Propositions 1 and 3 we have supposed that T induces C_T on $L^p(I)$. The next two Propositions use not such hypothesis.

First, we give a remark.

Remark 4. Let $T: I \to I$ be absolutely continuous and strictly monotone. Then $f \circ T$ is absolutely continuous for each f absolutely continuous (routine calculation).

PROPOSITION 4. We assume that:

- (i) $T \in W^{1,\infty}(I)$;
- (ii) T strictly monotone.

Then T induces bounded C_T on $W^{1,p}(I)$ for every 1 .

Proof. Let T strictly increasing (analogously we proceed if T strictly decreasing). We can assume $1 , since for <math>p = \infty$ the claim is contained in Proposition 2.

First, we observe that (i) and (ii) imply

(2)
$$(T'(x))^p \le T'(x)||T'||_{L^{\infty}}^{p-1}.$$

As in the proof of Proposition 1 we have $C_T(W^{1,p}(I)) \subset W^{1,p}(I)$.

For the boundedness, we use the fact that for each $t_0 \in I$ fixed, we have that

$$||f||_{t_0} := |f(t_0)| + ||f'||_{L^p}$$

is a norm on $W^{1,p}(I)$ equivalent to usual norm $|| \cdot ||_{W^{1,p}}$ and the equivalence is independent from t_0 , i.e. there exist two positive constants H, K such that for every $t_0 \in I$ one has

$$|H|| ||_{t_0} \le || ||_{W^{1,p}} \le K|| ||_{t_0}$$

(this is a routine calculation). Hence

$$||C_T f||_{W^{1,p}} = ||f \circ T||_{W^{1,p}} \le K(|f(T(t_0))| + ||(f' \circ T)T'||_{L^p}) \le$$

$$\le K(|f(T(t_0))| + ||T'||_{L^{\infty}}^{(p-1)/p} ||f'||_{L^p}).$$

So, if $||T'||_{L^{\infty}} > 1$, it results

$$||C_T f||_{W^{1,p}} \le K||T'||_{L^{\infty}}^{(p-1)/p} (|f(T(t_0))| + ||f'||_{L^p}) \le$$

$$\le (K/H)||T'||_{L^{\infty}}^{(p-1)/p} ||f||_{W^{1,p}},$$

whereas, if $||T'||_{L^{\infty}} \leq 1$, then

$$||C_T f||_{W^{1,p}} \le (K/H)||f||_{W^{1,p}}$$

in such a way that $||C_T||_{W^{1,p}} \leq (K/H) \max(1, ||T'||_{L^{\infty}}^{(p-1)/p})$

For p = 1 the hypotheses of Proposition 4 can be weakened.

PROPOSITION 5. We assume $T \in W^{1,1}(I)$ and T strictly monotone. Then T induces bounded C_T on $W^{1,1}(I)$.

Proof. The fact that $f \circ T \in W^{1,1}(I)$ whenever $f \in W^{1,1}(I)$ is the content of Remark 4. We show that C_T is bounded, following the broad outlines of proof Proposition 4:

$$||C_T f||_{W^{1,1}} \le K(|f(T(t_0))| + \int_I |(f' \circ T)T'|dm) = (\text{Theorem 3 of [6]}) =$$

$$= K(|f(T(t_0))| + \int_{T(I)} |f'|dm) \le K(|f(T(t_0))| + ||f'||_{L^1}) \le$$

$$< (K/H)||f||_{W^{1,1}}$$

The following is the main result of this section.

THEOREM 6. Let 1 . We assume:

(i) T induces bounded C_T on $W^{1,p}(I)$;

(ii)
$$T' > 0$$
.

Then $T \in W^{1,\infty}(I)$.

Proof. We can assume $1 since for <math>p = \infty$ the claim is contained in Proposition 2.

To prove $T \in W^{1,\infty}(I)$ it is enough to show $T' \in L^{\infty}$, because we know already that $T \in L^{\infty}$ (see [3], Theorem VIII.7).

Step 1. There exists a constant c > 0 such that

(3)
$$||(f \circ T)'||_{L^p} \le c||f'||_{L^p}.$$

First of all,

$$||(f \circ T)'||_{L^{p}} \leq ||C_{T}f||_{W^{1,p}} \leq ||C_{T}||_{W^{1,p}}||f||_{W^{1,p}} \leq$$

$$\leq ||C_{T}||_{W^{1,p}}K||f||_{t_{0}} = ||C_{T}||_{W^{1,p}}K(|f(T_{0})| + ||f'||_{L^{p}})$$

where t_0 is a fixed point in I.

We begin proving that (3) holds if $\int_I f dm = 0$.

Indeed, let $f\in W^{1,p}(I)$ be a continuous function such that $\int_I fdm=0$. Then for the Media Theorem there exists $t_0\in I$ such that $f(t_0)=0$ and so (3) follows by (4). Let now $f\in W^{1,p}(I)$ be a continuous function. Then there exists a constant A and a continuous function g such that $\int_I gdm=0$ and f=g+A ($A=\int_I fdm$ and $g=f-\int_I fdm$). Then

$$f' = g'$$
 and $(f \circ T)' = (g \circ T)'$

and so (3) follows by (4).

Step 2. $T' \in L^{\infty}(I)$.

We write (3) as

(5)
$$\int_{I} |(f' \circ T)T'|^{p} dm \leq c^{p} \int_{I} |f'|^{p} dm.$$

Now, for every $g \in L^p(I)$ there exists $f \in W^{1,p}(I)$ such that f' = g ([3], Lemma VIII.2); from this and (5) we obtain that for every $g \in L^p(I)$,

(6)
$$\int_{I} |(g \circ T)T'|^{p} dm \leq c^{p} \int_{I} |g|^{p} dm.$$

For any measurable set $A \subset T(I)$ the characteristic function χ_A belongs to $L^p(I)$ so that (6) gives

$$\int_{I} |(X_{A} \circ T)T'|^{p} dm \le c^{p} \int_{I} |X_{A}|^{p} dm,$$

i.e.

(7)
$$\int_{T^{-1}(A)} |T'|^p dm \le c^p m(A).$$

Now, from the hypothesis T'>0 and from the fact that $T(x)-T(y)=\int_y^x T'dm,\ x,y\in I$ ([3], theorem VIII.2), we have that T is strictly increasing, so we write

$$T^{'p} = T^{'p-1}T' = (T' \circ T^{-1} \circ T)^{p-1}T'.$$

We note that T absolutely continuous and strictly increasing implies that T^{-1} is absolutely continuous also and

$$(T^{-1})' = 1/(T' \circ T^{-1}),$$

so that from [6], Corollary 6, it follows that if we define $f := \chi_{T^{-1}(A)} |T'|^p$, then $(f \circ T^{-1})1/(T' \circ T^{-1})$ is a summable function and the change of variables formula holds:

$$\int_{T(I)}(f\circ T^{-1})1/(T'\circ T^{-1})dm=\int_I fdm.$$

Then

$$\begin{split} \int_{A} T^{'p-1} \circ T^{-1} dm &= \int_{A} (T^{'p-1} \circ T^{-1}) T' \circ T^{-1} 1/(T' \circ T^{-1}) dm = \\ &\int_{A} (T^{'p} \circ T^{-1}) 1/(T' \circ T^{-1}) dm = \\ &= \int_{T(I)} (f \circ T^{-1}) 1/(T' \circ T^{-1}) dm = \int_{I} f dm = \\ &= \int_{T^{-1}(A)} T^{'p} dm \leq c^{p} m(A) \end{split}$$

i.e.

(8)
$$\int_{A} T^{\prime p-1} \circ T^{-1} dm \le c^{p} m(A).$$

At this point we recall that if \bar{f} is a summable function such that $\int_A \bar{f} dm \leq Lm(A)$ for each measurable set $A \subseteq T(I)$, then $\bar{f} \leq L$ a.e. on T(I). From (8) we obtain thus

$$|T' \circ T^{-1}|^{p-1} \le c^p$$
 a.e. on $T(I)$,

from which

$$T' \circ T^{-1} \le c^{p/(p-1)}$$
 a.e. on $T(I)$,

i.e. there exists a Borel set $N \subseteq T(I)$ such that m(N) = 0 and

$$T' \circ T^{-1}(y) < c^{p/(p-1)}$$
 if $y \notin N$,

i.e.

$$T'(x) \le c^{p/(p-1)}$$
 if $x \in I \setminus T^{-1}(N)$.

On the other hand $m(T^{-1}(N)) = 0$ since m(N) = 0 and T^{-1} is absolutely continuous; so finally we conclude $T' \in L^{\infty}(I)$

Remark 5. The claim of previous theorem is not true if p = 1. Indeed, if I =]0, 1[, then the transformation $T(x) = x^{\frac{1}{2}}$ induces bounded

composition operator on $W^{1,1}(I)$ because T is absolutely continuous and strictly increasing (Proposition 5), neverthless $T' \notin L^{\infty}(I)$. Moreover for each $1 , if <math>f(x) := x^{2(p-1)/p}$, then $f \in W^{1,p}(I)$, but $(f \circ T)(x) = x^{(p-1)/p} \notin W^{1,p}(I)$, so that T induces not C_T on $W^{1,p}(I)$ (of course this follows from Theorem 6 also for the case $p = \infty$).

We give at last a necessary and sufficient condition under which $W_0^{1,p}(I)$ is invariant for C_T .

PROPOSITION 7. Let T be to induce bounded C_T on $W^{1,p}(I)$, $1 \le p < \infty$. Then

$$C_T(W_0^{1,p}(I)) \subseteq W_0^{I,p}(I)$$
 iff $T(\{a,b\}) \subseteq \{a,b\}$.

Proof. Necessity. For absurd, let $T(a) \in I$ (analogously we proceed if $T(b) \in I$). Then there exists $\varepsilon > 0$ such that $J :=]T(a) - \varepsilon, T(a) + \varepsilon [\subseteq I]$. We define the function $u : I \to \mathbb{R}$ by

$$U(x) := \begin{cases} e^{-1/(\varepsilon^2 - (x - T(a))^2) + 1/\varepsilon^2} & \text{if } x \in J \\ 0 & \text{if } x \notin J. \end{cases}$$

Then u is a C^1 -function with support in I, so that $u \in W_0^{I,p}(I)$, while u(T(a)) = 1, in such a way that $C_T u \notin W_0^{1,p}(I)$.

Acknowledgements.

The authors wish to thank Prof. E. De Pascale for useful discussions and encouragements.

Besides, they are indebted to the referee for his comments and suggestions.

REFERENCES

- [1] Nordgren E.A., Composition operators on Hilbert spaces, Lect. Notes Math.693 (1977) 37-62.
- [2] Ridge W.C., SPectrum of a composition operator, Proc. Amer. Math. Soc. 37 (1973), 121-127.
- [3] Brezis H., Analyse fonctionnelle, Masson ED. Paris. 1983.
- [4] Hewitt E., Stromberg K., Real and abstract analysis, Springer-Verlag 1969.
- [5] CH.J De la Valle'e Poussin., Sur l'intègral de Lebesgue, Trans. Amer. Math. Soc., 16(1915) 435-501.
- [6] Serrin J., Varberg D.E., A general chain rule for derivatives and the change of variables formula for the Lebesgue integral, Amer. Math. Montly, 76 (1969) 514-520.

Dipartimento di Matematica Università della Calabria Arcavacata di Rende, (CS), Italy