SOME REMARKS ON THE HILBERT FUNCTION OF A ZERO-CYCLE IN \mathbb{P}^2

PAOLO MAROSCIA (Potenza) (*)

We prove some new results concerning the Hilbert function of a finite set of points in general position in \mathbb{P}^2 , with assigned multiplicities. In particular, we answer a question raised by E. Davis and A.V. Geramita.

1. Introduction.

Let P_1,\ldots,P_s be distinct points in $\mathbb{P}^2=\mathbb{P}^2(k)$, with $s\geq 3$ and k any algebraically closed field, and let m_1,\ldots,m_s be positive integers. Then, if A denotes the ring $k[X_0,X_1,X_2]/I$, where I is the homogeneous ideal $\mathcal{P}_1^{m_1}\cap\mathcal{P}_2^{m_2}\cap\ldots\cap\mathcal{P}_s^{m_s},\,\mathcal{P}_1,\ldots,\mathcal{P}_s$ being respectively the prime ideals in $k[X_0,X_1,X_2]$ corresponding to the points P_1,\ldots,P_s , it is well known (cf., e.g., [3]) that A is a 1-dimensional Cohen-Macaulay ring of multiplicity $\delta(A)=\sum_{i=1}^s\binom{m_i+1}{2}$.

Now, it is a classical problem (see, e.g., [1], [8], [4], [5], [6]) to

^(*) Entrato in Redazione il 13 luglio 1989

determine the least degree τ of a linear system of plane curves such that the passage through each point P_i with multiplicity at least m_i $(i=1,\ldots,s)$ imposes exactly $\delta(A)$ independent linear conditions, or equivalently, the least integer τ for which the Hilbert function, say $\{b_i\}_{i\geq 0}$, of the homogeneous coordinate ring A of the zero-cycle $\sum_{i=1}^{s} m_i P_i$ stabilizes.

This integer is also called the *index of regularity* of A or of the corresponding zero-cycle (see, e.g., [9, Def. 0.2.2]). If we denote by Z the zero-cycle $\sum_{i=1}^{s} m_i P_i$, we write then $\tau = \tau(Z)$ and $b_i = b_i(Z)$ for $i \geq 0$; moreover, we denote by $|\mathcal{O}_{\mathbb{P}^2}(n); m_1 P_1, m_2 P_2, \ldots, m_s P_s|$ or by $|\mathcal{O}_{\mathbb{P}^2}(n); Z|$ the linear system (viewed as a k-vector space) of all plane curves of degree n with multiplicity at least m_i at P_i $(i = 1, \ldots, s)$.

The aim of this paper is to prove two results concerning a zero-cycle in \mathbb{P}^2 , given by a finite set of points in *general position* (i.e. such that no three of them are collinear), with certain multiplicities. The first one (Theor. 2.1) provides some new characterizations for a finite set of points lying on an irreducible conic and also gives a positive answer (in a more general setting) to a question raised in [3]. The second statement (Theor. 2.4), which can be thought of as an extension of Theor. 2.1, concerns the relationship between the index of regularity of a zero-cycle of the form $Z = \sum_{i=1}^{s} 2P_i$ and the maximum number of points of $\{P_1, \ldots, P_s\}$ actually lying on a conic.

1. Some preliminary observations.

In order to prove our main results, we need two lemmas, which will be proved in this section.

LEMMA 1.1. Let P_1, \ldots, P_s be s points in general position in \mathbb{P}^2 , with $s \geq 3$. Then

(i)
$$\tau\left(\sum_{i=1}^{s} P_i\right) \leq \left[\frac{s}{2}\right];$$

(ii)
$$\tau\left(\sum_{i=1}^{s} 2P_i\right) \leq s;$$

(iii) if $s \ge 4$, we get:

$$\tau\left(\sum_{i=1}^{s} mP_{i}\right) \leq \tau\left(\sum_{i=1}^{s} (m-2)P_{i}\right) + s, \text{ for any } m \geq 3;$$

(iv) if $s \ge 4$, we get:

$$\tau\left(\sum_{i=1}^{s} mP_{i}\right) \leq \left[\frac{sm}{2}\right], \text{ for any } m \geq 1;$$

moreover, we have equality, if P_1, \ldots, P_s lie on a conic.

Proof. (i) is clear and well known (cf., e.g., [7]).

(ii) The statement is certainly true for s=3 and s=4, the corresponding Hilbert functions being respectively:

So, let s > 4. To prove (ii), it is enough to show that

$$b_s\left(\sum_{i=1}^s 2P_i\right) \geq 3s \text{ i.e. } \dim_k |\mathcal{O}_{\mathbb{P}^2}(s); \ 2P_1,\ldots,2P_s| \leq {s-1 \choose 2}.$$

Now, if we impose to the above linear system the passage through s-3 new points on the line P_1P_2 , s-3 new points on the line P_2P_3 ,..., one more point on the line $P_{s-2}P_{s-1}$, i.e. to contain, as fixed components, the s-2 lines P_1P_2 , P_2P_3 ,..., $P_{s-2}P_{s-1}$, we get:

$$\dim_k |\mathcal{O}_{\mathbb{P}^2}(s); 2P_1, \dots, 2P_s| \le [(s-3)+(s-3)+(s-4)+\dots+2+1]+1=\binom{s-1}{2},$$
 which proves (ii).

(iii) It is enough to show that if

$$b_{i}\left(\sum_{i=1}^{s}(m-2)P_{i}\right)=\delta\left(\sum_{i=1}^{s}(m-2)P_{i}\right),\,$$

then

$$b_{i+s}\left(\sum_{i=1}^{s} mP_{i}\right) = \delta\left(\sum_{i=1}^{s} mP_{i}\right).$$

Now, if we impose to the linear system $|\mathcal{O}_{\mathbb{P}^2}(i+s); mP_1, \ldots, mP_s|$ to contain, as fixed components, the s lines $P_1P_2, P_2P_3, \ldots, P_sP_1$ (by imposing, as before, the passage through a suitable number of new points on each of our s lines), we get:

$$\dim_{k} |\mathcal{O}_{\mathbb{P}^{2}}(i+s); mP_{1}, \dots, mP_{s}| \leq [(i+s)-2m+1]+\dots+[(i+1)-(2m-2)+1]+$$

$$+ \left[\binom{i+2}{2} - s\binom{m-1}{2}\right] = \binom{i+s+2}{2} - s\binom{m+1}{2}.$$

It follows that $b_{i+s}\left(\sum_{i=1}^{s} mP_i\right) \geq s\binom{m+1}{2}$, which proves (iii).

(iv) We first prove that
$$\tau\left(\sum_{i=1}^{s} mP_i\right) \leq \left[\frac{sm}{2}\right]$$
, for any $m \geq 1$.

In fact, if m is even, say m=2t $(t \ge 2)$, we get from statements (ii), (iii) above:

$$\tau\left(\sum_{i=1}^{s} mP_i\right) \leq (t-1)s + s = \left[\frac{sm}{2}\right].$$

If m is odd, say m = 2t + 1 $(t \ge 2)$, we get from statements (i), (iii) above:

$$\tau\left(\sum_{i=1}^{s} mP_i\right) \le ts + \left[\frac{s}{2}\right] = \left[\frac{sm}{2}\right],$$

which shows our claim.

Now we prove that, if P_1, \ldots, P_s lie on a conic, we get:

$$\tau\left(\sum_{i=1}^{s} mP_{i}\right) = \left[\frac{sm}{2}\right].$$

In fact, if we put $u = \left[\frac{sm}{2}\right]$, it is enough to show (in view of the inequality just proved before) that $b_{u-1}\left(\sum_{i=1}^s mP_i\right) < s\left(\frac{m+1}{2}\right)$.

Assume m even, say $m = 2t(t \ge 1)$, hence 2u = sm. It follows that $\dim_k |\mathcal{O}_{\mathbb{P}^2}(u-1); mP_1, \ldots, mP_s| = \dim_k |\mathcal{O}_{\mathbb{P}^2}(u-3); (m-1)P_1, \ldots, (m-1)P_s|$, since 2(u-1) = sm - 2 < sm. On the other hand, we have:

$$\dim_k |\mathcal{O}_{\mathbb{P}^2}(u-3); (m-1)P_1, \ldots, (m-1)P_s| \ge {u-1 \choose 2} - s{m \choose 2}.$$

Hence:

$$b_{u-1}\left(\sum_{i=1}^{s} mP_i\right) \leq \binom{u+1}{2} - \left[\binom{u-1}{2} - s\binom{m}{2}\right] = s\binom{m+1}{2} - 1,$$

which shows our claim.

If m is odd, the proof essentially runs as above, which completes the proof of statement (iv) and also of the lemma.

LEMMA 1.2. Let $X = \{P_1, \dots, P_s\}$ be a set of $s \geq 6$ points in general position in \mathbb{P}^2 such that:

- (i) P_1, \ldots, P_h lie on a conic, say C, with $h \leq s \beta$, for some integer $\beta > 1$;
- (ii) $P_{h+1}, \ldots, P_s \notin C;$
- (iii) $\tau(2P_{h+1} + \ldots + 2P_s) \le s \beta 4$.

Then we get: $\tau\left(\sum_{i=1}^{s} 2P_i\right) \leq s - \beta$. Moreover, if $h = s - \beta$, then we have: $\tau\left(\sum_{i=1}^{s} 2P_i\right) = s - \beta$.

Proof. In fact, by imposing to the forms of degree $s-\beta$ through $Z=\sum_{i=1}^s 2P_i$ to contain, as a fixed component, the conic C counted twice, we get:

$$\dim_k |\mathcal{O}_{\mathbb{P}^2}(s-\beta); Z| \le (2s-2\beta+1-2h) + (2s-2\beta-3-h) +$$

$$+ \dim_k |\mathcal{O}_{\mathbb{P}^2}(s-\beta-4); \ 2P_{h+1}, \dots, 2P_s| = \binom{s-\beta-2}{2} + s - 4\beta - 2.$$

Hence
$$b_{s-\beta}(Z) \ge {s-\beta+2 \choose 2} - {s-\beta-2 \choose 2} - s+4\beta+2 = 3s$$
, i.e. $\tau(Z) \le s-\beta$.

The last assertion is clear, since in any case, in view of Lemma 1.1 (iv), we have: $\tau(2P_1 + \ldots + 2P_h) = h$.

2. The main results.

In this section we will prove the two theorems announced in the Introduction.

THEOREM 2.1. Let P_1, \ldots, P_s be points in general position in \mathbb{P}^2 , with $s \geq 6$, and let $\left[\frac{sm}{2}\right]$ denote the integral part of the rational number $\frac{sm}{2}$.

Then the following are equivalent:

- (a) the points P_1, \ldots, P_s lie on a conic;
- (b) there exists some integer $m \ge 2$ such that

$$\tau\left(\sum_{i=1}^{s} mP_{i}\right) = \left[\frac{sm}{2}\right];$$

(c) for every
$$m \ge 2$$
, we get: $\tau\left(\sum_{i=1}^{s} mP_i\right) = \left[\frac{sm}{2}\right]$.

Proof. (a) \Rightarrow (c) follows directly from Lemma 1.1 (iv), and (c) \Rightarrow (b) is clear. It remains to prove that (b) \Rightarrow (a).

Now, in view of Lemma 1.1, it is enough to show that, for $s \ge 6$:

(I)
$$\tau\left(\sum_{i=1}^{s} 2P_i\right) = s \Rightarrow P_1, \dots, P_s$$
 lie on a conic, and

(II)
$$\tau\left(\sum_{i=1}^{s} 3P_i\right) = s + \left[\frac{s}{2}\right] \Rightarrow P_1, \dots, P_s$$
 lie on a conic.

We will prove, in both cases, that the points P_1, \ldots, P_s lie on the conic $C = (P_1, \ldots, P_5)$.

We first prove (I). Suppose, by absurd, that P_1, \ldots, P_s don't lie on any conic and denote by h the maximum number of the $P_i's$ lying on a conic, hence $h \leq s-1$. Then we distinguish two cases:

- (i) $s \ge 8$, in which case it follows from Lemma 1.2 (see also Lemma 1.1 (ii)) that $\tau\left(\sum_{i=1}^{s} 2P_i\right) \le s-1$: contradiction.
- (ii) $6 \le s \le 7$, in which case one checks directly that $\sum_{i=1}^{s} (2P_i) \le s-1$ again, and so we are done.

We turn to the proof of (II). We distinguish two cases:

(j) s even, say $s = 2u(u \ge 3)$. By hypothesis, we have:

$$\dim_k |\mathcal{O}_{\mathbb{P}^2}(3u-1); |3P_1, \dots, 3P_s| \ge {3u+1 \choose 2} - (12u-1).$$

Now, if we impose to the linear system above to contain, as fixed components, the u lines $P_1P_2, \ldots, P_{s-1}P_s$, we get:

$$\dim_k |\mathcal{O}_{\mathbb{P}^2}(2u-1); \ 2P_1, \dots, 2P_s| \ge \binom{3u+1}{2} - (12u-1) - (12u-1) - (13u-1) - 5 + (13u-2) - 5 + \dots + (2u-5) = \binom{2u+1}{2} - (6u-1).$$

Hence, in view of statement (I) proved before, the points P_1, \ldots, P_s all lie on a conic, which proves statement (II) for s even.

(jj) s odd $(s \ge 7)$. For s = 7, the proof runs as follows. By hypothesis, we have $b_9\left(\sum_{i=1}^7 3P_i\right) \le 41$ i.e. $\dim_k |\mathcal{O}_{\mathbb{P}^2}(9); 3P_1, \ldots, 3P_7| \ge 14$. Suppose, by absurd, that P_1, \ldots, P_7 don't lie on a conic. Then, if $P_6 \in C = (P_1 \ldots P_5)$ and $P_7 \notin C$, we get: $\dim_k |\mathcal{O}_{\mathbb{P}^2}(8); 3P_1, \ldots, 3P_5, 2P_6, 2P_7| = \dim_k |\mathcal{O}_{\mathbb{P}^2}(6); 2P_1, \ldots, 2P_5, P_6, 2P_7| \ge 10$, hence $\dim_k |\mathcal{O}_{\mathbb{P}^2}(5); 2P_1, \ldots, 2P_5, 2P_7| \ge 4$: contradiction (in view of (I)); otherwise $P_6, P_7 \notin C$, in which case we get: $\dim_k |\mathcal{O}_{\mathbb{P}^2}(8); 3P_1, \ldots, 3P_5, 2P_6, 2P_7| \ge 10$, hence $\dim_k |\mathcal{O}_{\mathbb{P}^2}(6); 2P_1, \ldots, 2P_7| \ge 8$: contradiction (in view of (I) again).

Assume s > 7, say s = 2u + 1 $(u \ge 4)$. Then, by hypothesis, we have: $\dim_k |\mathcal{O}_{\mathbb{P}^2}(3u); 3P_1, \ldots, 3P_s| \ge \binom{3u+2}{2} - (6s-1)$.

Now, if we impose to the linear system above to contain, as fixed components, the (u-3) lines $P_8P_9, \ldots, P_{s-1}P_s$, each of which counted three times, we get:

$$\dim_k |\mathcal{O}_{\mathbb{P}^2}(9); 3P_1, \dots, 3P_7| \ge \binom{3u+2}{2} - (6s-1) - \left\{ [(3u-5) + ((3u-1)-3) + ((3u-2)-1)] + \dots + [(12-5) + (11-3) + (10-1)] \right\} = 14.$$

It follows, in view of the case s=7 just discussed above, that P_6, P_7 lie on the conic $C=(P_1 \dots P_5)$. Hence, by renumbering our s points, we get that the points P_1, \dots, P_s all lie on the conic C, which proves statement (II) also for s odd.

This completes the proof of the implication $(b)\Rightarrow(a)$ in our theorem, and so we are done.

Remark 2.2. It is worth observing that the implication $(b)\Rightarrow(a)$ in Theorem 2.1 is not true, in general, for m=1, as is shown, for example, by any set of nine points in general position which are the complete intersection of two plane cubics. Finally we note that the implication $(a)\Rightarrow(c)$ is already shown in [3] (see also [2]).

Before stating our next theorem, we need a lemma.

LEMMA 2.3. Let $X = \{P_1, \dots, P_s\}$ be a set of s > 12 points in

general position in \mathbb{P}^2 and let Z denote the zero-cycle $\sum_{i=1}^{s} 2P_i$. Then:

- (1) if s = 2h $(h \ge 7)$ and X admits a partition, say $X = Y_1 \cup Y_2$, with $Y_i \subset C_i$, C_i being a conic (i = 1, 2) and moreover $|Y_i| \le h + 2$, we get: $\tau(Z) \le h + 2$;
- (2) if $s = 2h(h \ge 7)$ and there exist two conics C_1, C_2 such that $P_1, \ldots, P_h \in C_1, P_{h+1}, \ldots, P_{s-1} \in C_2, P_s \notin C_1 \cup C_2$, we get: $\tau(Z) < h + 3$;
- (3) if s = 2h + 1 $(h \ge 6)$ and there exist two conics C_1, C_2 satisfying one of the following conditions:
 - (i) $P_1, \ldots, P_{h+1} \in C_1, P_{h+2}, \ldots, P_s \in C_2$, or
 - (ii) $P_1, \ldots, P_h \in C_1, P_{h+1}, \ldots, P_{s-1} \in C_2, P_s \notin C_1 \cup C_2$, we get: $\tau(Z) \leq h+3$.

Proof. (1) First we note that, under our hypotheses on X, we immediately obtain (see, e.g. [7, Lemma 2.1)]: $b_4(X) \ge 12$, hence $b_{h-2}(X) \ge 2(h-2)+4$, i.e. $\tau(X) \le h-2$.

Now, assume for example that $P_1, \ldots, P_h \in C_1, P_{h+1}, \ldots, P_s \in C_2$. Then, by imposing to the forms of degree h+2 through Z to contain, as fixed components, both C_1 and C_2 , we get:

$$\dim_k |\mathcal{O}_{\mathbb{P}^2}(h+2); Z| \le 5 + 1 + \dim_k |\mathcal{O}_{\mathbb{P}^2}(h-2); X| = 6 + \binom{h}{2} - 2h,$$

hence $b_{h+2}(Z) \ge {h+4 \choose 2} - 6 - {h \choose 2} + 2h = 3s$, which proves (1) in this case. A similar argument proves statement (1) in the other two cases left out.

(2) We note that, under our hypotheses on X, we get (arguing as in (1) above): $\tau(X\setminus\{P_i\}) \leq h-2$, for $i=1,\ldots,s-1$.

Now, by imposing to the forms of degree h+3 through Z to contain, as fixed components, the conics C_1, C_2 and the line $P_{s-1}P_s$, we obtain:

$$\dim_{k} |\mathcal{O}_{\mathbb{P}^{2}}(h+3); Z| \leq 7 + 5 + (h-3) + \dim_{k} |\mathcal{O}_{\mathbb{P}^{2}}(h-2); X \setminus \{P_{s-1}\}| = 10 + \binom{h}{2} - h, \text{ hence } b_{h+3}(Z) \geq \binom{h+5}{2} - 10 - \binom{h}{2} + h = 3s,$$

which proves (2).

Finally the proofs of statements (3)(i), (3)(ii) essentially run as the proofs of (1), (2) respectively, developed above.

THEOREM 2.4. Let $X = \{P_1, ..., P_s\}$ be a set of $s \geq 6$ points in general position in \mathbb{P}^2 , not lying on any conic, and denote by h = h(X) the maximum number of points of X lying on a conic, and by Z the zero-cycle $\sum_{i=1}^{s} 2P_i$. Then:

- (1) $\tau(Z) = s 1$, if and only if, h(X) = s 1;
- (2) if s > 9, we get: $\tau(Z) = s 2$, if and only if, h(X) = s 2;
- (3) if $s > 2(\alpha + 3)$, with $\alpha \ge 3$, the following are equivalent:
 - (i) $\tau(Z) = s \alpha$, and moreover $h(X) > \alpha + 3$;
 - (ii) $h(X) = s \alpha$.

Proof. First we note that, in view of Theor. 2.1, we get:

Also, we will assume that P_1, \ldots, P_h (with h = h(X)) lie on a conic, say C, and we will denote by W the zero-cycle $\sum_{i=1}^{s} 2P_i$.

- (1) \Rightarrow Suppose, by absurd, that $h(X)\neq s-1$. Hence, in view of (*), we get: $h(X) \leq s-2$. We distinguish two cases:
- (i) s>10, in which case it follows from Lemma 1.2 (see also Lemma 1.1 (ii)) that $\tau(Z)< s-2$: contradiction.
- (ii) $7 \le s \le 10$, in which case one checks directly that $\tau(Z) \le s 2$ again, and so we are done (the case s = 6 being clear).

The reverse implication follows from Lemma 1.2.

- (2) \Rightarrow Suppose not; hence, in view of (*), $h(X) \leq s-3$. We distinguish two cases:
 - (i) s > 12, in which case we get:

In fact, this is clear if $h \ge 7$ (in view of Lemma 1.1 (ii)); if h = 5, 6, (**) follows from Lemma 1.1 (ii) and Theor. 2.1 (see also statement (1) above). Therefore, it follows from Lemma 1.2 that $\tau(Z) \le s - 3$: contradiction.

(ii) $10 \le s \le 12$. In this case one checks directly that $\tau(Z) \le s-3$ again, and so we are done.

The reverse implication follows from Lemma 1.2.

(3) \Rightarrow Suppose not; hence, in view of (*), $h(X) \le s - \alpha - 1$ ($\alpha \ge 3$). Now, if we show that:

we get immediately from Lemma 1.2 that $\tau(Z) \leq s - \alpha - 1$, which is a contradiction. We distinguish four cases:

- (i) $h \ge \alpha + 5$, or $h = \alpha + 4$ and s > 2h, or $h = \alpha + 3$ and $s \ge 2h + 2$, in which hypotheses (***) is true. In fact, this is clear, if $h \ge \alpha + 5$ (in view of Lemma 1.1 (ii)); in the other two subcases this follows from Lemma 1.1 (ii) and Theor. 2.1 (see also statements (1), (2) above).
- (ii) $h = \alpha + 4$ and s = 2h $(h \ge 7)$. In this case, if the points P_{h+1}, \ldots, P_s lie on a conic, we get from Lemma 2.3 (1): $\tau(Z) \le s \alpha 2$, which is a contradiction; otherwise, we get (***) and we are done.
- (iii) $h = \alpha + 4$ and s = 2h 1. In this case, if the points P_{h+1}, \ldots, P_s lie on a conic, we get from Lemma 2.3 (3): $\tau(Z) \leq s \alpha 1$, which is a contradiction; otherwise, we get (***) and we are done.
- (iv) $h = \alpha + 3$ and s = 2h + 1. In this case, if h of the s h points P_{h+1}, \ldots, P_s also lie on a conic, we get from Lemma 2.3 (3): $\tau(Z) \leq s \alpha 1$, which is a contradiction; otherwise, we get (***) again and we are done.

Finally, the reverse implication of statement (3) also follows from Lemma 1.2, which completes the proof of the theorem.

REFERENCES

- [1] Castelnuovo G., Ricerche generali sopra i sistemi lineari di curve piane, Memorie della R. Accademia delle Scienze di Torino, t. XLII, in Memorie Scelte, Zanichelli, Bologna (1937 XV), (1891) 137-188.
- [2] Catalisano M.V., Regolarità dei sistemi lineari di curve piane passanti per punti di \mathbb{P}^2 in posizione generale, con assegnata molteplicità, Atti Acc. Scienze Torino (1987).
- [3] Davis E., Geramita A.V., The Hilbert function of a special class of 1-dimensional Cohen-Macaulay graded algebras, The Curves Seminar at Queen's, III, Queen's Papers in Pure and Applied Math., 67, (1984) 1H 29H.
- [4] Gimigliano A., Regularity of linear systems of plane curves, J. Algebra, 124, (1989) 447-460.
- [5] Greco S., Remarks on the postulation of zero-dimensional subschemes of projective space, Math. Ann., 284, (1989) 343-351.
- [6] Harbourne B., The geometry of rational surfaces and Hilbert functions of points in the plane, Canad. Math. Soc. Conf. Proc., 6, (1986) 95-111.
- [7] Maroscia P., Some problems and results on finite sets of points in \mathbb{P}^n . In: Algebraic geometry Open problems. Proc. Conf. Ravello, Italy 1982. Lecture Notes in Mathematics, Springer, Berlin, Vol. 997, (1983) 290-314.
- [8] Segre B., Alcune questioni su insiemi finiti di punti in Geometria Algebrica, Atti Conv. Intern. Geometria Algebrica, Torino, (1961) 15-33.
- [9] Stückrad J., Vogel W., Buchsbaum rings and applications, Springer, Berlin Heidelberg New York London Paris Tokyo (1986).

Dipartimento di Matematica Università della Basilicata I - 85100 Potenza (Italy)

Permanent address:
Dipartimento di Metodi e Modelli
matematici per le Scienze Applicate
Università "La Sapienza"
Via A. Scarpa, 10
I - 00161 ROMA