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REPRESENTATION THEOREMS WITH VARIABLES
IN AN INTRINSIC FORM

SEBASTIANO PENNISI (Catania) (*) (**)

In a Minkowski space V', consideration is given to the tensor-valued
isotropic functions of an arbitrary number of tensors of which one is a
time-like vector U and another is a symmetric tensor A, such that

A°P its space-space part orthogonal to U, has distinct eigenvalues.
Representations are given for these functions in terms of an

orthonormal basis of eigenvectors U of A*(A = 0,1,2,3). The
relationship between the total and the partial derivative of these
function with respect to-the independent components® of U§ is also
obtained in covariant form.

1. Introduction. |

Representation theorems for isotropic functions have been object
of much attention due to their utility in the field of physics. In the
case of a 3-dimensional euclidean space [2, 6, 8, 9] they characterize
the functions obeying the principle of objectivity or material frame

(*) Entrato in Redazione il 13 luglio 1989
(**) This work was partially supported by the Italian Ministry of Education.
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indifference (as an example of applications, it can be seen the paper
[3] by I-Shih Liu and I. Miiller).

In the case of a Minkowski space [5, 7] these representation
theorems characterize the functions underlying the principle of
relativity and papers such us [1, 4] furnish examples of possible
applications. |

In order to express analitically this concept of isotropic functions
let us consider the set w of independent variables constituted
by the following tensors of order 0,1,2 respectively: \,, V;”,T;‘ﬁ for
n=1,....,N;r=1,..., R;yp=1,...,P.

The applications

Cpw—oR, ¢ woV, ¢ w—osVQRV, PP w sV RVRV

are said isotropic functions (of order 0,1,2,3 respectively) iff the

conditions
$On, ALV, AL AGTE) = O, V2, T3P)

¢ O, ALV, AZ ABTOP) = A% 7 (0, V2, T2P)

¢#U(An;Az’VTa,AgIAgIT;ﬁ) = AZ,Azl(bwwo\m Y/;ra,T;ﬂ)

PO, ALV AL AGTSP) = A AL ALY O, V2, T3P

are verified for all orthogonal automorphisms Ag' of V.
In other words, this property means that the following diagrams

are commutative

A A
w — w w — W
¢l b hl LA
R AN

where Z =V if h=¢*, Z=V QV if h = ¢+,

Z=VVV if h=¢*
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Obviously if V is a 3-dimensional euclidean vector space the
summation convention over repeated indices is used from 1 to 3
and the orthogonality of AY means that AY Ag'&yﬂ/ = 843 (Kronecker
symbol) while if 'V is a Minkowski space the summation convention
is used from 0 to 3 and A? is orthogonal iff

AglAg Qa’ﬁ’ = gaﬂ

(Metric tensor).
The representation theorems furnish sets S; of tensors of order 1
for i =0,1,2 such that:

1 Every scalar-valued isotropic function can be expressed as a
function F' of the elements in set Sj.

2) Every tensorial isotropic function of order : = 1,2 can be expressed
as a linear combination F; of the elements in set S; through
scalar ‘coefficients.

But the function F (for ¢ = 0) or the coefficients of F; (for'i =1,2)
are not in general differentiable functions of their arguments, as
stated for example by one of the authors of these papers ([8] p.
915); on the other hand, in the applications they are assumed to be
derivable ({1, 3, 4]). Now it is true that derivability may be assumed
on physical ground but it is also true that this property depends
even on the representation itself; for example let us consider a scalar
function f of a symmetric tensor A in a 3-dimensional euclidean
space. From the tables in [8] we read that f can be expressed as a
function f = Fi(trA,trA? trA®) and then as a function f = Fy(z,y, 2)

where
z = 2rA% — 3trA)trA?) + (trA),

y=2rA% — (trA)?, z =trA;
obviously Fj; is derivable with respect to its arguments iff F, is

derivable with respect to its owns.

But it is obvious that f can be expressed also as a function
f = F3(\1,X2,23) where X\, A3, A3 are the eigenvalues of A; now Fj
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may be derivable even when F, is not; in fact

but )\;(z,y, z) is such that
210,4,2) =0; 2200,v,2) =1— (/V)/2; X30,y,2) =1+ (/v)/2

and then ), is not derivable with respect to y in the point
(z,y,2)=(0,0,2).
On the other hand the derivability of F, implies that of F3; in

fact »
2 oF; _0F, 0u  O0F, dy OF: 0:
O\; Oz O\ Oy 0N 0Oz O\
and
oz oz ox
_ 'aTl —,6>‘2.>\3, —5-5\; = 61 3; _B_X—g_ _&6\}\,,1\,)\2,
dy _ .. oy SOy .
% =201 — X2 — X3); B =202 — A1 — A3); s —2§X3 — A1 — A2);
0z 3 0z 3 0z 1
o\ 8\, 0O\

Moreover, in the applications one may be interested to functions
that are linear with respect to some of their arguments (see [1, 3, 4]
and even this aspect depends on the representation used; in fact in
the above mentioned example we can see that F; is linear in A iff
Fy = atrA + b for some constants a,b (and then F) is a single variable
function), while Fj is linear in A iff F5 = a1\ +axh2 +a3)3 + b for
some constants ai,as, a3, b’ (and then it is a three-variables function).

From these observations it is then evident that with physical
motivations one must assume not only derivability of the functions
involved and the possibility of expanding some of them up to linear
terms, but also the representation in which these properties must be
satisfied.

This fact shows the utility to know alternative representations
" to those alredy known and I think it is interesting the case in which
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1) The framework is a Minkowski space V with metric tensor
9ap = diag(—1,1,1,1) (The case in which we have a 3-dimensional
euclidean space, might be easily considered with the same
method),

2) among the independent variables there are a time-like vector U,
the eigenvalues of ' '

A = A% + (U U PUNULAMUUP — 2U, U U, AT P

(i.e. the space-space part orthogonal to U, of a symmetric
tensor A) and an orthonormal basis U¢ of eigenvectors of AP
- (A4=0,1,2,3) where U = (U, U /2U
I call this set «intrinsic variable».
When A* has distinct eigenvalues then Ug are determined up
to sign; more generally one can assume that U$ are a sort of hidden
variables with which A%® assumes the form

3 _
AP = 3" 2ABUgUf where |[MP|] = diag(0, A1, s, \3)
A,B=0 ‘ o
and M1, )2, A3 are three other scalar variables (The eigenvalues of
A,

Consequently we have

3 |
A% = E uABUXUg

A,B=0
where ~
TSN
st M 000
W= '
p? 0 X O
B0 0 )

and po, p1, p2, 3 are four other scalar variables, i.e. 4 = UgU4 AP
| 3
for A=0,1,2,3, where I have defined U4 = EQABUBQ.
B=0
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With these variables among the others, I list in Section 2
complete representations for scalar-valued, vector-valued and tensor-
valued isotropic functions of order 2 and 3; it can also be proved that
they are irreducible in the sense that no proper subset of them will
suffice to furnish a complete representation. ‘

" In section 3 it is shown how the results previously known in the
literature may be derived from the present ones.

Lastly, in section 4 the problem is considered of expressing in
covariant form the total derivatives of a function with respect to
the independent components between U§, in terms of the partial

derivatives.

2. Complete and irreducible representations with the variables
us. |
Let us consider the set S of independent variables constituted by

1) an orthonormal basis of vectors Ug for A =0,1,2,3 of which Uy
is time-like.

2) an arbitrary number of other 4-vectors V,* (for r =1,..., R),

3) an arbitrary number of second order symmetric tensors Ag‘/—’ (for
p=1,...,P), '

4) an arbitrary number of second order skew-symmetric tensors
Wb (for ¢=1,...,Q),

5) an arbitrary number of scalar variables )\, (for n=1,...,N).
Then the following theorems hold

THEOREM 1. Every scalar-valued isotropic} function ¢ of the
variables in set S can be expressed as a single-valued function of the
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scaldfs in the following set Ty:
VU ke forr=1,...,R; A=0,1,2,3
A%UsUps  forp=1,...,P; A, B=0,1,23, A<B
W#UsaUpg forq=1,...,Q; A,B=0,1,2,3, A<B

An, ~ form=1,...,N".

THEOREM 2. Every vector-valued isotropic function ¢ of the
variables in set S can be expressed as a linear combination through
scalar coefficients of the vectors U§, for A=0,1,2,3 (set T).

THEOREM 3. Every second order symmetric tensor-valued isotropic
function ¢*? of the variables in set S can be expressed as
a linear combination through scalar coefficients of the tensors
ULUP = (UUL + USUR)/2 for A,B=0,1,2,3, A< B (set Thy).

THEOREM 4. Every second order skew-symmetric tensor-valued
isotropic function WP of the variables in set S can be expressed
as linear combination through scalar coefficients of the tensors
UleUs = (UgUl — USUg)/2 for A,B=0,1,2,3, A < B (set T»,).

THEOREM 5. Every third order tensor-valued isotropic function
A®BY of the variables in set S can be expressed as linear combination
through scalar coefficients of the tensors UjUg Ug for A, B,C=0,1,23
(set T3). :

The proofs of these theorems are trivial and then I omit them.

The sets Ty,71,1%s,12.,15 are called complete representations
and it is not difficult to see that such representations are irreducible
in the sense expressed in section 1.

In the next section these representations are related to those
already known in the literature.
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3. Relationship with the previously known results.

The most complete paper on representation theorems for isotropic
functions in a 4-dimensional pseudoeuclidean vector space (with
signature — +++) is ref. [7]. This fact does not mean that the present
paper is a particular case of that one because I have now more
restrictive hypotesis and thus the results are also different. Moreover
it can be shown that the results in that paper, may be obtained by
using the method of the present one; I show now how this purpose
may be realized.

The independent variables in [7] are a time-like four-vector V2,
an arbitrary number of other 4-vectors V.* and of second order
tensors (of which some, Agﬁ, are symmetric and the others anﬁ
skew-symmetric; r=1,...,R;p=1,...,P; ¢=1,...,Q).

There are some cases to be considered; each of them will give a
set of generators S; for isotropic functions of order i, for +=0,1,2,3.
The union of all this sets of the same order will give a representation
for these functions that is equivalent to the corresponding one in
ref. [7]. If R; and Ry are two representations for isotropic functions
of order ¢ here R; is said equivalent to R; iff each element of R;
can be expressed as function of those of R}, if i =0, or as a linear
combination through scalar coefficients of those of R!, if 1 > 0).

The first case to be considered is

Case 1. Among the independent variables there are three 4-vectors
V¥, V¥, V5¥ that are linearly independent (1.i.) with V7.

In this case we may consider

‘ A
3.1) Ug =Y dapVE for A=0,1,2,3

B=0
and choose A4gp such that U§ constitute an orthonormal basis, of
vectors; obviously A 4p depends only on V§ Vg gap that must then be
included in the representation for scalar-valued isotropic functions.
By substituting the relation (3.1) in the representations found in sect.
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2 of this paper we obtain the first of the above mentioned sets of
generators for isotropic functions.
In the other cases the following set I of vector-valued isotropic

functions is used:
VO) V'ra AmVOa WQ3V0; W43V0) Ap1 V’r; Apl Ap:;VO; Ap1 Wq:;VO)

Ap, Ap, Vi, Ap, Ap, Ap Vo, Ap, Ap Ay Vo, Wo Vi, Wy Aps Vo,
Weos Wes Vo, W Wy Vs W Wy Ags Vo, Wy W Wog Vo,
(Ap, Ap, — ApyAp )WVr, (Apy Apy — Apy Ap)Ap Vo, (Apy Ap, — Apy Ap )W Vo,
(W Wer = Woa Wa DV, (W, Wy — W, W) Ay Vo, (W, W — Wos W )Wes Vo,
Ay Wy — Wy Ap )V, (Aps War — Wy Ap YAy Vo, (Apy Wes — Wey Ap)Wes Vo,

f0r7=1)"':R; Pl,pZ,p3=1,---;P and D1 <p2;q1>q2’q:3=1"'°’@ and
q1 < q2-

Case 1.1. There are not three 4-vectors V%, V7%, V_f Li., with V&,
but there are three elements Y Y, V;* of set I that are li., with

Vo
" The method of case (1) can be used here, but with Y,* instead of
Ve for a=1,2,3.
Case 2. We have that:

a) There are not three elements of set I that are Li., with V*;

b) There are two-4-vectors V¥, V,* that are li., with V{*.

As in case (1) we may consider U§ defined by (3.1) but for
A =012 and \gp such that U} constitutes an orthonormal basis
of V generated by V&, V¥ V,*. Moreover we may complete Ug, Uf,
Ug to an orthonormal basis of V with another 4-vector Ug (or its
opposite —U$). Let Z be the reference frame in which the coordinate
axis are directed along U%; from condition a) we have that

(3.2) VoUsq = 0; A% Usq = 0; WP use = 0
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- where
(3.3) AP = A% + g*P AN (—gyy — UnnUoy + UnUny + UnaUsy)

that substitutes A'p"‘ﬁ and the scalars QAuAS”, Uax U’BuAg/# (for A=0,1,2)
to 42", |

We find then the representation for scalar-valued isotropic
functions constituted by gMA;“ and that of theorem 1, sect. 2, but
only for A, B =0,1,2 (as it can be seen from relation (3.2)).

From theorem 2 of sect. 2 we have that a vector-valued isotropic
function ¢® may be expressed as

, .3 . :
(3.4) $* =) AU where \3=¢° in X;
A=0

now if we change the sign of the 3-axis of T, ¢> must change sign
(because ¢* is an isotropic function), while it must remain the same
as before (because it is a function of variables that remain the same
with this inversion of the 8-axis) and then ¢3 =0, ie X3 =0 in -
(3.4). Then {Ug, Uf*, Us} (or equivalently {V, V&, V&) constitutes the
requested set for vector-valued isotropic function.

The same method may be used for the isotropic functions
p*P = p@P b = pleBl A*P7 and shows that in £ we have
W3 =WeB = A%B3 = A23B = A3eF = 4333 = (; for o, 3=0,1,2.

Consequently, from theorem 3,4,5 of sect. 2 we have that

¢*# is a linear combination of Uf(ng) (for A,B=0,1,2; A< B)
and ‘

Usuy;
W is a linear combination of URUE! (for A,B=0,1,2; A< B),
A®PY is a linear combination of U§U gUg and USUSUJ,

UsUsUy, usutul (for A,B,C =0,1,2).
Substituting to U;‘Uf the identity

USUf =g + USUG — UFUY - UsUY
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and to U§ the relation (3.1) for A =0, 1,2, we find the requested sets
of generators. :

Case 2.1. We have that:
a) there are not three elements of set I that are l.i. with V*;
b) there are not two 4-vectors V, Vf that are l.i., with V&%

c¢) there are two elements Y} Y,* of set I that are Li., with V.,

The results of case (2) can be used with Y* instead of VvV (for
a = 1,2) thus obtaining another of the requested sets.

The remaining cases to be considered may be treated in a similar
way and [ omit them in order to be brief.

I want now to come back to the hypotesis of the present paper,
(i.e. that among the independent variables there is an orthonormal
basis U$ of 4-vectors, for A =0,1,2,3) and show how the total
derivatives with respect to the independent components of U§ may
be expressed in terms of the partial derivatives in covariant form.
This problem is treated in the next section.

4. The total derivatives with respect to U$.

For the orthonormality condition
(4.1) - UzUﬁa =gaB,

it is clear that the 16 variables U$ are not all independent, but we
may choose six of them z,, (for m =1,...,6) as independent and call
yn (for n=1,...,10) the remaining ones, obtaining y, = y,(z,,) from
the condition (4.1). A possible choice is indicated in the following
theorem.

THEOREM 1. There is a permutation of U, U, Ug such that
U(*)',U{",Uz3 (for i =1,2,3; a=2,3) can be assumed as independent

variables.
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Proof. From (4.1) with A = B =0 we see that we can take
x =Uf, 2= U, 23=U}

and from \
U =1+ (U >0
i=1
we can take y; = UJ.
Moreover there is A € {0,1,2,3} such that

~Us Us

4.2) #0

~Us Ui

otherwise we would have Uﬁ = A AUS; U}l == >\AU01 for some )4 and
then if 44 is a non null solution of

3 3 3
S o uada=0; ) paUi=0; > paU3 =0; |
A=0 A=0 A=0

3
we would obtain E paUy% =0 against the linear independence of the

: _ A=0
4-vectors Uug.

The property (4.2) is not verified for A =0 and we may suppose
that it is true for A =1 because in the other eventualities we come
back to this case with a permutation of the 4-vectors U} Ug, Us".

From (4.2) and (4.1) for A=1; B =0,1 we see that we can take
za=U?, 35 =U}, 12=U}, y3=UJ.

Similarly there is A e‘ {2,3} such that

U Uy Us
(4.3) ~Uy Ul U |#0
~Us Uy Ui




REPRESENTATION THEOREMS WITH VARIABLES IN AN INTRINSIC FORM 71

otherwise we would have U9 = XaUJ + uaU?;

Us = MU + paUl;U% = MaUG + paUt
for some M4, u4 and then if v4 is a non null solution of

3

3 3
ET/AXA = 0; ZVAMA = 0; EVAUEl =0

A=0 A=0 . A=0

3
we would obtain Z vaU4 =0 against the linear independence of the

: A=0
4-vectors Uy.

The property (4.3) obviously is not verified for A = 0,1 and we
may suppose that it is true for A =2 because in the other cas ewe
may come back to the present one with a permutation of U$, us.

From (4.3) and (4.1) for A=2; B=0,1,2 we see that we can take

26 =Us, ya = U3, ys =Us, ys=U3.

Moreover we can see (with the same method) that

(44) 0 Ul UZ U3

From (4.4) and (4.1) for A=3; B =0,1,2,3 we have that
y7=U3, ys=U3, yo = U3, y10=Uj.

It will be useful to know the derivatives of these y, with respect to
the z,,; to this end let us now consider the relation (4.1) for AB = 00,
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01, 11, 02, 12, 22, 03, 13, 23, 33 and take their derivatives with
respect to Ug, Ut, U23 (for i = 1,2 3; a =2,3); we obtain respectively

3 A
® D WCPIIGE WA

AI=0 /=0

(4.6) E Z AcA’ 507 U} = Z ¢“Usa

A'=0 /=0

3
4.7) E Z A 5[-]-3-UAZ =3Ol
A=0

A'=0 /=0

where
= (=08, -U?,0,-U3,0,0,—-U3,0,0,0)"

(In the sense that Ago is the c-th component of the second

member),
A = 0,-08,-U?,0,-U32,0,0,-U3,0,00"

At = (0,0t,Ui,0,U},0,0,U35,0,00"
AZ = (0,0,0, U3, ~U?, ~U2,0,0,—U3, 0)"
A% = (0,0,0, UO,UI,UZ,O 0,U;,0)7
A% = (0,0,0, UO,UI,Uz,O 0,U2,0)"

Ag = (0,0,0,0,0,0, -0, —U?, —U?, —UNHT
A% =(0,0,0,0,0,0,U, UL, U3, UHT
A$ = (0,0,0,0,0,0, U2, U, U3, UHT
A =(0,0,0,0,0,0,U3, U3, U3, U3)"
pCh = (=684, 61,0, —64,0,0,—64,0,0,0)"

¢%4 =,-6§,— 5(1,0,—554,0,0,-554,0,0)T
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C’A — A A A T
=(0,0,0, -84, —8{*, —64,0,0, —52, 0)

Obviously the determinant of A,(;A' is the product of those in
(4.2), (4.3), (4.4) times (—U) and then A,?A' is invertible so that from
(4.5), (4.6), (4.7) we can obtain

UL _ N~ iy UL N~ ya
arr Al Udi; = q 4 U tas
oU} oU¢

(4.8) A3=0 A=0
(9UZ, A

= T4 Uas;

o0s

where p A/,"l, qZ,A, TZ,A are the solutions of -

3 A /
@) 5 S A A -
. A'=0 /=0

(4.10) Z Z ATy =

A'=0 /=0

(4.11) | ZEAGAITZ,A =rC

Al=0 /=0

Lastly let now f be a tensor-valued isotropic function of some.
order v (I omit the eventual indices for the sake of brevity), depending
among the other variables also on the orthonormal 4-vectors UA (for
A=0,1,2,3).

From f = f(z.,,,y,) Wwe may define the composite function

(4.12) | 9(@m) = f(Tm, Yn(Tm))

and the function

oF

=0.
OYn

(4.13) F(z,ys) = g(z,,) for which
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Then the following theorem holds

THEOREM 2. There are 16 functions f“5 (for A,B =0,1,2,3)
~satisfying the condition fAB = £B4 and such that :

OF _ 8f n
4.14
(4.14)  WE T AR ;gf Usy-

Proof. We may consider the case in which the variables z,, are
those of theorem 1 because the permutation that appears in it does
not effect the present proposition (it results only in a permutation of;
the rows and columns of the matrix of components f42).

From the derivation property of composite functions and relations
(4.8) we have

5(1;:, 8U; Az,_:oi 680{7, %[(;%I’ )
- o z }: % Lo3? | s
OF Z f: 9f U} _
U7 aU1 2224 5u7 oU; |
aUa Z 5_;05;0 af,q,er Ba
22 éwg }%ﬁ;i@fgg:

aUB Z EZ ’Y’TA' Uss.

520 \4=05=0 O
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If we define

3 A
fOBzzz aU’Y’pA

3 4
8>

A'=0 /=0

A'=0 /=0 U
(4.15) 25 e~ Of
PP=33 -
22y
fB3
f3B= 3 af

*zaU

~'=0

of

7B

~B

for B=0,1,2

¥ for B = 3

75

the above relatlons prove the propos1t10n (4.14) for Ap = 01, 02, 03,

12, 13, 23. Then it is true if it is verified also for. Au = 00, 10

20, 21, 22, 30, 31, 32, 33, i.e.

(4.16) =

Moreover the simmetry condition f48 = fB4 holds iff

(4.17)

aUO +ZfOBU

oF

1B 2B

6U1 +z_:f U1 = == 370 +Zf Upo =
3

—6—f—+ZfZBUB LS PR,

U} £ aU2 et

L+3 P0n

3B
8U +Z%f Ups.

3B
aUO +Ef Uso= g1 aU

aU2 +Zf3BU

3

3

f()l — fl(); f02 — fZO; f12 — f21-

11,
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3 .
Now we can see that EpCAUAo = —Ag’ so that from (4.9) we
A=0

3 A 3
S5 (o otun ) - AR
A=0

A'=0 /=0

obtain

whose solution is

3
S Py Uao = —6367 -
A=0

(By substitution it becomes evident that it is a solution; moreover
the invertibility of A,?,A»' assures that it is the only solution).
This relation and (4.15); prove (4.16);.

Similarly we see that

3 | 3
> % Ua0 = —AF: Y ¢ Uar = —Af
A=) A=0

so that from (4.10) we may obtain two sistems whose solutions are

3 3
/A IA !
S ¢4 Uso=—64603 > qk Usr = —6467
A=0 =0 .

that by use of (4.15), give the proof of (4.16),, (4.16)3 respectively. |
3

In the same way we have Z’T‘CAUAM = —AZ2 for 4 =0,1,2; that
A=0
gives (jointly with (4.11)),

3
A '
E 7';’1//' UA# = "'5/21/53 .
A=0 '

This relation with the aid of (4.15); proves (4.16)45¢.
Lastly we notice that

AS = (0,0,0,0,0,0, Uoy, Usy, Uy, Use)"
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for 4 =0,1,2,3; from which and (4.1) we have

3 .
> ASUY = (0,0,0,0,0,0,0,0,0,1)7;
y'=0
then it becomes evident that

3
PP U +qPUn, + 18U, — Y APUR UL = —AT;
¥'=0

But the first member is also equal to

E Z ASY O Uoy + 432 Ury + 732 Uny — 83,U5 Usy)
A'=0 4'=0

as it can be seen from (4.9), (4.10) and (4.11); as consequence we
have that

'3 3 / /
P Uy + g4 Uy + 15 Usy — 83,UF Usy = —63,67

from which and (4.15) we have

3 3

. Ef3BUB;A — f03UO;L +f13U1y, +f23U2“ — Z af

U;;YIU3M
B=0 A ~4'=0 o 3

= EZ aU}, 7 @5 U + ) U + 147 Usy — 83U5 Us,) =
A'=0 4'=0 Al
of
oUE

thus proving (4.16)7,3,9’10.
It remains now to prove only the conditions (4.17); to this end it
is sufficient to prove that ‘

~'1 40, A2 0, 2 1
(418) pA/ “qA/ ) pA, _Tz/ s qz/ --')":Zl/

as it can be seen from (4.15).
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Now we have that pC! — ¢©0 = 0; p© — r¢? = 0; ¢©* — r¢! =0 and
then (4.9), (4.10), (4.11) give

Z Z A @} — 1)) =

A'=0~'=0
EZAGA’(p P =0
Al=0 4'=0
3 A
S AY @~y =0
A'=0 4'=0

that prove (4.18).
I conclude now with some remarks:

In a given physical problem one may be interested only in the
function F'(zn,) and then the dependence of f on the variables UZ, is
arbitrary; in this case the functions f4Z are also arbitrary (because
from (4.14) we can find

.3

of g
7 == " Usy

8UA’ B=0

that can be inverted because, for A’ =3 it becomes a linear system
in the unknowns f?2 whose maftrix of the coefficients has (4.4) as
determinant; likewise for A’ =2 the unknowns are f2°, 2!, 22 and
the matrix of the coefficients has (4.3) as determinant; in the same
way for A' =1 we find f19, f!! and for A’ =0 we find f®).

Then if F is an unknown function, also the f48 are independent
unknown functions to be determined; restrictions on their generalities
may obviously derive from the requirement that f is isotropic. In some
problems (see [8] and [9] as examples) there is a finite set of functions
for g for ¢ =1,...,Q) of which at least f; (the entropy-entropy flux
vector) is unknown and )\, = 1; one of the requirements that must be
satisfied is

‘ )
4.19) ZA 2F—q—o

qamm
g=1
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where z, may indicate the independent components of UY; from
(4.14) we have now that it is equivalent to assume the existence of
/{8 such that

(4.20) i afq +ZfABU =0
- Y507

g=1 B=0

_ Q
holds for f48 =% "), 25
=1 A
Then (4.20) imposes restrictions on f,, ),, f4Z and it is not
necessary to find the functions quB because their contribution is all

contained in f45,
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