GLOBAL CONVERGENCE AND NON EXISTENCE
OF PERIODIC POINTS OF PERIOD 4

BASILIO MESSANO (Napoli) (*) (**)

It is given a non trivial example of nonempty subset \(J \) of \(C^0([0,1]^2) \) such that:

Whatever \(F \in J \) be, for the pair \(([0,1]^2, F) \) the successive approximations method converges globally (i.e. for each \(P \in [0,1]^2 \) the sequence \((F^n(P))_{n \in \mathbb{N}} \) converges to a fixed point of \(F \)) if and only if \(F \) has no periodic point of period 4.

1. Introduction.

Let \(S \) be a compact metric space and \(C^0(S) \) the set of all continuous functions from \(S \) into itself.

If \(F \in C^0(S) \) it is said that for the pair (\(S, F \)) the successive approximations method (abbr. s.a.m.) converges globally if for each point \(x \in S \) the sequence \((F^n(x))_{n \in \mathbb{N}} \) converges (to a fixed point of \(F \)).

(*) Entrato in Redazione il 17 luglio 1989
(**) Work performed under the auspices of the national program of researches of M.P.I. (40%, 1988).
A theorem of global convergence relative to the case $S = [0, 1]$ is the following (see [1,2,7,8]):

(1.1). Whatever $F \in C^0([0, 1])$ be, for the pair $([0, 1]), F)$ the s.a.m. converges globally if and only if F has no periodic point of period 2.

A theorem similar to (1.1) is the following (see [3]):

(1.2). Whatever $F \in C^0(S^1)$ (S^1 denotes the unit circle) be, for the pair (S^1, F) the s.a.m. converges globally if and only if F has no periodic point of even period.

The theorems (1.1) and (1.2) can be expressed by saying that $[0, 1]$ and S^1 are examples of compact metric spaces S for which the following proposition is true.

A) There exists a subset M of \mathbb{N} such that, whatever $F \in C^0(S)$ be, for the pair (S, F) the s.a.m. converges globally if and only if F has no periodic point whose period belongs to M.

Another example of compact metric space for which the proposition A) is true is given by the following theorem (see [10]) which generalizes the theorem (1.1):

(1.3). If X is an arcwise connected tree endowed with a finite number, m, of end points and $F \in C^0(X)$, then for the pair (X, F) the s.a.m. converges globally if and only if F has no periodic point whose period belongs to $\{2, \ldots, m\}$.

It is not known if the proposition A) is true when $S = [0, 1]^2$.

Then, it is interesting the problem to give meaningful examples of nonempty subsets J of $C^0([0, 1]^2)$ and subsets M of \mathbb{N} for which the following proposition is true:

B) Whatever $F \in J$ be for the pair $([0, 1]^2, F)$ the s.a.m. converges globally if and only if F has no periodic point whose period belongs to M.

The theorem (3.2), which will be proved in section 3, gives a solution of above problem$^{(1)}$.

$^{(1)}$ Other solutions of above problem can be obtained from theorem 2.1 of [4], the theorem of section 3 of [5] and theorem (5.3) of [6].
In fact from (3.2) trivially follows that the proposition B) is true if M is equal to $\{4\}$ and J is the set of all functions F from $[0,1]^2$ into itself of kind:

$$F(x,y) = (f(x,y), x), \quad f \in C^0([0,1]^2,[0,1]),$$

such that:

1) f is decreasing with respect to both variables;

2) Set, for each $x \in [0,1]$, $\varphi(x) = f(x, x)$ it results:

$$(\varphi(x) - x)(\varphi^2(x) - x) \geq 0 \quad \forall x \in [0,1];$$

3) There do not exist a periodic point ξ of φ of period 2 and a point $P \in [0,1]^2$ such that the point $(\xi, \varphi(\xi))$ is a cluster point of the sequence $(F^n(P))_{n \in \mathbb{N}}$.

In the end, let us observe that theorem (3.2) has been proved using some results, relate to the existence of periodic points of period 4 for a function F of kind (#) satisfying 1), showed in section 2.

In what follows, f represents a continuous function of $[0,1]^2$ into $[0,1]$ decreasing with respect to both variables, F the function of $[0,1]^2$ into itself defined as follows:

$$F(x,y) = (f(x,y), x),$$

and φ the function of $[0,1]$ into itself defined as follows:

$$\varphi(x) = f(x, x).$$

Let us set for each point (x_1, x_0) of $[0,1]^2$ and for each positive integer n:

$$x_{n+1} = f(x_n, x_{n-1}).$$
In this section let us denote a periodic point of \(\varphi \) of period two by \(y \) and setting \(z = \varphi(y) \), without lose of generality, we assume that \(y \) is less than \(z \).

Set \(I = [y, z] \), it is useful bearing in mind that the square \(I^2 \) is positively invariant for \(F \), i.e; \(F(I^2) \subset I^2 \), (see (4.1) of [9]), and that, consequently, \(f(I^2) \subset I \).

In what follows it is convenient to denote the following sets:

\[
\{(t, y)\}_{t \in I}, \{(z, t)\}_{t \in I}, \{(t, z)\}_{t \in I}, \{(y, t)\}_{t \in I},
\]

respectively, by the symbols \(S_1, S_2, S_3, S_4 \).

That being stated, we consider the following property referred to a generic point \((x_1, x_0) \) of \(S_1 \):

\[(w) \quad F(x_1, x_0) \in S_2, \; F^3(x_1, x_0) \in S_4, \; pr_1 F^4(x_1, x_0) \leq x_1.\]

(2.1). *If there exists a point \((x_1, x_0) \) of \(S_1 \) satisfying the property \((w) \) then there exists in \(S_1 \) a periodic point of \(F \) of period 4 satisfying the property \((w) \).*

Proof. Since \(f(I^2) \subset I \), it is obvious that:

\[(1) \quad x_n \in I, \; \forall n \in \mathbb{N}_0.\]

Moreover, whatever \(n \in \mathbb{N}_0 \) be, the following propositions are equivalent:

\[(2) \quad x_{4n} = x_{4n+4} = y \leq x_{4n+5} \leq x_{4n+1} \leq x_{4n+2} = x_{4n+6} = z, \; x_{4n+3} \leq x_{4n+7}.\]

\[(3) \quad x_{4n} = x_{4n+4} = y \leq x_{4n+5} \leq x_{4n+1} \leq x_{4n+2} = z.\]

Indeed, to deduce (2) from (3) it suffices bearing in mind that \(f \) is decreasing with respect to both variables and that (1) is satisfied.

That being stated, let us prove by induction that (3) is true for each \(n \in \mathbb{N}_0 \).
Well, since \((x_1, x_0)\) satisfies \((w)\) and \(S_4\) is transformed by \(F\) into \(S_1\), it results:
\[
x_0 = x_4 = y \leq x_5 \leq x_1 \leq x_2 = z,
\]
thus (3) is true for \(n = 0\).

Assuming (3) is true for \(n = m\), it will be shown to be true for \(n = m + 1\).

By being (3) and (2) equivalent it follows that:
\[
x_{4m} = x_{4m+4} = y \leq x_{4m+5} \leq x_{4m+1} \leq x_{4m+2} = x_{4m+6} = z,
\]
(4)
\[
x_{4m+3} \leq x_{4m+7}.
\]

Then it results:
\[
x_{4m+8} = f(x_{4m+7}, x_{4m+6}) \leq f(x_{4m+3}, x_{4m+2}) = x_{4m+4} = y,
\]
hence being, from (1), \(y \leq x_{4m+8}\) we have:
(5)
\[
x_{4m+4} = x_{4m+8} = y.
\]

Consequently, the inequality \(x_{4m+3} \leq x_{4m+7}\) implies:
(6)
\[
x_{4m+9} = f(x_{4m+8}, x_{4m+7}) \leq f(x_{4m+4}, x_{4m+3}) = x_{4m+5}.
\]

From (5), (1), (6), (4) it follows that (3) is true for \(n = m + 1\).

So we have proved that (3) is true for each \(n \in N_0\).

Thus, being (2) and (3) equivalent, it follows that:
\[
x_{4n} = y, \ \forall n \in N_0; \quad (x_{4n+1})_{n \in N_0} \text{ is decreasing};
\]
\[
x_{4n+2} = z, \ \forall n \in N_0; \quad (x_{4n+3})_{n \in N_0} \text{ is increasing}.
\]

Set:
\[
c = \lim_{n \to \infty} x_{4n+1}, \quad d = \lim_{n \to \infty} x_{4n+3},
\]
it can be easily proved that the following equalities are true:
\[
c = f(y, d), \quad d = f(z, c), \quad y = f(d, z), \quad z = f(c, y),
\]
and, moreover, that the points \((y, d), (z, c), (d, z), (c, y)\) are pairwise distinct and each of the above points is a periodic point of \(F\) of period 4 satisfying the property \((w)\).

This completes the proof.

(2.2). If the condition:

\[(\varphi(x) - x)(\varphi^2(x) - x) \geq 0, \quad \forall x \in I, \]

is satisfied, then the following statements are true:

a) \(((x_1, x_0) \in S_1 - \{(z, y)\}, F(x_1, x_0) \in \partial I^2) \Rightarrow F(x_1, x_0) \in S_2;\)

b) \(((x_1, x_0) \in S_3 - \{(y, z)\}, F(x_1, x_0) \in \partial I^2) \Rightarrow F(x_1, x_0) \in S_4.\)

Proof. We shall prove a); b) can be proved in the similar way.

Let \((x_1, x_0)\) be a point of \(S_1 - \{(z, y)\},\) i.e.:

\[x_0 = y \leq x_1 < z. \]

If \(F(x_1, x_0) \notin S_2,\) i.e. \(z \neq x_2,\) we have \(x_1 \neq y\) (otherwise, it would result \(x_2 = f(x_1, x_0) = f(y, y) = \varphi(y) = z).\)

Then it follows that:

\[y < x_1 < z, \]

and consequently, being \((x_2, x_1) = F(x_1, x_0) \in \partial I^2\) and \(x_2 \neq z,\) it results:

\[x_2 = y < x_1. \]

Since, on the other hand:

\[y \leq \varphi(x_1) = f(x_1, x_1) \leq f(x_1, x_0) = x_2, \]

we have:

\[y = \varphi(x_1) < x_1. \]

Thus, bearing in mind \((*)\), it follows:

\[z = \varphi(y) = \varphi^2(x_1) \leq x_1. \]
But this is in contrast with (7).

This completes the proof.

(2.3) If the condition (*) of (2.2) is satisfied and there exists a nonempty closed set C, positively invariant for F, such that:

$$C \subseteq \partial I^2 \quad \text{and} \quad C \cap \{(y, z), (z, y)\} = \emptyset,$$

then there exists a periodic point of F of period 4 satisfying (w).

Proof. Set:

$$S_5 = S_1, \quad C_i = C \cap S_i, \quad \forall i \in \{1, \ldots, 5\},$$

we observe that for each $i \in \{1, \ldots, 4\}$ it results:

$$F(C_i) \subseteq C_{i+1}.$$

In fact (9) is trivial for $i \in \{2, 4\}$ and for $i \in \{1, 3\}$ it follows easily from (2.2).

Since $C \neq \emptyset$, from (9) it results:

$$C_i \neq \emptyset, \quad \forall i \in \{1, \ldots, 4\}.$$

Set:

$$x_1 = \max pr_1 C_1, \quad x_0 = y,$$

according to (9) it results:

$$F(x_1, x_0) \in S_2, \quad F^3(x_1, x_0) \in S_4, \quad pr_1 F^4(x_1, x_0) \leq x_1,$$

and consequently, from (2.1), the assertion follows.

Such being the meaning of the symbols f, F and φ given in section 2, let us recall (see (5.1) of [9]) that, if φ satisfies the following condition:

$$(\ast) \quad (\varphi(x) - x)(\varphi^2(x) - x) \geq 0 \quad \forall x \in [0, 1],$$
the following statement:

iii) \(\varphi \) has no periodic point \(\xi \) of period 2 such that the boundary (in \(R^2 \)) of the square:

\[[\min\{\xi, \varphi(\xi)\}, \max\{\xi, \varphi(\xi)\}]^2 \]

contains a closed subset of \([0, 1]^2\) invariant for \(F \),

is equivalent to global convergence of the s.a.m. for the pair \(([0, 1]^2, F)\).

Let us now consider the following condition:

I) \(\varphi \) has no periodic point \(\xi \) of period 2 such that the boundary (in \(R^2 \)) of the square:

\[[\min\{\xi, \varphi(\xi)\}, \max\{\xi, \varphi(\xi)\}]^2 \]

contains a set \(\Omega(P) \) for some \(P \in [0, 1]^2 \), where \(\Omega(P) \) is the set of all cluster points of the sequence \((F^n(P))_{n \in \mathbb{N}} \).

Since (see C) of [11]) \(\Omega(P) \) is a closed set invariant for \(F \), I) is weaker than iii).

Well, if \(\varphi \) satisfies (\#) also I) implies the global convergence.

Indeed, we have that:

(3.1). If \(\varphi \) satisfies (\#), for the pair \(([0, 1]^2, F)\) the s.a.m. converges globally if and only if the condition I) is satisfied.

Proof. First of all let us observe that theorem (2.1) of [9] is still true if the condition 3) is replaced by the following statement:

3') It does not exist a set of \(C - \{\{s\}\} \) whose boundary contains a set \(\Omega(x) \), for some \(x \in S \).

It can be verified changing, in obvious way, the proof of (2.1) of [9] where 3) is applied.

Consequently, also (2.2) of [9] is still true if 3) is replaced by 3'); thus (5.1) of [9] is true if iii) is replaced by I), and this shows the assertion.

Utilizing the propositions (2.3) and (3.1) let us prove that:
(3.2). If φ satisfies (*) then for the pair $([0,1]^2,F)$ the s.a.m. converges globally if and only if the following statement is satisfied:

II) The function F has no periodic point of period 4 and there do not exist a periodic point ξ of φ of period 2 and a point P of $[0,1]^2$ such that:

$$ (\xi, \varphi(\xi)) \in \Omega(P), $$

where $\Omega(P)$ is the set of cluster points of the sequence $(F^n(P))_{n\in\mathbb{N}}$.

Proof. Let us suppose that II) is true. If there is not global convergence of the s.a.m. for the pair $([0,1]^2,F)$, according to (3.1), $P \in [0,1]^2$ and $a \in [0,1]$ exist, where $a = \varphi(b) < \varphi(a) = b$, such that:

\begin{equation}
\Omega(P) \subseteq \partial[a,b]^2.
\end{equation}

First of all, let us observe that, according to proposition C) of [11], $F(\Omega(P)) = \Omega(P)$ and moreover, from II) it results $(a,b) \notin \Omega(P)$ and $(b,a) \notin \Omega(P)$.

Consequently, from (1) and proposition (2.3) there exists a periodic point of F of period 4, in contrast with II).

Conversely, if for the pair $([0,1]^2,F)$ the s.a.m. converges globally, then periodic points of F do not exist and moreover, for each point $P \in [0,1]^2$, it results:

$$ \Omega(P) = \{(\alpha, \alpha)\}, $$

(α, α) being the unique fixed point of F, thus the condition II) is verified.

The theorem is so proved.

REFERENCES

Dipartimento di Matematica e Applicazioni "R. Caccioppoli"
Università degli Studi di Napoli
V. Claudio, 21 - 80125 Napoli