GLOBAL CONVERGENCE AND NON EXISTENCE OF PERIODIC POINTS OF PERIOD 4

BASILIO MESSANO (Napoli) (*) (**)

It is given a non trivial example of nonempty subset \mathcal{I} of $C^0([0,1]^2)$ such that:

Whatever $F \in \mathcal{I}$ be, for the pair $([0,1]^2,F)$ the successive approximations method converges globally (i.e. for each $P \in [0,1]^2$ the sequence $(F^n(P))_{n \in \mathbb{N}}$ converges to a fixed point of F) if and only if F has no periodic point of period 4.

1. Introduction.

Let S be a compact metric space and $C^0(S)$ the set of all continuous functions from S into itself.

If $F \in C^0(S)$ it is said that for the pair (S, F) the successive approximations method (abbr. s.a.m.) converges globally if for each point $x \in S$ the sequence $(F^n(x))_{n \in \mathbb{N}}$ converges (to a fixed point of F).

^(*) Entrato in Redazione il 17 luglio 1989

^(**) Work performed under the auspices of the national program of reserches of M.P.I. (40%, 1988).

A theorem of global convergence relative to the case S = [0, 1] is the following (see [1,2,7,8]):

(1.1). Whatever $F \in C^0([0,1])$ be, for the pair ([0,1]), F) the s.a.m. converges globally if and only if F has no periodic point of period 2.

A theorem similar to (1.1) is the following (see [3]):

(1.2). Whatever $F \in C^0(S^1)$ (S^1 denotes the unit circle) be, for the pair (S^1, F) the s.a.m. converges globally if and only if F has no periodic point of even period.

The theorems (1.1) and (1.2) can be espressed by saying that [0,1] and S^1 are examples of compact metric spaces S for which the following proposition is true.

A) There exists a subset M of \mathbb{N} such that, whatever $F \in C^0(S)$ be, for the pair (S,F) the s.a.m. converges globally if and only if F has no periodic point whose period belongs to M.

Another example of compact metric space for which the proposition A) is true is given by the following theorem (see [10]) which generalizes the theorem (1.1):

(1.3). If X is an arcwise connected tree endowed with a finite number, m, of end points and $F \in C^0(X)$, then for the pair (X, F) the s.a.m. converges globally if and only if F has no periodic point whose period belongs to $\{2, \ldots, m\}$.

It is not known if the proposition A) is true when $S = [0, 1]^2$.

Then, it is interesting the problem to give meaningful examples of nonempty subsets \mathcal{I} of $C^0([0,1]^2)$ and subsets M of \mathbb{N} for which the following proposition is true:

B) Whatever $F \in \mathcal{I}$ be for the pair $([0,1]^2, F)$ the s.a.m. converges globally if and only if F has no periodic point whose period belongs to M.

The theorem (3.2), which will be proved in section 3, gives a solution of above problem(1).

⁽¹⁾ Other solutions of above problem can be obtained from theorem 2.1 of [4], the theorem of section 3 of [5] and theorem (5.3) of [6].

In fact from (3.2) trivially follows that the proposition B) is true if M is equal to $\{4\}$ and \mathcal{I} is the set of all functions F from $[0,1]^2$ into itself of kind:

(#)
$$F(x,y) = (f(x,y),x), \quad f \in C^0([0,1]^2,[0,1]),$$

such that:

- 1) f is decreasing with respect to both variables;
- 2) Set, for eqach $x \in [0,1]$, $\varphi(x) = f(x,x)$ it results:

$$(\varphi(x) - x)(\varphi^2(x) - x) \ge 0 \quad \forall x \in [0, 1];$$

3) There do not exist a periodic point ξ of φ of period 2 and a point $P \in [0,1]^2$ such that the point $(\xi, \varphi(\xi))$ is a cluster point of the sequence $(F^n(P))_{n \in \mathbb{N}}$.

In the end, let us observe that theorem (3.2) has been proved using some results, relate to the existence of periodic points of period 4 for a function F of kind (#) satisfying 1), showed in section 2.

2. Existence of periodic points of F of period 4.

In what follows, f represents a continuous function of $[0,1]^2$ into [0,1] decreasing with respect to both variables, F the function of $[0,1]^2$ into itself defined as follows:

$$F(x,y)=(f(x,y),x),$$

and φ the function of [0,1] into itself defined as follows:

$$\varphi(x) = f(x, x).$$

Let us set for each point (x_1, x_0) of $[0, 1]^2$ and for each positive integer n:

$$x_{n+1} = f(x_n, x_{n-1}).$$

In this section let us denote a periodic point of φ of period two by y and setting $z = \varphi(y)$, without lose of generality, we assume that y is less than z.

Set I = [y, z], it is useful bearing in mind that the square I^2 is positively invariant for F, i.e; $F(I^2) \subseteq I^2$, (see (4.1) of [9]), and that, consequently, $f(I^2) \subset I$.

In what follows it is convenient to denote the following sets:

$$\{(t,y)\}_{t\in I}, \{(z,t)\}_{t\in I}, \{(t,z)\}_{t\in I}, \{(y,t)\}_{t\in I},$$

respectively, by the simbols S_1, S_2, S_3, S_4 .

That being stated, we consider the following property referred to a generic point (x_1, x_0) of S_1 :

(w)
$$F(x_1, x_0) \in S_2, F^3(x_1, x_0) \in S_4, pr_1F^4(x_1, x_0) < x_1.$$

(2.1). If there exists a point (x_1, x_0) of S_1 satisfying the property (w) then there exists in S_1 a periodic point of F of period 4 satisfying the property (w).

Proof. Since $f(I^2) \subseteq I$, it is obvious that:

$$(1) x_n \in I, \ \forall n \in \mathbb{N}_0.$$

Moreover, whatever $n \in \mathbb{N}_0$ be, the following propositions are equivalent:

$$(2) \quad x_{4n} = x_{4n+4} = y \le x_{4n+5} \le x_{4n+1} \le x_{4n+2} = x_{4n+6} = z, \ x_{4n+3} \le x_{4n+7}.$$

$$(3) x_{4n} = x_{4n+4} = y < x_{4n+5} < x_{4n+1} < x_{4n+2} = z.$$

Indeed, to deduce (2) from (3) it suffices bearing in mind that f is decreasing with respect to both variables and that (1) is satisfied.

That being stated, let us prove by induction that (3) is true for each $n \in N_0$.

Well, since (x_1, x_0) satisfies (w) and S_4 is transformed by F into S_1 , it results:

$$x_0 = x_4 = y \le x_5 \le x_1 \le x_2 = z$$
,

thus (3) is true for n = 0.

Assuming (3) is true for n = m, it will be shown to be true for n = m + 1.

By being (3) and (2) equivalent it follows that:

$$x_{4m} = x_{4m+4} = y \le x_{4m+5} \le x_{4m+1} \le x_{4m+2} = x_{4m+6} = z,$$

$$x_{4m+3} \le x_{4m+7}.$$

Then it results:

$$x_{4m+8} = f(x_{4m+7}, x_{4m+6}) \le f(x_{4m+3}, x_{4m+2}) = x_{4m+4} = y,$$

hence being, from (1), $y \le x_{4m+8}$ we have:

$$(5) x_{4m+4} = x_{4m+8} = y.$$

Consequently, the inequality $x_{4m+3} \leq x_{4m+7}$ implies:

(6)
$$x_{4m+9} = f(x_{4m+8}, x_{4m+7}) \le f(x_{4m+4}, x_{4m+3}) = x_{4m+5}.$$

From (5), (1), (6), (4) it follows that (3) is true for n = m + 1. So we have proved that (3) is true for each $n \in N_0$. Thus, being (2) and (3) equivalent, it follows that:

$$x_{4n} = y$$
, $\forall n \in \mathbb{N}_0$; $(x_{4n+1})_{n \in \mathbb{N}_0}$ is decreasing;

$$x_{4n+2} = z$$
, $\forall n \in \mathbb{N}_0$; $(x_{4n+3})_{n \in \mathbb{N}_0}$ is increasing.

Set:

$$c = \lim_{n} x_{4n+1}, \quad d = \lim_{n} x_{4n+3},$$

it can be easily proved that the following equalities are true:

$$c = f(y, d), d = f(z, c), y = f(d, z), z = f(c, y),$$

and, moreover, that the points (y, d), (z, c), (d, z), (c, y) are pairwise distinct and each of the above points is a periodic point of F of period 4 satisfying the property (w).

This completes the proof.

(2.2). If the condition:

(*)
$$(\varphi(x) - x)(\varphi^2(x) - x) > 0, \quad \forall x \in I,$$

is satisfied, then the following statements are true:

a)
$$((x_1, x_0) \in S_1 - \{(z, y)\}, F(x_1, x_0) \in \partial I^2) \Rightarrow F(x_1, x_0) \in S_2;$$

b)
$$((x_1, x_0) \in S_3 - \{(y, z)\}, F(x_1, x_0) \in \partial I^2) \Rightarrow F(x_1, x_0) \in S_4.$$

Proof. We shall prove a); b) can be proved in the similar way. Let (x_1, x_0) be a point of $S_1 - \{(z, y)\}$, i.e.:

$$x_0 = y < x_1 < z$$
.

If $F(x_1, x_0) \notin S_2$, i.e. $z \neq x_2$, we have $x_1 \neq y$ (otherwise, it would result $x_2 = f(x_1, x_0) = f(y, y) = \varphi(y) = z$).

Then it follows that:

$$(7) y < x_1 < z,$$

and consequently, being $(x_2, x_1) = F(x_1, x_0) \in \partial I^2$ and $x_2 \neq z$, it results:

$$x_2 = y < x_1$$
.

Since, on the other hand:

$$y \le \varphi(x_1) = f(x_1, x_1) \le f(x_1, x_0) = x_2$$

we have:

$$y = \varphi(x_1) < x_1.$$

Thus, bearing in mind (*), it follows:

$$z = \varphi(y) = \varphi^2(x_1) < x_1.$$

But this is in contrast with (7).

This completes the proof.

(2.3). If the condition (*) of (2.2) is satisfied and there exists a nonempty closed set C, positively invariant for F, such that:

(8)
$$C \subseteq \partial I^2 \quad and \quad C \cap \{(y, z), (z, y)\} = \phi,$$

then there exists a periodic point of F of period 4 satisfying (w).

Proof. Set:

$$S_5 = S_1, C_i = C \cap S_i, \forall i \in \{1, \dots, 5\},\$$

we observe that for each $i \in \{1, ..., 4\}$ it results:

$$(9) F(C_i) \subseteq C_{i+1}.$$

In fact (9) is trivial for $i \in \{2,4\}$ and for $i \in \{1,3\}$ it follows easily from (2.2).

Since $C \neq \phi$, from (9) it results:

$$C_i \neq \phi, \quad \forall i \in \{1, \dots, 4\}.$$

Set:

$$x_1 = \max pr_1C_1, \ x_0 = y,$$

according to (9) it results:

$$F(x_1, x_0) \in S_2$$
, $F^3(x_1, x_0) \in S_4$, $pr_1 F^4(x_1, x_0) \le x_1$,

and consequently, from (2.1), the assertion follows.

3. Global convergence.

Such being the meaning of the symbols f, F and φ given in section 2, let us recall (see (5.1) of [9]) that, if φ satisfies the following condition:

(*)
$$(\varphi(x) - x)(\varphi^{2}(x) - x) \ge 0 \quad \forall x \in [0, 1],$$

the following statement:

iii) φ has no periodic point ξ of period 2 such that the boundary (in \mathbb{R}^2) of the square:

$$[\min\{\xi,\varphi(\xi)\}, \max\{\xi,\varphi(\xi)\}]^2$$

contains a closed subset of $[0,1]^2$ invariant for F, is equivalent to global convergence of the s.a.m. for the pair $([0,1]^2,F)$. Let us now consider the following condition:

I) φ has no periodic point ξ of period 2 such that the boundary (in \mathbb{R}^2) of the square:

$$[\min\{\xi,\varphi(\xi)\},\ \max\{\xi,\varphi(\xi)\}]^2$$

contains a set $\Omega(P)$ for some $P \in [0,1]^2$, where $\Omega(P)$ is the set of all cluster points of the sequence $(F^n(P))_{n \in \mathbb{N}}$.

Since (see C) of [11]) $\Omega(P)$ is a closed set invariant for F, I) is weaker than iii).

Well, if φ satisfies (*) also I) implies the global convergence.

Indeed, we have that:

(3.1). If φ satisfies (*), for the pair ([0,1]², F) the s.a.m. converges globally if and only if the condition I) is satisfied.

Proof. First of all let us observe that theorem (2.1) of [9] is still true if the condition 3) is replaced by the following statement:

3') It does not exist a set of $C-\{\{a\}\}$ whose boundary contains a set $\Omega(x)$, for some $x \in S$.

It can be verified changing, in obvious way, the proof of (2.1) of [9] where 3) is applied.

Consequently, also (2.2) of [9] is still true if 3) is replaced by 3'); thus (5.1) of [9] is true if iii) is replaced by I), and this shows the assertion.

Utilizing the propositions (2.3) and (3.1) let us prove that:

89

II) The function F has no periodic point of period 4 and there do not exist a periodic point ξ of φ of period 2 and a point P of $[0,1]^2$ such that:

$$(\xi, \varphi(\xi)) \in \Omega(P),$$

where $\Omega(P)$ is the set of cluster points of the sequence $(F^n(P))_{n\in\mathbb{N}}$.

Proof. Let us suppose that II) is true. If there is not global convergence of the s.a.m. for the pair $([0,1]^2,F)$, according to (3.1), $P \in [0,1]^2$ and $a \in [0,1]$ exist, where $a = \varphi(b) < \varphi(a) = b$, such that:

(1)
$$\Omega(P) \subseteq \partial[a,b]^2.$$

First of all, let us observe that, according to proposition C) of [11], $F(\Omega(P)) = \Omega(P)$ and moreover, from II) it results $(a,b) \notin \Omega(P)$ and $(b,a) \notin \Omega(P)$.

Consequently, from (1) and proposition (2.3) there exists a periodic point of F of period 4, in contrast with II).

Conversely, if for the pair $([0,1]^2, F)$ the s.a.m. converges globally, then periodic points of F do not exist and moreover, for each point $P \in [0,1]^2$, it results:

$$\Omega(P) = \{(\alpha, \alpha)\},\$$

 (α, α) being the unique fixed point of F, thus the condition II) is verified.

The theorem is so proved.

REFERENCES

- [1] Bashurov V.V., Ogibin V.N., Conditions for the convergence of iterative processes on the real axis, U.S.S.R. Comp. Math. and Math. Phys. 6,5, (1966), 178-184.
- [2] Chu S.C., Moyer R.D., On continuous functions, commuting functions and fixed points, Fund. Math. 59, (1966), 91-95.

- [3] Di Lena G., Global Convergence of the Method of Successive Approximations on S^1 , J. Math. Anal. and Applic., Vol. 106, n. 1; February 15, (1985), 196-201.
- [4] Di Lena G., Sulla convergenza del procedimento iterativo a due passi e metodo della secante, preprint.
- [5] Di Lena G., Messano B., Zitarosa A., On the iterative process $x_{n+1} = f(x_n, x_{n-1})$, Rend. del Semin. Mat. dell'Università di Padova Vol. 80 (1988), 139-150.
- [6] Di Lena G., Messano B., Zitarosa A., On the generalized successive approximations method, Calcolo Vol. 25, July-September 1988, n. 3, 249-267.
- [7] Di Lena G., Peluso R.I., A characterization of global convergence for fixed point iteration in \mathbb{R}^1 , Pubbl. I.A.C. Serie III, n. 133, 3-11 (1978).
- [8] Di Lena G., Peluso R.I., Sulla convergenza del metodo delle approssimazioni successive in R¹, Calcolo XVIII, (1980), 313-319.
- [9] Messano B., On the successive approximations method and on the iterative process $x_{n+1} = f(x_n, x_{n-1})$, Rendiconti di Matematica, Serie VII, Vol. 7, Fasc. 3-4, luglio-dicembre 1987, 281-297.
- [10] Messano B., Continuous function of an arcwise connected tree into itself: periodic points, global convergence, plus-global convergence, to appear in Ricerche di Matematica.
- [11] Messano B., Zitarosa A., Sul metodo delle approssimazioni successive: convergenza globale e plus-convergenza globale, Rend. del Circ. Matem. di Palermo, Serie II, Tomo XXXVII (1988), 246-260.

Dipartimento di Matematica e Applicazioni "R. Caccioppoli" Università degli Studi di Napoli V. Claudio, 21 - 80125 Napoli