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GLOBAL CONVERGENCE AND NON EXISTENCE
OF PERIODIC POINTS OF PERIOD 4

BASILIO MESSANO (Napoli) (*) (**)

It is given a non trivial example of nonempty subset 7 of Co0,11%)
such that: :
Whatever [ € J be, for the pair ([0, 1]2, F) the successive

~ approximations method converges globally (i.e. for each P € [0, 1]? the
sequence (F"(P)), N converges to a fixed point of F') if and only if F
has no periodic point of period 4.

1. Introduction.

Let S be a compact metric space and C°S) the set of all
continuous functions from S into itself.

If FeC%S9) it is said that for the pair (S, F) the successive
approximations method (abbr. s.a.m.) converges globally if for each
point x € S the sequence (F”(m))new converges (to a fixed point of F).

(*) Entrato in Redazione il 17 luglio 1989
(**) Work performed under the auspices of the national program of reserches of
M.P.I (40%, 1988).
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A theorem of global convergence relative to the case S =[0,1] is

the following (see [1,2,7,8]): o
. (1.1). Whatever F € C°([0, 1]) be, for the pair ([0, 1]), F) the s.a.m.
converges globally if and only if F has no periodic point of period 2.

'A theorem similar to (1.1) is the following (see [3]):

(1.2). Whatever F € C°%SY) (S! denotes the unit circle) be, for
the pair (S!, F) the s.a.m. converges globally if and only if F has no
periodic point of even period. '

The theorems (1.1) and (1.2) can be espressed by saying that
[0,1] and S' are examples of compact metric spaces S for which the
following proposition is true.

A) There exists a subset M of N such that, whatever F € C°S) be,
for the pair (S, F) the s.a.m. converges globally if and only if F
has no periodic point whose period belongs to M.

Another example of compact metric space for which the proposition |
A) is true is given by the following theorem (see [10]) which generalizes

the theorem (1.1): ‘ | o

(1.3). If X is an arcwise connected tree endowed with a finite
number, m, of end pbints and F € C%X), then for the pair (X , F) the
s.a.m. converges globally if and only if F has no periodic point whose
period belongs to {2,...,m}.

It is not known if the proposition A) is true when S = [0, 1]%.

Then, it is interesting the problem to give meaningful examples
of nonempty subsets 7 of C°([0,1]?) and subsets M of N for which
the following proposition is true:

B) Whatever F € 7 be for the pair ([0,1]?,F) the s.a.m. converges
globally if and only if F has no periodic point whose period
~ belongs to M.
The theorem (3.2), which will be Uproved in section 3, gives a
solution of above problem(}).

(1) Other solutions of above problem can be obtained from theorem 2.1 of [4],
the theorem of section 3 of [6] and theorem (5.3) of [6].
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In fact from (3.2) trivially follows that the proposition B) is true
if M is equal to {4} and J is the set of all functions F from [0, 1]?
into itself of kind: '

@) F(z,9) = (fz,9),0), f € C°0,112[0,1])

such that:
D f i.é decreasing with respect to both variables;

2) Set, for eqach x € [0,1], p(z) = f(z, ) it results:
(p(z) — )X @) — 1) >0 Vz € [0, 1];

3) There do not exist a periodic point ¢ of ¢ of period 2 and a
point P € [0,11% such that the point &, p(8)) is a cluster point of the
sequence (F™(P))cN-

In the end, let us observe that theorem (3.2) has been proved
using some results, relate to the existence of periodic points of period
4 for a function F' of kind (#) satisfying 1), showed in section 2.

2. Existence of periodic points of F' of period 4.

In what follows, f represents a continuous function of [0, 1]? into
[0, 1] decreasing with respect to both variables, F the function of
[0, 1]? into itself defined as follows:

F(z,y) = (f(z,9), %),
and ¢ the function of [0, 1] into itself defined as follows:
p(z) = f(z, ).

Let us set for each point (z1,z0) of [0,1]> and for each positive
integer n:

el = [(Tn, Tn-1).
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In this section let us denote a periodic point of ¢ of period two
by y and setting z = p(y), without lose of generality, we assume that
y is less than 2.

Set I = [y, z], it is useful bearing in mind that the square I? is
positively invariant for F, i.e; F(I?) C I?, (see (4.1) of [9]), and that,
consequently, £(I%) C I.

In what follows it is convenient to denote the following sets:

{(t) y)}tEI) {(Z, t)}tEI: {(t) z)}tEI; {(y7 t)}tEI;

- respectively, by the simbols Sy, S>, S3, Ss.
That being stated, we consider the following property referred to -
a generic point (z1, zg) of S;:

(w) F(z1,10) € Sz, F(z1,20) € S4, priF4(z1, 30) < 71.

(2.1). If there exists a point (z1,x0) of S1 satisfying the propefty
(w) then there exists in S a periodic point of F of period 4 satisfying
the property (w).

Proof. Since f(I?) C I, it is obvious that:
(1) Tz, € I, Vn e Np.

Moreover whatever n € Ny be, the following proposmons are

equivalent:

(2) Tan = Tana =Y < Tanes < Tanel < Tdnd = Tamss = 2, Tams3 < Thna? -

(3) Tan = Tand = Y < Tdnss < Tamrl < Tdns2 = 2.

Indeed, to deduce (2) from (3) it suffices bearing in mind that f
is decreasing with respect to both variables and that (1) is satisfied.

That being stated, let us prove by induction that (3) is true for
each n &€ Ny.
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Well, since (z1, zo) satisfies (w) and Sy is transformed by F' into

S1, it results:
To=x4=y < x5 < 71 < T2 = 2,

thus (3) is true for n=0.

Assuming (3) is true for n=m, it will be shown to be true for
n=m+1.

By being (3) and (2) equivalent it follows that:

Tam = Tom+d = Y < Tam+s < Tam+l < Tam+2 = Tdme6 = 2,

4

Tam+3 < Tdma7-

Then it resulfs:
Tam+8 = [(Tams7, Tams6) < f(Tams3, Tam+2) = Tamea = U,
hence béing, from (1), y < ZT4mg We have:
(5) ' Tamsd = Tadm+8 = Y.
Consequently, the inequality z4;+3 < T4ms7 implies:
6) bx4m+9 = f(Tam+8, Tams+7) < f(Tamsd, Tame3) = Tamas.

From (5), (1), (6), (4) it follows that (3) is true for n=m + 1.
So we have proved that (3) is true for each n & Nj.
Thus, being (2) and (3) equivalent, it follows that:

Tan =Y, VN € No;  (Tanr1 )N, is decreasing;
Tams2 = 2, VR E No;  (Tam3 )N, 1S increasing.

Set:
c = lim Tdn+l, d = lim T4nt3
n n

it can be easily proved that the following equalities are true:

C=f(y,d), d=f(z,c), y=f(d)z); sz(C,y),
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and, moreover, that the points (y,d), (z,¢), (d,2), (c,y) are pairwise
distinct and each of the above points is a periodic point of F' of period
4 satisfying th'e_ property (w).

This completes the proof.

(2.2). If the condition:

() @ -k @) -0 >0, Vel

Is satisfied, then the following statements are true: |
a) ((z1,20) € S) — {(Z,y)},F(wl,fb‘o) € ‘312) = F(z1,70) € S2;
b) ((z1, o) € S5 — {(y,2)}, F(z1, m0) € OI%) = F(z1,z0) € Sa.

Proof. We shall prove a); b) can be proved in the similar way.

Let (z1, z9) be a point of S — {(z, )}, i.e.

zo =y < 711 < 2.

If F(z1,z0) ¢ So, i.e. z#wy, we have z;#y (othermse it would
result z; = f(z1,z0) = f(y,y) = o) = 2).
Then it follows that:

(D "y <71 < 2,
and conseqﬁently, being (z2, 1) = F(z1, 20) € HI° and zp#z, it results:
Ty =y < :1:11.
Since, on the other hand:
v < (1) = f(z1,31) < f(z1,m0) = 22,

we have:
v = p(x1) < 21.

Thus, bearing in mind (x), it follows:

2= p(y) = p*(z1) < 21.
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But this is in contrast with (7).
This completes the proof. ,
(2.3). If thé condition (%) of (2.2) is satisfied and there exists a
nonempty closed set C, positively invariant for F, such that:

(8). C Cor* and CN{(y,2),(zv}=9¢,

then there exists a periodic point of F' of period 4 satisfying (w).

Proof. Set:
Ss=S1, G=CnS,, Vie{l,...s},
‘we observe that fof eaéﬁ i €{1,...,4} it results:
-9 | F(C;) C Cia.

In fact (9) is trivial for 7 € {2,4} and for ¢ € {1,3} it follows
easily from (2.2). ' "
Since C#¢, from (9) it results:

Cizp, Vie{l,...,4}.

Set:
1 =maxpr1Cy, 29 =y,

according to (9) it results:
F(1,20) € S2, F*(@1,0) € S, priF*(z1,30) < a1,

and consequently, frorh (2.1), the assertion fbllows.

3. Global convergence.

Such being the meaning of the symbols f, F aﬁd © given ih
section 2, let us recall (see (5.1) of [9]) that, if ¢ satisfies the following
condition: | |

) @ - )*@ -2 >0 Yz elo1],
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the following statement:

iii) ¢ has no periodic point ¢ of period 2 such that the boundary (in
R?) of the square:

[min{¢, (&)}, max{€, p(€)}1?

contains a closed subset of [0, 1)? invariant for F, _
is equivalent to global convergence of the s.a.m. for the pair ([0, 112, F).
Let us now consider the following condition:

I) ¢ has no periodic point ¢ of period 2 such-that the boundary (in
R?) of the square: :

[min{¢, p(©)}, max{, )}

contains a set Q(P) for some P € [0,11%, where Q(P) is the set of
all cluster points of the sequence (F"(P)peN-

Since (see C) of [11]) Q(P) is a closed set invariant for F, D) is
weaker than iii).

Well, if ¢ satisfies (x) also I) implies the global convergence.
Indeed, we have that;:

(3.1). If o satisfies (x), for the pair ([0,112, F) the s.a.m. converges
globally if and only if the condition I) is satisfied. -

Proof. First of all let us observe that theorem (2.1) of [9] is still
true if the condition 3) is replaced by the following statement:

3’) It does not exist a set of C— {{a}} whose boundary contains a set
(x), for some z € S.

It can be verified changing, in obvious way, the proof of (2.1) of
[9] where 3) is applied.

Consequently, also (2.2) of [9] is still true if 3) is replaced by 3%);
thus (5.1) of [9] is true if iii) is replaced by I), and this shows the
assertion.

Utilizing the propositions (2.3) and (3.1) let us prove that:
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(3.2). If ¢ satisfies (%) then for the pair ([0,1]* F) the s.a.m.
converges globally if and only if the following statement is satisfied:

ID) The function F has no periodic point of period 4 and there do
not exist a periodic point ¢ of ¢ of period 2 and a point P of
[0, 11 such that:
(&, p()) € QP),

where C(P) is the set of cluster points of the sequence (F™(P)peiN-

Proof. Let us suppose that II) is true. If there is not global
convergence of the s.a.m. for the pair ([0, 1]%, F), according to (3.1),
P €[0,1]* and o € [0, 1] exist, where a = p(b) < w(a) = b, such that:

1) Q(P) C 8[a, b]*.

First of all, let us observe that, according to proposition C) of
[11], F(C(P)) = Q(P) and moreover, from II) it results (a,b) & Q(P)
and (b, a) ¢ Q(P).

Consequently, from (1) and proposition (2.3) there exists a periodic
point of F' of period 4, in contrast with II).

Conversely, if for the pair ([0, 1%, F) the s.a.m. converges globally,
then periodic points of F' do not exist and moreover, for each point
P €[0,1, it results: |

Q(P) = {(o, @)},

(o, ) being the unique fixed point of F, thus the condition II) is

verified.
The theorem is so proved.
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