«LE MATEMATICHE»
Vol. XLIV (1989) - Fasc. I, pp. 113-130

| REGULARIZATION OF NON-LINEAR MEASURE
DIFFERENTIAL EQUATIONS

JAN PERSSON (Lund) (¥)

The Cauchy problem for a non-linear system of regularized measure
differential equations is studied. It is proved that the solutions of the
regularized problems converges to a solution of an integral equation
involving measures. In general this equation differs form the formal one
corresponding to the original masure differential equation. This theorem
generalizes a special result by Kurzweil [2] and a linear result by the
author [5]. Sesekin [10] has proved an analogous theorem for a more
restricted system in a wider class of regularizations.

1. Introduction.

Let 4 and n be signed Borel measures on R, see Royden [9],
and let g be a continuous real valued function on R. Let d € R. Let

/ / If in a model one describes concentrated phenomena as
a* (a,b]

point phenomena one may be lead to study the Cauchy problem

1.1) - dHgp=mn, u0)=d

(*) Entrato in Redazione il 3 ottobre 1989
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This is formally equivalent to

(1.2) u(@) = d - / g (u(s))du(s) + / dn(s), >0,
0+ (1%
and
0 ' 0
(1.3) u(z) = d+/ g(u(s))du(s) —/ dn(s), z < 0.

It is then interesting to study the effect of regularization of
(1.2) and (1.3). If one regularizes the measures in (1.2) and (1.3)
and lets the regularized measures tend to the unregularized ones
then solutions of the regularized problems tend to a limit which in
general differs from the solution of (1.2)-(1.3) if u(z) exists at all. I
call this phenomenon the paradox of measure differential equations.
The purpose of this note is to prove the existence of the above limit
and to exhibit the modification of (1.2)-(1.3) having this limit as its
solution. One should notice that one has continuous dependence of
parameters for the limit together with the existence of the limit. This
is not explicitly proved but could easily be done.

The linear n-dimensional case has already been treated in Persson
[6]. In 1958 J. Kurzweil [2, Theorem 5,1] treated the case when p is
a Dirac measure and 7 is a function. The result is expressed in terms
of solutions of his generalized differential equations. As to the jump
in the limit it is the same as we get here. In the mean time there
seems to have been no treatment of the regularization problem for
measure differential equations. In part this can be justified when the
limit of the regularized problems solves the unmodified unregularized
problem corresponding to (1.2)-(1.3). In [3] one uses known results for
the Sturm-Liouville theory to get analogous results for the vibrating
string with point masses by a limiting process of regularized problems.
In [6] and [7] the regularization of the wave equation with a measure
as a potential is treated. At last in [8] it is proved that if one
regularizes linear distribution differential equations the solution of
the regularized Cauchy problem tends to the solution of the original
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one except when the equation is a measure differential equation not
having this property according to [5]. In [4] one finds results which
have been useful for the proofs in the present paper although the
effects of regularization is not included. As is already said in [5] it
was Einar Mjglhus at Tromsg who initiated the present author in his
search for a solution of the paradox of measure differential equations.
See also O. Hajek [1].

Our main theorem, Theorem 2.3, is stated and commented in
Section 2. The proof is first described in Section 3. In Section 4 one
finds all lemmas and intermediate theorems then used in Section 5
for the proof of Theorem 2.3.

Remark. After the first version of this note was completed we
learned that Sesekin [10], [11], has already treated the regularization
problem of measure differential equations. See the remark below

Theorem 2.3.

2. Preliminaries and main theorem.

We let the space of signed Borel measures on R be denoted by P°.
Let D denote distribution differentiation. If f is a right continuous
real valued function such that Df € P° then f is said to be in P!.
It is clear that f € P! and v € P° implies that fy € ?°. The same
applies if f is Borel measurable and locally bounded.

Let ¢ be real valued continuous such that ¢(z) > 0, |z| < 1,

¢(z) =0, |z| > 1, and /qS = 1. Then let ¢ > 0 and let ¢(z,¢) =

e lp((z — e)/e). If v € P we let y(z,8) = /d)(d — s,€)d(s). We also
write dvy(s, €) = (s, €)ds. One notices that

T

T x 0
/ d (s, ) - / (e, 5> 0, and [ d6s,) = - [ @@, z>0,
0 0+ +

0 T
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when ¢ — 0. We also notices that for d a constant
0 T

f@=d- [ dr6), 2 <0, f@=d+ [ dy), 220,
: ' z* . 0+
is in P! and that Df = ~.
We have to impose some restrictions on the function ¢ in (1.1).
We want to have uniqueness in the Cauchy problem and we want to
have global solutions. We choose the simplest of such conditions.

DEFINITION 2.1. Let g be a continuous function on R x R with
values in R". To each ¢ > 0 there is an M > 0 such that

(2.1) gz, y) — 9z, 90| < My — '], y,¢ €R", |z < e

Such a ¢ is said to be in the class G.

If g € G and u € (PH)" then g(s, u(s)) is Borel measurable. Let y
be an n x n matrix with elements in ?° and let n be in (P°)". Then
also —ug(-, u(-)) +n is in (PO |

We use [! norms on both R" and on n x » matrices regarded as
elements in R”. We know that

p=po+ ) pl{z bz,

j=1
and

n=mno+» n{zi Dbz
j=1

Here z; is a set of real numbers such that z;#z;, j#/', and &,
is the Dirac measure at z = z;, po({z}) = nn({z}) =0, z € R. Further
MERUDICETS; is convergent when summed over those j with ;
in a compact set.

We shall study the problem

z

22 ulme)=d— / du(s, £)g(s, u(z, €)) + / dn(s, ),
0 0
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‘DEFINITION 2.2. Let f be a function. Let f(z™) =lim f(t), t < z.
Let u € (PH™ be such that its jumps are defined by
(2.3) dw/ds(s) = —p({z; Pg(z;, w(s)) + n({z;}),

w(0) = u(o:;), w(l) =u(z;), j =1,2,...

We define the measure A(u, u,n) by

(2.4) M, (A = (g u()) +n)(A),

ACR" ABorel set, z; ¢ A, j =1,2,...,
and
(2.5) My, p, D) =ulz;) —ulz)), j=1,2,...

THEOREM 2.3. Let g € G let d € R", let y be an nx n matrix
with elments in P° and let n € (PO)". Let )\ be given by Deﬁnitioh 2.2,
Then the solutions u(z,&) of (2.2) tend to a limit u(z) € (P)* when
g — 0 for all z € R. Further u is the unique solution in (PH"* of

z

(2.6) w(z) = cz+/ dr(u, i, n)(s), >0,
o+

and

@.7) s@=d- [ Bwpne, s<0,

z

Remark. The solution is such that X is well defined. If g(z, u)(z)) =
u(z) we are in the linear case of [5]. Let n=1, o = u({s})#0 and
b=n({s}). Then we get

A, p,){sP = a7 — 1)(—au(s) + b);



118 JAN PERSSON

just as in [5, Theorem 3.1]. Sesekin treats the non-linear problem
for systems in [10]. In [11] he treats a scalar differential equation or
rather integral equation. In both cases Sesekin works in a wider class
of regularizations. So his systems corresponding to Theorem 2.3 are
less general. And even very simple scalar linear equations covered
by [5] are excluded. Either one must accept these restrictions on the
underlying models or restrict the admissible class of regularizations.

3. How goes the proof.

We shall prove Theorm 2.3 in several steps. Let

3.1 | pv=p— D n({z;}os,
) . . J=N+1

and

3.2) . mw=n— > n{z; D,

Jj=N+1

The solution of (2.2) when p is replaced by uy and n by ny is
called uy(z,¢). The corresponding solution of (2.6)-(2.7) is called uy.

At first one proves that u(z,e) and uy(z,e) are equibounded
on compact sets for £, 0 < ¢ < 1, and all N. Then one proves that
un(z) exists as a limit of uy(z,&) when ¢ — 0. In the same step
one shows that uy solves (2.6)-(2.7) with y replaced by uy and 7
by nn. The difference u(z, &) — un(z, &) can be made arbitrarily small
on compact sets for all big N uniformly in &, 0 < € < 1. Adding this
to the fact that uy(z,¢) — un(z), € — 0, shows that u(z,e) is a
pointwise converging Cauchy family when £ — 0, with a limit u(z, 0).
Then it is clear that uy(z) — u(z,0), N — co. One also proves that
the sequence uy is equibounded on compact sets. All this is done in
Section 4. Finally one proves the full Theorem 2.3 in Section 5.
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4. Intermediate theorems and lemmata.

Let

z T

4.1) uo(x,z-:)=d—/ d,u(s,e)g(s,d)+/ dn(s, €),
0 0

and let

e

@2) upa(o,e)=d— [ duCs,edo(s,ustos N [ .o i=012.0
0 0

Let ¢ > 0 be fixed. Define L = max|g(s,d)|, |s| < ¢, and

c+l c+l

“3) C=d+ / Ldjul(s) + / dJn|(s).
c—1 —c—1

We take M from (2.1) and assert that

4.4) ‘ luj(x) — u;_1(z)| < 277Cexp <

oM f 4|5, €)
0 . .

x| <c j=0,1,2,....

)

It is true for j = 0 because of (4.3) if u_; = 0. Let it be true for a
certain j. Then (4.2) and (4.4) give '

luj+1(x; 8) - u’](m) S)I =

< f Mluj(s, €) — uj1(s, )|ul(s, €)ds
0

4.5)

8

/ (9(u; (s, €) — gluj1(5, £))du(s, €)
0

/ 16t €)d

0

) ds
/ |u|(s, e)ds > :
0

It follows that u;(z,é€) converges towards a solution u(z,&) of
(2.2) for |z| < ¢ and that '

< 2—1'0/ M|p|(s, €) exp <2M
0 , '

< 277 'Cexp <2M

c+l

(4.6) |u(z, €)] < 2Cexp <2M/ d1u|(s)) lzl <e, 0<e< 1.
1 .
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We realize that the same bound applies to uy(z, g) for all N and
0<e< 1. We get

LEMMA 4.1. The families u(z,€) and un(z,€) are equibonded on
compact sets.

We also get

LEMMA 4.2. Let ¢ > 0. To each £ > 0 there is an N’ such that
4.7) lu(z, &) —un(z,8)| < €,|z]| <c,0<e<1l, N>N.

Proof. Let vy (z,¢€) = u(z, &) — un(z,€). Then

on (@, &) = / dus, €)(g(s, u(s, £)) — gs, (s, )
" / (du(@, &) — dy, (5, €))g(s, un (s, &),
_ 0
Because of Lemma 4.1 there is a € > 0 such that
’ A
lg(s,un(s,e))| < C, |s|<c, 0<e<1, all N,
It follows that
| / l9Gs, wn (s, ENld|(s, &) — pn(s, )] <
0

(4.9) il
< C/ dlp — pw|(s) = CN).
—c—1

Combining (4.8) and (4.9) gives

/ Mlow(s, ©)ldlul(s, £)] + CQV).
0

(4.10) IvN(a:,s)l <

Since C(N) — 0 when N — oo the same applies to lon(z, )]
uniformly in |z| < ¢ because of (4.8) and Grénwall’s lemma giving

c+1
) < C(N)exp </ Mdm](s)).
—c—1

/ Mdjul(s, e)
0

lun(z,e)| < C(N)exp (
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The lemma is proved.

THEOREM 4.3. Replace y by uy and n by ny in (2.3)-(2.5). Then
to each N there is a unique solution uy of the modified equations
(2.6)-(2.7). Further the solution uy(z,€) of the modified equation (2.2)
converges pointwise towards uy(x).

Proof. In order to simplify the notation we assume that y = up
and 7 =ny. Then we let ¢ > 0 be fixed. We can now choose numbers

aj, j =0, £1, £2,..., such that a;_; < a; and |a;] — oo, |j| — o0
fulfilling
(4.11) (lul+nD{z}) = 0, zq;.

Let I; = (aj_1,a;) and let ¢ > 0 be fixed. In addition we assume
that we have chosen the numbers a; such that ap =0 and such that

(4.12) ul(Z) < @M)™, I; C {z;]7] < c},
further modifying the a; such that a; =c and a;; = —¢ for some j and
J'. Let
@.13) uo(x) = d+ / N, ,)(s), T > 0,
. O+ .

0
@.14) uo(@) = d — / N, 5, 1)(s), @ < O,
and
415 wn@=d+ [ d\s,mm6),72 0,

0+
0

(4.16) uj(z) =d —/ dX(uj, u,m(s), z < 0.

Z
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We let ap = 0. We start by looking at the interval 0 < z < a;. We
notice that \ is well defined in that interval. Let

al ai

@.17) C=]d|+/ |g(s,d);dm|<‘s)+/ din|(s),
J 0

. We assert that with u_; =0
. (418) I'U:](IE) - U]—I(I)l S 02—.7" O g T <ag, .7 =Oa 1)25 ce

It follows from (4.13) and (4.17) that (4.18) is true for j = 0 Let
it be true for a certain ;.

We use (4.15) and (4.15) with J replaced by j—1, (2.2), (2.7),
(4.12) and (4.18). We get

T

|us+1(2) — uj(z)] < / M |u;(s) — uj-1(s)|d|p|(s) < C277 7,
0+

That means that u; — u solving (413) for 0 < z < a;. If
(lu] + |m)({a1}) = 0 then we solve (4.13) in an interval a; < z < a2
with d replaced by u(a;) which then of course exists since we have
uniform convergence of continuous functions in 0 < z < a;. At last
we might arrive at an o with (Ju|+|n))({ax})#0. We let it be a1 here.
Then we define u(a;) = w(l) with w from (2.3) when z; = a; and
w(0) = u(a7). We get the right jump at z = a;. We continue by solving
(4.13) in (a1, az) with d replaced by u(a;) and O by a; etc. In this way
we solve (2.6) in 0< z < c.

In the other direction we start by letting «u(07) = w(0) where w
is taken from (2.3) with z; = 0 and w(1) = d. Then we solve (2.7)
in a_; <z <0 just as we did with (2.6) in the positive direction.
We let u(a”,) = w(0), where w is taken from (2.3) with z; =a_; and
w(l) = u(a_1). Then we solve in the interval [a_3,a_;) etc. We get a
solution of (2.6)-(2.7) in |z| < c. It also follows from the construction
that it must be unique. Since c is arbitrary the solutlon exists and is

unique in all R.
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We prove that u(z,&) — u(z) in 0 < z < a;. We see that

T

u(z,e) —uw(z)= [ du(s, eXg(s, uls,e)) — g(s, u(s)))
(4.19) | o

s / d(u(s) — s, ))g(s, u(s)).
0+

Let v(z,¢€) = u(z, &) — u(z). Since v is bounded on bounded sets
we know that for some constant C

l9(z, u(@)| < C, 0< < ay.

For fixed § > 0 let

23] —5

@20) Cle) = / d(lu() — u(, ©)[(s).
: 0+

It follows from (4.19) and (4.20) that

T

4.21) lv(z, )| <K CCEe)+ M Iv(s,ls)ld[u](‘s,s), 0<z<a —6.
T o

Gronwalls lemma then says that u(z,&) — u(z) uniformly on
compact sets of [0,a;) since C(e) — 0, € — 0. It is also clear that the »
limit u(z) in 0 < z < a; is independent of the point masses at z = ai.
For technical reasons we assume that there is a § > 0 such that

(4-22) ' (| +19D{z;0 < |z —a1] < 6} =0.

This means that
u(z, &) =u(a) — 6,&)—

(4.23) / p{a1N(g(s, uls, €)) — n({ar})p(s — a1, €)ds,
a1—5 .

aj—6<z<a, 0<e<§/2
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Since u(z, €) is equibounded on compact sets and ¢ is continuous
we commit an error tending to zero when ¢ — 0 if we instead solve

u(:ﬁ, g) =u(a; — 6, &)~

4.24 ’
(4.24) / (u({a1Pglar, uls, €)) — n{a1}))¢(s — a1, €)ds.
a1—6

We change variable. Let
t= / d(s — a1, €)ds.
0,1—26 ]

Let w(t) = u(z, ). We get
ot

w(t)=w(0)—/(u({al})g(m,w(S))—n({_al}))ds
. 0 .

which is equivalent to (2.3) with z; = a;.
We see that

w(0) = u(a; — 6,¢) — u(a; — 6) =u(ay), e — O.

So

w(l) = u(a1, &) — ula1,0) = ula1), € = 0.

We get the right jump at z =a;. ¢
We now remove the restriction (4.22). We define new signed

measures y; and 7; by

1 (A) = u(A), ni(4) = n(A), it AN {z;|z —a1| < j 1} =9,
4.25) :
ui(A) =0, n(A)=0, if A C {z;|]z —a1| < j'}.

We replace p by p; and‘n by n; in (2.7)-(2.9) getting the solutions
u;(z,e) and uj(z) in 0 < x < a1. For a fixed z, 0 < z < a1, there is
a j such that for all small & u(z,€) = u;(z,e) — u;(z) = u(z), € — 0.
One also realizes that u(z, &) — u;(z,e) — 0, j — oo, equiuniformly on
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compact sets for 0 < ¢ < 1. We just use Grénwall’s lemma for that
just as above.
We then get

(4.26) u;(a1,€) — uj(ar), e — 0.

We want to prove that
“4.27 u(a1, &) — w(l), e — 0, when w(0) = u(ay),
with w froin (2.3) and z; = a;. One gets from (4.26)

lu(ar, &) — w1)| < |ular, &) — uj(ag, &)+
(4.28) ‘
luj(ar, &) — wy(D)] + |w,; (1) — w(D)|.

Here w; is the solution w of (2.5) when p is replaced by u;
and n by n; and when we choose w;(0) »='u,~(a1_). It is obvious that
uj(ay) — u(ay), j — oo. Then one sees from (4.28) that one can prove
(4.27) by first choosing a big ; and then letting ¢ — 0.

If we start with u(a;,e) =u(e)) in a1 <z < ar then we commit
an error tending to zero uniformly in a; < z < a3 when ¢ — 0. We
get that the modified u(z,¢) and thus the original w(z,¢) tends to
u(z) in a1 < z < az. Then we prove that we get the right jump in the
limit at z = a2. Continuing in this way we see that u(z,0) exists and
is equal to u(z) in z > 0. _

We repeat the procedure in the other direction. We start by
assuming that for some § > 0,

(4.29) (Il + InD({z;0 < |a] < 6}) = 0.
It is then clear that
u(z,e) = w(), e -0, -6 <z <0,

if w is taken from (2.5) with z; = 0 and w(1) = d. We notice that
u(z) = w(0) too. We replace 0 by —§ and d by w(0) in (2.2) and 2.(7).



126 - | JAN PERSSON

We also let v(z,¢) = u(z, &) — u(z). We further use (2.1) and get
5

) -8 _
vz, )] < / Mlo(s, e)d|u|(s, &)+ f l9Gs, u(N|d|p() — ut, |(s)

z

. -5
+/ dn(, &) — n()|(s).

We notice that g(z,u(z)) is bounded on bounded sets. So the
above inequality gives

—6
!v(z,e)lﬁ/ M|u(s, &)|d|p|(s, €) + C(e)

with C(e) — 0, ¢ — 0 uniformly in a_; < 7 < —§. Grénwall’s lemma
then says that v(z,&) — 0, ¢ — 0 uniformly on a_; 'g z < —6. We now
remove the restriction (4.29) and repeat the construction in (4.25)
with a; replaced by 0. We call the corresponding solutions u;(z,¢)
and u;(x). We have just proved that for every fixed j u;(z,e) — u;(z),
e — 0. We also have to prove that v;(z) = u;(z) — u(z) = 0, j — oo in
a_1 < z < 0. We notice that v;(0) = 0 and that v; is continuous in this
intervall. If follows that for fixed j and all small ¢

0 0
4.30) / Mlv;(8)|d|u|(s) < 2/ Mlv;(s)|d|u|(s, €).
From (2.7) and (2.7) with 4 and 7 replaced by u; and 7n; we get

0
4.31) ;@) < / Mlv;(9)|dluls)+ COH),

where C(j) — 0, j — oo, uniformly ina_; < z g 0. We combine (4.30)
and (4.31) and use Gronwall’s lemma. We get

. 0
(4.32) lvj(@)| < G(j)exp(ZM/ || (s, €)ds).

Then one realizes that we can remove the regularization in (4.32)
and even the number 2 since any number greater than one will do.
We have proved that v; — 0, j — oo, uniformly in a_; < z < 0.
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It is then obvious from
lu(z, ) — u(@)| < |u(z, &) — u;j(z, &) + |uj(z, &) — u; ()| + |u;(x) — ulz)|

that u(z,e) — u(z), ¢ - 0 in a_; < z < 0. We now replace u(a_i,¢)
by u(a_1). By this we commit an error in u(z,&) tending uniformly
to zero in a3 < z < a_;. Just as above we get that the modified
u(z,e) — u(z), € — 0, in the same interval proving that this is also
true for the original u(z, ¢). In this way we prove that the limit exists
and is equal to u(z), z < 0. That completes the proof of Theorem 4.3.

THEOREM 4.4. The solution u(z,¢) of (2.2) converges pointwise to
a limit u(z,0) when € — 0. :

Proof. Let uy(z) and uy(z,€) be defined as in Theorem 4.3. We
shall prove that u(z,e) for fixed z is a Cauchy family in . Let € > 0
and ¢ > 0. Then ‘ .

lu(z, &) — u(z,&)| < IU($,8) —un(z, &)+ |un(z, &) — un(z)| |
+Hun (@) — un(z, &) + Jun(z,€) — u(z, €.

- It follows from this, Lemma 4.2 and from Theorem 4.3 that
u(z,e) for fixed z is a Cauchy family in &. The limit when & — 0 is
called u(z,0). The theorem is proved.

LEMMA 4.5. Let uy be defined as in Theorem 4.3 and let u(z,0) be
defined as in Theorem 4.4. Then un(z) — u(z,0), N — oo, pointwise.

Proof. Let ¢ > 0. Then
|un (@) — u(z,0)] < |uy(z) — un(z, )+
(4.33)
luy (z,€) — u(z, )| + |u(z, &) — u(z, 0)].

Let § > 0. Then'we know from Lemma 4.2 that there is a N’
such that

(4.34) lun(z,€) — u(,€)] < 6/2, N>N', 0<e< 1.
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From Theorem 4.4 we get an & such that
- (4.35) lu(z,€) — u(z,0)| < /2, 0<e <€
From Theorem 4.3 we know that for fixed N ,
(4.36) un(z,€) —>'uN(w), e — 0.

We first choose N’ such that (4.34) is true. Then for each fixed
N > N’ we let ¢ — 0 in (4.33). Then (4.35) and (4.36) show that
lun(z) — u(x,0)] <, N > N'. The lemma is proved.

LEMMA 4.6. Let uy be defined as in Theorem 4.3. Then the
sequence uy is equibounded on compact sets.

Proof. Lemma 4.1 and Theorem 4.3 prove the lemma.

5. Proof of Theorem 2.3.

Let u(z) = u(z,0) with u(z,0) from Theorem 4.4. Let uy be
defined as in Theorem 4.3. We known that uy(z) — u(z) and that the
sequence uy is equibounded on compact sets, Lemma 4.5 and Lemma
4.6. We shall prove that ' '

(5.1) d+/
O+

Let

T

A (uw, gy, mv)(s) — d+ / A\, 1, m)(s), 7> 0, N — oo,
0+

T

(5.2) Az) = {0 < s < z, (u| +[nD{s}) =0}.

Let

\j(u,,n)(B) =0, B Borel set, z; ¢ B,
(5.3) »
Xj(w, p, M 1) = Mu, g, Mz D).
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We shall use the following assertion which we prove later on
G4 S M@,y {z5}) < 00, summed over j with |z;] < c.

We see that

(5.5 | dpg(,un()+m)s) — / (g (-, u()) +m)(s), N — oo,
A(z) : Alx)

One realizes that
(5.6) NjCun, wn, )z D) = N, w, Mz}, § < N,
From (5.3), (56.6), Definition 2.2 and Lemrha 4.5 we get

>‘.7'(u’Na KN, nN)({xf}) - A]'(ua H "7)({5’7]}), N '—) &Y .7‘
(5.7) - ' '
with |z;| < c.

Now (5.4)-(5.7) together with the existence of a constant ¢ such
that ‘ ‘ '

(5.8) IX;'I(UN,M,??)({x;‘}) < C(IMI +|nD{{z;}), all N,
“and
59 12jCu, i, MUz D] < Clp| + Dz, D),

shows (5.1) is true. It remains to prove (5.8) and (5.9).
We see that

1

(5.10) X;({z;}) = u(z;) — u(z;) = —/ (w({z; Doz, wis)) + n({z;}))ds

0

From the equiboundedness of w, [z;] < ¢ and the continuity of ¢
it follows from (5.10) that for all j with |z;] < ¢, there is a constant
C such that (5.8) and (5.9) are true. The proof is completed.
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