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METHOD FOR SOLVING THE PERIODIC PROBLEM
FOR INTEGRO-DIFFERENTIAL EQUATIONS

S. G. HRISTOVA (Plovdiv) - D. D. BAINOV (Sofia) (*) (**)

In the paper a monotone-iterative method for approximate finding a
couple of minimal and maximal quasisolutions of the periodic problem
for a system of integro-differential equations of Volterra type is justified.

In the simulation of various processes in eéology, radio engineering,
physics, etc. an important role is played by the periodic problems for
systems of integro-differential equations. Such methods for solving
them, where not only the existence of the solutions is established but
an iterative procedure for approximately finding them, is proposed as
well, are of particular interest. One of the most effective approaches
in this respect is the monotone-iterative technique proposed by V.
Lakshmikantham and elaborated for various classes of differential
equations by his school [1] - [7].

(*) Entrato ih Redazione il 13 luglio 1989
(**) The present investigation is partially supported by the Ministry of Culture,
Science, and Education of People’s Republic of Bulgaria under Grant 61.



150 S. G. HRISTOVA - D. D. BAINOV

In the present paper a modification of the monotone-iterative
method for construction of quasisolutions of the periodic problem for
systems of integro-differential equations is justified.

Consider the per10d1c problem for the system of integro-differential
equations '

z = f(t, z,Gx) for t € [0,T]

@
z() =z +T) fort € [-T,0]

where =z € R", z = (z1,22,... a:n), f +[0,T] x R x R — R",
Gz = (G1z,Ghz,...,G,1), Ga:—/ k;(t, s)ml(s)ds (z =1,n), k;:[0,7] x

[—h,T], T =const.> 0, h = const > 0 h<T.
With "each positive integer j = T,n we associate two positive
integers p; and g; such that p; +g; =n— 1.

Introduce the notation

(mth:“‘)mpj;ypj+1>ypj+_2;j"ayn> .
. forp; >J
' ((13]‘, [fz]pj, [y]g;) = oo :
(Il)mz"")mp,';ypj+1)"')y]'——lamj)y]'-“la"',yn)
for p; < j
where z = (z1,%2,...,%n), ¥ = W1,92,-- -, Un)-

Remark 1. In the case when p; = J—1 then
(y;,[w]p,,[y]g,) («'171,5132,~~,33j—1,yj,-»--,yn)-

DEFINITION 1. The functions v, : [—T,T] — R" are called a
couple of lower and upper quasisolutions of periodic problem (1) if

'8.7' S f]'(ta 'U]', [v]pj) ['w]g]s G]'UJF[G'U]@: [Gw]g]) '
@ | | | fort €10,T]
u(}]' 2 f](t; wy, [w]pja ['U]g,-; ij) [Gw]p,‘-; [Gv]gj)

vj(t) = v,(t +T) -
@ fort € [-T,0], G =T, m).
w; (t) = w;t+T) ' |
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DEFINITION 2. The functions v,w : [—=T,T] — R" are called a
couple of quasisolutions of periodic problem (1) if relations (2) and (3)
are fulfilled only as equalities.

DEFINITION 3. The couple of quasisolutions v, w :‘[~T, T — R"
_of periodic problem (1) is called a couple of minimal and maximal
quasisolutions if for any couple of quasisolutions (u,u) of problem
(1) the inequalities v(t) < u(t) < w@) and v(t) < 4() < w(t) hold for
te[-T,T) » ‘

For any couple of functions v,w : [-T,T] — R" such that
v(t) < w(t) for t € [T, T] we define the set of functions

Sw,w)y={u:[-T,T1— R" 1u@®)=u@+T) fort € [-T,0]
u € C'([0,T1, R™) and v(¢) < u(t) < w(®)}.

LEMMA 1. Lét the following conditions be fulfilled:
1. The function m € Cl([—T,.T]_, R™). |
2. The functions k € C([0,T]1 x [—h,T], [0,00)) and is bounded.
3. The following relations hold

.. . | -
m(t) < —Mm(t) — N/ k(t,s)ym(s)ds fort e [0,17]
t—h

B | m(t) = m(t +T7) fort e [-T,0]

where M, N = const > 0 are such that

4) INTko(eM? —1) < M

and ko= max k(t,s).
0 [0,T]x[—h,T] t,s)

Then m(t) < 0 for t € [-T,T}].
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Proof. Consider the function g(t) = m(t)eMt. The function g(t)
satisfies the relatmns

¢ .
(5) §(t)g-N/ kt, 5)eM@Dg(s)ds  fort € [0, T
—h

(6) g®)eMT =gt +T) fort e [-T,0].

We shall show that g(t) < 0 for ¢t € [T, T']. Suppose that this is
not true, i.e. there exists a point ¢ € [—-T, 7] such that g(¢) > 0. By
equality (6) without loss of generality we can assume that ¢ € [0,T].
Consider the following two cases:

Case 1. Let g(t) > 0 for ¢t € [0,7"]. Then from equality (6) it follows
that g(t) > 0 for t € [-T,T]. From inequality (5) and the properties
of the function k(t,s) we obtain the inequality §(¢) <0 for t € [0,7],
i.e. the function g¢(¢) is nonincreasing in the interval [0,T"]. Hence

() | 9(0) > g(T") = eMT4(0).

Inequality (7) is fulfilled if and only if g(0) = 0. But in this case
from equality (6) it follows that g(T") = 0. Hence ¢(7") = 0 < ¢g(¢) which
contradicts the fact that the fucntion is monotone in the interval
[0,T]. The contradiction obtained implies that the assumption is not
true.

Case 2. Let a pbint n € [0,T] exist such that g(n) < 0. Introduce
the notation inf{g(¢):t € [0,T]} = —)\ where ) = const > 0. From the
continuity of the function ¢(t) it follows that there exists a point
¢ € [0,77 such that g(¢) = —)\.

Case 2.2. Let g(T) > 0. Then (#T and by the finite increment
theorem there exists a point ty € [0, T'] such that

o) gtw) |

A
(8) 5@0) = T t :“Z:
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For typ > h from inequality (5) we obtain

to

§(to) < —N | k(to, s)e™ @ 9g(s)ds <
‘ to—h

© "
< N)x.lc()/

to—h

For tg < h from (5) and (6) it follows that

N
eMbo—9)gs « M/\ko(th —1).

0
3t0) < <N [ bito, M (s + )T
to—h _

A o
(10) — N / k(to, s)eMb=g(s)ds <
0 .

S %k())\[eM(h_T) . €M(to—T) +eMto . 1] S

< z%xko(em — 1.

Inequalities (8)-(10) contradict inequality (4).

Case 2.2. Let g(T') < 0. By the assumption there exists a point t1
such that g(¢;) = 0. The finite increment theorem implies the existence
of a point ty € [0,T"] for which the following relation holds

9t 9@ _ 3 A
ti—¢  t1—¢ T

g(to) =

By arguments analoguos to those in the proof of case 2.1 W_e get.
to a contradiction. | N

Hence, g(t) < 0 for t € [-T,7"] which shows that m(t) < 0 for
tel[-1,T]. :

This completes the proof of Lemma 1.

By means of Lemma 1 we shall justify the monotone-iterative
method for construction of quasisolutions of periodic problem (1).

THEOREM 1. Let the following conditions hold:
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The functions v,w : [-T,T] — R" are a couple of lower and
upper quasisolutions of periodic problem (1) and v(t) < w(t) for

tel-1,T]

The fucntion f € C([0,T]x R"x R", R™) is monotone nondecreasing
in [ulpy and [Guly, and monotone nonincreasing in [u], and
[Gul,, and for v(t) < y < x < w(t) satisfies the inequality

f](ta .'L']', [z]pjy [z]g;‘a G]'a;a {Gm]pi, [Ga:]g;)—

—-f} (t, Yj, [CE]p]-, [z]gj, Gjy; [Gm]p;; [Gm]g;‘ 2

> —Mi(z; —y;) — N;i(Gjz - Gjy), J = 1;_n
where M;, N; = const > 0.

The functions k; € C([0,T] x [— h,T1,[0,00)), j =j7=1,n are
bounded.

The inequalities
ON;TKj(e™* —1) < M;, j=1,n
hold where K =  max kj(t,'s_).

[OIT] X [_th] .
Then there exist monotone sequences {v*(t)}§ and {w®@®)}

which are uniformly convergen for t € [-T,T] and their limits
o(t) = hm v®@) and w(t) = hm w® () are couple of minimal and
maxzmal quaszsolutwns of perzodzc problem (1). Moreover, if u(t) is
any solution of periodic problem (1) such that v(t) < u(t) < w(t) for
‘'t € [T, T], then the inequalities ¥(t) < u(t) < w(t) hold for t € [T, T].

Proof. Fix the functions 7,4 € S(w,w),n = (M, M2,-..,M)s 4 =

(U1, ph2, - - - , 4n). Consider the periodic problems

(11)

8+ Myz; + N;Gyz = 0;(t) fort € [0,T]
z;t) =z;t+T) forte[-T,0]
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where _ '
U]' (t)= f]'(ta 77]', [T)]pj ’ [/l’]gj ) Gﬂ?» [Gn]p; 3

(Guly,) + Mym; ) + N;Gin@®),j =1, n.

By the conditions of Theorem 1 problem (11) has a solution.
From Lemma 1. it follows that the solution of problem (11) is unique.

Define the mapping A : S(v,w) x S(v, w) — CY([-T, T, R™) by the
equality A(n, u) =z where z =(z1,z2,...,z,) is the unique solution of
periodic problem (11) for the couple of functions 7, 4.

We shall prove that v < A(v, w). Introduce the notations v =
A(v,w) and p=v — v®. Then the following inequalities hold

¢

p; < —M;p; — N; ki(t, 8)pj(s)ds -fort € [0,T]
(12) -,

pi@®) =p;(t+T) forte[-T,0], j =T n.

From Lemma 1 it follows that the functions p;j(t) are non-
positive, i.e. v < vV = A(v,w). In an analogous Way it is proved that
w > A(w,v).

Let 7,4 € S(v,w) be such that n(t) < u@®) for ¢t € [-T,7T].
Set 70 = A(v,w),z® = A(w,v) and p =z — z® By Lemma 1 the
functions p;(t), j = 1,n are nonpositive for t € [-T,T], ie. the
inequality A(v, w) < A(w, v) holds. '

Define the sequences of functions {v®(t)}3° and {w®(t)}§° by the

equalities
v =y : w® =y

v = AW®, 0®, w®*D = g L ®).

The functions v*(¢) and wk(t), k >0 for t € [—T,T7] satisfy the
‘inequalities

PO <D< < <L <vF <L < {u"(t).

Hence the sequences {v®(t)} and {w®(t)}$ are uniformly
convergent for t € [—-T,T]. Introduce the notations () = /lcin}) v® @)
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and w(t) = klim w®(t). We shall show that v, are a couple of
minimal and maximal quasisolutions of periodic problem (1). From
inequalities (13) it follows that there exists an integer k such
that v* D) < u1@) < w* D) and v V@) < uy(t) < w* V(@) for
t € [-T,T] where u;,u; € S(v,w) are a couple of quasisolutions of (1).
Introduce the notations p;(t) = v](.k) (t) — uy, (). From condition 2 of
the Theqrem 1.it follows the inequalities -
B () = £t v, w* Ly, [w* T, Gro® D, [Gu ), [Guw® D,

- fj(ta ulf: [ul]p]‘) [UZ]gj: G]'u’la [Gul]pja [GUZ]gj>‘“

— M0 — o) NG ® — Gy <

< —M;p;(t) - N;G;p fort e [0,T]"

p;®) =p;t+T) forte [-T,0].

By Lemma 1 the functions p;(t), j = 1,n are nonpositive, i.e.
v® () < uy(t) for t € [T, T1.

In analogous way it is proved that the inequalities u;(t) < w®(t)
and v®(t) < ua(t) < w®(t) hold for t € [T, T] which shows that the
couple ¥,w is a couple of minimal and maximal quasisolutions of
periodic problem (1).

Let z(¢) be any solution of problem (1) such that v(t) < z(t) < w(®).
Consider the couple (z,z) which is a couple of quasisolutions of
(1). From the fact that the couple (#,w) is a couple of minimal
and maximal quasisolutions of (1) it follows that the inequalities
(t) < z(t) < w(t) hold for t € [T, T].

This completes the proof of Theorem 1.
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