ON THE HILBERT SERIES OF VERTEX COVER ALGEBRAS OF COHEN-MACAULAY BIPARTITE GRAPHS

CRISTIAN ION

We study the Hilbert series of the vertex cover algebra $A(G)$, where G is a Cohen-Macaulay bipartite graph.

Introduction

Let $G=(V, E)$ be a simple (i.e., finite, undirected, loopless and without multiple edges) graph with the vertex set $V=[n]$ and the edge set $E=E(G)$. A vertex cover of G is a subset $C \subset V$ such that $C \cap\{i, j\} \neq \emptyset$, for any edge $\{i, j\} \in E(G)$. A vertex cover C of G is called minimal if no proper subset $C^{\prime} \subset C$ is a vertex cover of G. A graph G is called unmixed if all minimal vertex covers of G have the same cardinality. Let $R=K\left[x_{1}, \ldots, x_{n}\right]$ be the polynomial ring in n variables over a field K. The edge ideal of G is the monomial ideal $I(G)$ of R generated by those quadratic monomials $x_{i} x_{j}$ with $\{i, j\} \in E(G)$. It is said that a graph G is Cohen-Macaulay (over K) if the quotient ring $R / I(G)$ is Cohen-Macaulay. Every Cohen-Macaulay graph is unmixed.

A vertex cover $C \subset[n]$ can be represented as a $(0,1)$-vector c that satisfies the restriction $c_{i}+c_{j} \geq 1$, for every $\{i, j\} \in E(G)$. For each $k \in \mathbb{N}$, a vertex cover of G of order k, or simply a k-vertex cover of G, is a vector $c \in \mathbb{N}^{n}$ such that $c_{i}+c_{j} \geq k$, for every $\{i, j\} \in E(G)$. The vertex cover algebra $A(G)$ is

[^0]defined as the subalgebra of the one variable polynomial ring $R[t]$ generated by all monomials $x_{1}^{c_{1}} \ldots x_{n}^{c_{n}} t^{k}$, where $c=\left(c_{1}, \ldots, c_{n}\right) \in \mathbb{N}^{n}$ is a k-vertex cover of G. This algebra was introduced and studied in [5]. Let \mathfrak{m} be the maximal graded ideal of R. The graded K-algebra $\bar{A}(G)=A(G) / \mathfrak{m} A(G)$ is called the basic cover algebra and it was introduced and studied in [4, Section 3].

In Section 1, we study the Hilbert series of vertex cover algebras of CohenMacaulay bipartite graphs. The main result of the paper is given in Theorem 1.5, which shows that one may reduce the computation of the Hilbert series of the vertex cover algebra $A(G)$ to the computation of the Hilbert series of the basic cover algebra of all Cohen-Macaulay bipartite subgraphs of G. The theorem has several consequences. For instance, we prove that the h-vector of $A(G)$ is unimodal.

In Section 2, we give sharp bounds for the components of the h-vector and for the multiplicity of $A(G)$. We show that both chains and antichains are uniquely determined up to a poset isomorphism by the Hilbert series of their corresponding vertex cover algebras.

1. The Hilbert series of the vertex cover algebra of a Cohen-Macaulay bipartite graph

Let $S=K\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right]$ and let $P_{n}=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ be a poset with a partial order \leq. We denote by $G\left(P_{n}\right)$ the bipartite graph on $W \cup W^{\prime}$, where $W=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and $W^{\prime}=\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$, whose edge set $E(G)$ consists of all 2 -element subsets $\left\{x_{i}, y_{j}\right\}$ with $p_{i} \leq p_{j}$. It is said that a bipartite graph G on $W \cup W^{\prime}$ comes from a poset, if there exists a finite poset P_{n} on $\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ such that $p_{i} \leq p_{j}$ implies $i \leq j$, and after relabeling of the vertices of G one has $G=G\left(P_{n}\right)$. Herzog and Hibi proved in [3, Theorem 3.4] that a bipartite graph G on $W \cup W^{\prime}$ is Cohen-Macaulay if and only if G comes from a poset. In this case, by [5], $A(G)$ is standard graded over S and it is the Rees algebra of the cover ideal I_{G}, which is generated by all monomials $x_{1}^{c_{1}} \ldots x_{n}^{c_{n}} y_{1}^{c_{n+1}} \ldots y_{n}^{c_{2 n}}$, where $c=\left(c_{1}, \ldots, c_{2 n}\right)$ is a 1 -vertex cover of G. Thus

$$
A(G)=S \oplus I_{G} t \oplus \ldots \oplus I_{G}^{k} t^{k} \oplus \ldots
$$

Let $\left\{m_{1}, m_{2}, \ldots, m_{l}\right\}$ be the minimal system of generators of I_{G}. We view $A(G)$ as a standard graded K-algebra by assigning to each x_{i} and $y_{j}, 1 \leq i, j \leq n$, and to each $m_{k} t, 1 \leq k \leq l$, the degree 1 . Since each monomial m_{k} corresponds to a minimal vertex cover of G of cardinality n, the Hilbert function of $A(G)$ is given by

$$
H(A(G), k)=\sum_{j=0}^{k} \operatorname{dim}_{K}\left(I_{G}^{j}\right)_{j n+(k-j)}, \text { for all } k \geq 0
$$

Remark 1.1. The Hilbert function and series of $A(G)$ are invariant to poset isomorphisms. Indeed, if $P_{n}=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ and $P_{n}^{\prime}=\left\{p_{1}^{\prime}, p_{2}^{\prime}, \ldots, p_{n}^{\prime}\right\}$ are two isomorphic finite posets, then any poset isomorphism $f: P_{n} \rightarrow P_{n}^{\prime}$ induces a permutation σ of $[n], i \mapsto \sigma(i)$, defined by $p_{\sigma(i)}^{\prime}=f\left(p_{i}\right)$, for every $i \in[n]$. The graph isomorphism $h: V\left(G\left(P_{n}\right)\right) \rightarrow V\left(G\left(P_{n}^{\prime}\right)\right), h\left(x_{i}\right)=x_{\sigma(i)}$ and $h\left(y_{j}\right)=y_{\sigma(j)}$, $i, j \in[n]$, induces a K-automorphism of S which maps $I_{G\left(P_{n}\right)}$ onto $I_{G\left(P_{n}^{\prime}\right)}$.

Let $P_{n}=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ be a poset such that $p_{i} \leq p_{j}$ implies $i \leq j$, let $\mathscr{J}\left(P_{n}\right)$ be the lattice of poset ideals of P_{n} and $G=G\left(P_{n}\right)$. By [4, Lemma 2.1] there exists a one-to-one correspondence between the set $\mathscr{M}(G)$ of minimal vertex covers of G and the lattice $\mathscr{J}\left(P_{n}\right)$. Hence the monomials $m_{\alpha}=\left(\prod_{p_{i} \in \alpha} x_{i}\right) \cdot\left(\prod_{p_{j} \notin \alpha} y_{j}\right)$, $\alpha \in \mathscr{J}\left(P_{n}\right)$, are the minimal generators of the cover ideal I_{G}.

We denote $B_{G}=K\left[\left\{x_{i}\right\}_{1 \leq i \leq n},\left\{y_{j}\right\}_{1 \leq j \leq n},\left\{u_{\alpha}\right\}_{\alpha \in \mathscr{G}\left(P_{n}\right)}\right]$. The toric ideal Q_{G} of $A(G)$ is the kernel of the surjective ring homomorphism $\xi: B_{G} \rightarrow A(G)$ defined by $\xi\left(x_{i}\right)=x_{i}, \xi\left(y_{j}\right)=y_{j}, 1 \leq i, j \leq n, \xi\left(u_{\alpha}\right)=m_{\alpha} t, \alpha \in \mathscr{J}\left(P_{n}\right)$.

Let $<_{\text {lex }}$ denote the lexicographic order on $K\left[\left\{x_{i}\right\}_{1 \leq i \leq n},\left\{y_{j}\right\}_{1 \leq j \leq n}\right]$ induced by the ordering $x_{1}>\ldots>x_{n}>y_{1}>\ldots>y_{n}$ and $<\#$ the reverse lexicographic order on $K\left[\left\{u_{\alpha}\right\}_{\alpha \in \mathscr{f}\left(P_{n}\right)}\right]$ induced by an ordering of the variables u_{α} 's such that $u_{\alpha}>u_{\beta}$ if $\beta \subset \alpha$ in $\mathscr{J}\left(P_{n}\right)$. Let $<_{l e x}^{\#}$ be the monomial order on B_{G} defined as the product of the monomial orders $<_{\text {lex }}$ and $<^{\#}$ from above. The reduced Gröbner basis \mathscr{G} of the toric ideal Q_{G} of $A(G)$ with respect to the monomial order $<_{\text {lex }}^{\sharp}$ on B_{G} was computed in [3, Theorem 1.1]:

$$
\begin{aligned}
\mathscr{G}= & \left\{\left.\begin{array}{l}
\left.x_{j} u_{\alpha}-y_{j} u_{\alpha \cup\left\{p_{j}\right\}} \mid j \in[n], \alpha \in \mathscr{J}\left(P_{n}\right), p_{j} \notin \alpha, \alpha \cup\left\{p_{j}\right\} \in \mathscr{J}\left(P_{n}\right)\right\} \\
\cup
\end{array} \underline{\left\{u_{\alpha} u_{\beta}\right.}-u_{\alpha \cup \beta} u_{\alpha \cap \beta} \right\rvert\, \alpha, \beta \in \mathscr{J}\left(P_{n}\right), \alpha \not \subset \beta, \beta \not \subset \alpha\right\},
\end{aligned}
$$

where the initial monomial of each binomial of \mathscr{G} is the first monomial.
Let $S_{G}=K\left[\left\{u_{\alpha}\right\}_{\alpha \in \mathscr{J}\left(P_{n}\right)}\right]$ denote the polynomial ring in $\left|\mathscr{J}\left(P_{n}\right)\right|$ variables over K, let $\bar{A}(G)$ be the basic cover algebra and let $\Delta\left(\mathscr{J}\left(P_{n}\right)\right)$ be the order complex of the lattice $\left(\mathscr{J}\left(P_{n}\right), \subset\right)$ whose faces are the chains of P_{n}. (We refer the reader to [1], [4, Section 3] for the definition and properties of the basic cover algebra associated to a graph and $[2, \S 5.1]$ for the definition and properties of the order complex of a poset.) The toric ideal \bar{Q}_{G} of $\bar{A}(G)$ is the kernel of the surjective ring homomorphism $\pi: S_{G} \rightarrow \bar{A}(G), \pi\left(u_{\alpha}\right)=m_{\alpha}, \alpha \in \mathscr{J}\left(P_{n}\right)$. The reduced Gröbner basis \mathscr{G}_{0} of \bar{Q}_{G} with respect to $<^{\#}$ on S_{G} was computed in [4, Theorem 3.1]:

$$
\mathscr{G}_{0}=\left\{\underline{u_{\alpha} u_{\beta}}-u_{\alpha \cup \beta} u_{\alpha \cap \beta} \mid \alpha, \beta \in \mathscr{J}\left(P_{n}\right), \alpha \not \subset \beta, \beta \not \subset \alpha\right\},
$$

where the initial monomial of each binomial of \mathscr{G}_{0} is the first monomial.

Proposition 1.2. The graded K-algebra $\bar{A}(G)$ and the order complex $\Delta\left(\mathscr{J}\left(P_{n}\right)\right)$ have the same h-vector.

Proof. By [4, Proposition 3.1] \bar{Q}_{G} is a graded ideal (generated by binomials) and the initial ideal $\operatorname{in}_{<^{\#}}\left(\bar{Q}_{G}\right)$ of the toric ideal \bar{Q}_{G} coincides with the StanleyReisner ideal $I_{\Delta\left(\mathscr{L}\left(P_{n}\right)\right)}$, hence S_{G} / \bar{Q}_{G} and $K\left[\Delta\left(\mathscr{J}\left(P_{n}\right)\right)\right]$ have the same h-vector. Since $S_{G} / \bar{Q}_{G} \simeq \bar{A}(G)$ as graded K-algebras, the conclusion follows.

Remark 1.3. Since $\mathscr{J}\left(P_{n}\right)$ is a full sublattice of the Boolean lattice \mathscr{L}_{n} on the set $\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ ([4, Theorem 2.2.]), it follows that $\operatorname{dim} \Delta\left(\mathscr{J}\left(P_{n}\right)\right)=n$. Let $h=\left(h_{0}, h_{1}, \ldots, h_{n+1}\right)$ be the h-vector of $\Delta\left(\mathscr{J}\left(P_{n}\right)\right)$ and $\bar{A}(G)$. As we noticed above, the basic cover algebra $\bar{A}(G)$ can be identified with the Hibi ring S_{G} / \bar{Q}_{G}, which arises from the distributive lattice $\mathscr{J}\left(P_{n}\right)$. The i-th component h_{i} of the h-vector of S_{G} / \bar{Q}_{G} and, consequently, of $\bar{A}(G)$ is equal to the number of linear extensions of P_{n}, which, seen as permutations of [n], have exactly i descents ([6]). In particular,

$$
\begin{equation*}
h_{i} \geq 0, \text { for all } 0 \leq i \leq n-1, h_{0}=1, \text { and } h_{n}=h_{n+1}=0 \tag{1}
\end{equation*}
$$

For example, if $P_{n}^{\prime \prime}=\left\{p_{1}^{\prime \prime}, \ldots, p_{n}^{\prime \prime}\right\}$ is an antichain, then each permutation of $[n]$ can be seen as a linear extension of $P_{n}^{\prime \prime}$, hence, for all $0 \leq i \leq n-1$, the i-th component h_{i} of the h-vector of $\Delta\left(\mathscr{J}\left(P_{n}^{\prime \prime}\right)\right)$ is equal to the number of all permutations of $[n]$ with exactly i descents, which is the Eulerian number $A(n, i)$.

For each $\emptyset \neq F \subset[n]$ we denote by $P_{n}(F)$ the subposet of P_{n} induced by the subset $\left\{p_{i} \mid i \in F\right\}$. The main result of the paper relates the Hilbert series of $A(G)$ to the Hilbert series of $\bar{A}\left(G_{F}\right)$, for all $F \subset[n]$, where G_{F} denotes the bipartite graph that comes from the poset $P_{n}(F)$. If $F=\emptyset$, then, by convention, the Hilbert series of $\bar{A}\left(G_{F}\right)$ is equal to $\frac{1}{1-z}$.

In order to prove the main theorem we need a preparatory result.
Let $\emptyset \neq F \varsubsetneqq[n]$ and let α be a poset ideal of $P_{n}(\bar{F})$, where by \bar{F} we mean the complement of F in $[n]$. We denote by δ_{α} the maximal subset of $P_{n}(F)$ such that $\alpha \cup \delta_{\alpha} \in \mathscr{J}\left(P_{n}\right)$. Note that

$$
\delta_{\alpha}=\cup\left\{\gamma \mid \gamma \subset P_{n}(F), \alpha \cup \gamma \in \mathscr{J}\left(P_{n}\right)\right\}
$$

If we set $\beta=\alpha \cup \delta_{\alpha}$, then, by the definition of δ_{α}, β has the following property: for any $j \in F, p_{j} \notin \beta$ implies $\beta \cup\left\{p_{j}\right\} \notin \mathscr{J}\left(P_{n}\right)$.

Lemma 1.4. Let $\emptyset \neq F \varsubsetneqq[n]$ and let \mathscr{S} be the set of poset ideals β of P_{n} with the property that for any $j \in F$ such that $p_{j} \notin \beta$ we have $\beta \cup\left\{p_{j}\right\} \notin \mathscr{J}\left(P_{n}\right)$. Then the map $\varphi: \mathscr{J}\left(P_{n}(\bar{F})\right) \rightarrow \mathscr{S}$ defined by $\alpha \mapsto \beta=\alpha \cup \delta_{\alpha}$, is an isomorphism of posets.

Proof. We show that φ is invertible. Indeed, the map $\psi: \mathscr{S} \rightarrow \mathscr{J}\left(P_{n}(\bar{F})\right)$ defined by $\psi(\beta)=\beta \cap P_{n}(\bar{F})$ is the inverse of φ since if $\alpha=\beta \cap P_{n}(\bar{F})$, then, by the property of β, we have $\delta_{\alpha}=\beta \backslash P_{n}(\bar{F})$.

Let $\alpha_{1} \varsubsetneqq \alpha_{2}$ be poset ideals of $P_{n}(\bar{F})$ and $\beta_{i}=\varphi\left(\alpha_{i}\right)=\alpha_{i} \cup \delta_{i}, i=1,2$. We only need to prove that $\beta_{1} \subset \beta_{2}$ since the strict inclusion follows from the hypothesis $\alpha_{1} \varsubsetneqq \alpha_{2}$. Let us assume that $\beta_{1} \not \subset \beta_{2}$ and let $p_{a}, a \in F$, be a minimal element in $\beta_{1} \backslash \beta_{2}$. Since $p_{a} \notin \beta_{2}$, it follows that $\beta_{2} \cup\left\{p_{2}\right\}$ is not a poset ideal of P_{n}. Therefore, there exists some $p_{b}<p_{a}$ such that $p_{b} \notin \beta_{2}$. On the other hand, $p_{b} \in \beta_{1}$ since $\beta_{1} \in \mathscr{J}\left(P_{n}\right)$, hence, $p_{b} \in \beta_{1} \backslash \beta_{2}$, which is a contradiction with the choice of p_{a}.

Now let $\beta_{1}, \beta_{2} \in \mathscr{S}$ with $\beta_{1} \varsubsetneqq \beta_{2}$, and let us assume that $\alpha_{1}=\alpha_{2}$, where $\alpha_{1}=\beta_{1} \cap P_{n}(\bar{F})$ and $\alpha_{2}=\beta_{2} \cap P_{n}(\bar{F})$. Then $\delta_{1}=\beta_{1} \backslash P_{n}(\bar{F}) \varsubsetneqq \delta_{2}=\beta_{2} \backslash P_{n}(\bar{F})$. But this is impossible since δ_{1} is maximal among the subsets $\gamma \subset P_{n}(F)$ with $\alpha_{1} \cup \gamma \in \mathscr{J}\left(P_{n}\right)$.

We can state now the main theorem which relates the Hilbert series of the vertex cover algebra $A(G)$ to the Hilbert series of the basic cover algebras $\bar{A}\left(G_{F}\right)$ for all $F \subset[n]$.

Theorem 1.5. For $F \subset[n]$ let $H_{\bar{A}\left(G_{F}\right)}(z)$ be the Hilbert series of $\bar{A}\left(G_{F}\right)$ and let $H_{A(G)}(z)$ be the Hilbert series of $A(G)$. Then:

$$
\begin{equation*}
H_{A(G)}(z)=\frac{1}{(1-z)^{n}} \sum_{F \subset[n]} H_{\bar{A}\left(G_{F}\right)}(z)\left(\frac{z}{1-z}\right)^{n-|F|} \tag{2}
\end{equation*}
$$

In particular, if $h(z)=\sum_{j \geq 0} h_{j} z^{j}$ and $h^{F}(z)=\sum_{j \geq 0} h_{j}^{F} z^{j}$, where $h=\left(h_{j}\right)_{j \geq 0}$ and $h^{F}=\left(h_{j}^{F}\right)_{j \geq 0}$ are the h-vectors of $A(G)$, and, respectively, $\bar{A}\left(G_{F}\right)$, then

$$
\begin{equation*}
h(z)=\sum_{F \subset[n]} h^{F}(z) z^{n-|F|} \tag{3}
\end{equation*}
$$

Proof. Let $J_{G}=\operatorname{in}_{<_{\text {lex }}^{\#}}\left(Q_{G}\right)$. It is known that B_{G} / Q_{G} and B_{G} / J_{G} have the same Hilbert series. Let $B_{G}^{\prime}=K\left[\left\{x_{i}\right\}_{1 \leq i \leq n},\left\{u_{\alpha}\right\}_{\alpha \in \mathscr{J}\left(P_{n}\right)}\right]$. By using the following K-vector space isomorphism

$$
B_{G} / J_{G} \simeq K\left[y_{1}, y_{2}, \ldots, y_{n}\right] \otimes_{K} B_{G}^{\prime} /\left(J_{G} \cap B_{G}^{\prime}\right)
$$

we get

$$
H_{A(G)}(z)=H_{B_{G} / Q_{G}}(z)=H_{B_{G} / J_{G}}(z)=\frac{1}{(1-z)^{n}} H_{B_{G}^{\prime} /\left(J_{G} \cap B_{G}^{\prime}\right)}(z)
$$

We need to compute the Hilbert series of $B_{G}^{\prime} /\left(J_{G} \cap B_{G}^{\prime}\right)$. To this aim we show that we have an isomorphism of K-vector spaces

$$
\begin{equation*}
B_{G}^{\prime} /\left(J_{G} \cap B_{G}^{\prime}\right) \simeq \bigoplus_{F \subset[n]} \bar{A}\left(G_{\bar{F}}\right) \otimes_{K} x_{F} K\left[\left\{x_{i}\right\}_{i \in F}\right] \tag{4}
\end{equation*}
$$

For $\emptyset \neq F \subset[n]$ let J_{F} be the initial ideal with respect to $<{ }^{\#}$ of the toric ideal of $\bar{A}\left(G_{F}\right)$. Then $J_{F}=\left(u_{\alpha} u_{\beta}-u_{\alpha \cup \beta} u_{\alpha \cap \beta} \mid \alpha, \beta \in \mathscr{J}\left(P_{n}\right), \alpha \not \subset \beta, \beta \not \subset \alpha\right)$. If $F=\emptyset$, we put by convention $J_{F}=(0)$.

The basic vertex cover algebra $\bar{A}\left(G_{\bar{F}}\right)$ can be decomposed as a K-vector space as $\bar{A}\left(G_{\bar{F}}\right) \simeq \bigoplus_{w \notin J_{\bar{F}}} K w$. We notice that $w \notin J_{\bar{F}}$ if and only if $\operatorname{supp}(w)=$ $\left\{\alpha_{1}, \ldots, \alpha_{s}\right\}, s \geq 0$, where $\alpha_{1} \varsubsetneqq \ldots \varsubsetneqq \alpha_{s}$ is a chain in $\mathscr{J}\left(P_{n}(\bar{F})\right)$. It follows that for $F \subset[n]$ we have

$$
V_{F}=\bar{A}\left(G_{\bar{F}}\right) \otimes_{K} x_{F} K\left[\left\{x_{i}\right\}_{i \in F}\right] \simeq \bigoplus K v w
$$

where the direct sum is taken over all monomials $v w$ with v a monomial in the variables x_{i} 's such that $\operatorname{supp}(v)=F$ and w a monomial in the variables u_{α} 's such that $w \notin J_{\bar{F}}$.

As a K-vector space, $B_{G}^{\prime} /\left(J_{G} \cap B_{G}^{\prime}\right)$ has the decomposition

$$
B_{G}^{\prime} /\left(J_{G} \cap B_{G}^{\prime}\right) \simeq \bigoplus_{F \subset[n]} W_{F}
$$

where $W_{F}=\bigoplus K v w^{\prime}$ and the direct sum is taken over all monomials v with $\operatorname{supp}(v)=F$ and all monomials w^{\prime} in the variables u_{α} 's with $\alpha \in \mathscr{J}\left(P_{n}\right)$ such that $v w^{\prime} \neq 0$ modulo $J_{G} \cap B_{G}^{\prime}$.

Thus in order to prove (4), we only need to show that for each $F \subset[n]$, the K-vector spaces V_{F} and W_{F} are isomorphic. This is obvious for $F=\emptyset$ and $F=[n]$.

Let us consider now $\emptyset \neq F \varsubsetneqq[n]$. Based on the previous lemma, we are going to prove that there exists a one-to-one correspondence between the monomials of the K-bases of V_{F} and W_{F}.

Let $v w$ be a monomial of the K-basis of V_{F}. This means that $\operatorname{supp}(v)=F$ and w is of the form $w=u_{\alpha_{1}}^{a_{1}} \cdots u_{\alpha_{s}}^{a_{s}}$ for some chain $\alpha_{1} \varsubsetneqq \ldots \varsubsetneqq \alpha_{s}$ in $\mathscr{J}\left(P_{n}(\bar{F})\right), s \geq 1$. For each $1 \leq i \leq s$, let $\beta_{i}=\varphi\left(\alpha_{i}\right) \in \mathscr{J}\left(P_{n}\right)$ as it was defined in Lemma 1.4. We map $v w$ to the monomial $v w^{\prime}$, where $w^{\prime}=u_{\beta_{1}}^{a_{1}} \cdots u_{\beta_{s}}^{a_{s}}$. By Lemma 1.4, we have that $\beta_{1} \varsubsetneqq \ldots \varsubsetneqq \beta_{s}$ is a chain in $\mathscr{J}\left(P_{n}\right)$. Moreover, for any $j \in F$ and any β_{i} such that $p_{j} \notin \beta_{i}$, we have $\beta_{i} \cup\left\{p_{j}\right\} \notin \mathscr{J}\left(P_{n}\right)$. Therefore, $v w^{\prime}$ is a monomial in the K-basis of W_{F}.

Conversely, let $v w^{\prime}$ be a monomial of the K-basis of W_{F}, where $\operatorname{supp}(v)=F$ and $w^{\prime}=u_{\beta_{1}}^{a_{1}} \cdots u_{\beta_{s}}^{a_{s}}$, with $\beta_{1} \varsubsetneqq \ldots \varsubsetneqq \beta_{s}$ a chain in $\mathscr{J}\left(P_{n}\right)$. Let $\alpha_{i}=\beta_{i} \cap P_{n}(\bar{F})$,
for $1 \leq i \leq s$. Then we associate to $v w^{\prime}$ the monomial $v w$ in the K-basis of V_{F}, where $w=u_{\alpha_{1}}^{a_{1}} \cdots u_{\alpha_{s}}^{a_{s}}$.

By using again Lemma 1.4 it follows that the above defined maps between the K-bases of V_{F} and W_{F} are inverse.

By (4) we get

$$
H_{B_{G}^{\prime} /\left(J_{G} \cap B_{G}^{\prime}\right)}(z)=\sum_{F \subset[n]} H_{\bar{A}\left(G_{\bar{F}}\right)}(z)\left(\frac{z}{1-z}\right)^{|F|}=\sum_{F \subset[n]} H_{\bar{A}\left(G_{F}\right)}(z)\left(\frac{z}{1-z}\right)^{n-|F|},
$$

which ends the proof.
Corollary 1.6. For all $0 \leq j \leq n-1$, the j-th component h_{j} of the h-vector of $A(G)$ is equal to the number of all linear extensions of all $n-l$-element subposets of P_{n}, which, seen as permutations of $[n-l]$, have exactly $j-l$ descents, for all $0 \leq l \leq j$.

Proof. It follows immediately from (3) and Remark 1.3.
Corollary 1.7. The h-vector of $A(G)$ is unimodal.
Proof. By (3) we get $h_{n+1}=\sum_{F \subset[n]} h_{|F|+1}^{F}$ and $h_{n}=\sum_{F \subset[n]} h_{|F|}^{F}$. By using (1) from Remark 1.3, we have $h_{|F|}^{F}=h_{|F|+1}^{F}=0$, for all $\emptyset \neq F \subset[n]$. Hence $h_{n+1}=h_{1}^{\emptyset}=0$ and $h_{n}=h_{0}^{\emptyset}=1$. In [5, Corollary 4.4] it was proved that $A(G)$ is a Gorenstein ring, hence, by [2, Corollary 4.3.8 (b) and Remark 4.3.9 (a)], $h_{i}=h_{n-i}$, for all $0 \leq i \leq n$. We denote by $v(l, j)$ the number of all linear extensions of all $n-l$ element subposets of P_{n} which, seen as permutations of $[n-l]$, have exactly $j-l$ descents. Hence, by Corollary 1.6, $h_{j}=\sum_{l=0}^{j} v(l, j)$.

Let $0 \leq j<j+1 \leq\left\lfloor\frac{n}{2}\right\rfloor$. Then $v(l, j) \leq v(l+1, j+1)$, for all $0 \leq l \leq j$, which implies that $h_{j+1}=v(j+1,0)+\sum_{l=0}^{j} v(j+1, l+1) \geq \sum_{l=0}^{j} v(l, j)=h_{j}$.

Remark 1.8. The a-invariant of $A(G)$ is equal to $-n-1$.
Corollary 1.9. Let $e(A(G))$ be the multiplicity of $A(G)$ and let $e\left(\bar{A}\left(G_{F}\right)\right)$ be the multiplicity of $\bar{A}\left(G_{F}\right)$ for $F \subset[n]$. Then

$$
e(A(G))=\sum_{F \subset[n]} e\left(\bar{A}\left(G_{F}\right)\right) .
$$

Proof. It follows immediately from (3).

Let $P_{3}=\left\{p_{1}, p_{2}, p_{3}\right\}$ be the poset with $p_{1} \leq p_{2}$ and $p_{1} \leq p_{3}$ and $G=G\left(P_{3}\right)$. By applying our formula (2) we get:

$$
H_{A(G)}(z)=\frac{1}{(1-z)^{3}} \sum_{F \subset[3]} H_{\bar{A}\left(G_{F}\right)}(z)\left(\frac{z}{1-z}\right)^{3-|F|}=\frac{1+4 z+4 z^{2}+z^{3}}{(1-z)^{7}}
$$

Hence $h_{0}=h_{3}=1, h_{1}=h_{2}=4, h_{4}=0$. We can also compute the h-vector of $A(G)$ by using Corollary 1.6. The poset P_{3} has two linear extensions, which, seen as permutation of [3], are equal to $i d_{3}$ and (23). Hence $h_{0}=1$, since there exists only one linear extension of P_{3}, which, seen as a permutation of [3], has exactly 0 descents. Furthermore, P_{3} has three 2-element subposets, the chains $P_{3}(\{1,2\})$ and $P_{3}(\{1,3\})$ with a linear extension corresponding to $i d_{2}$, and the antichain $P_{3}(\{2,3\})$ with two linear extensions corresponding to $i d_{2}$ and (12). Thus $h_{1}=4$, since there exists one linear extension of P_{3}, which, seen as a permutation of [3], has exactly 1 descent and each of the subposets $P_{3}(\{1,2\})$, $P_{3}(\{1,3\})$ and $P_{3}(\{2,3\})$ has one linear extension, which, seen as a permutation of [2], has exactly 0 descents.

2. Bounds for the components of the h-vector and for the multiplicity of $A(G)$

Let \mathscr{L}_{n} be the Boolean lattice on $\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}, n \geq 1$, and let $A(p, q)$ be the Eulerian number for $1 \leq q \leq n$ and $0 \leq p<q$. By convention we put $A(0,0)=1$ and $A(q, q)=0$, for all $1 \leq q \leq n$. We compute the Hilbert series of the vertex cover algebra of the Cohen-Macaulay bipartite graphs that come from a chain and an antichain.

Proposition 2.1. Let G^{\prime}, respectively, $G^{\prime \prime}$ be bipartite graphs on $W \cup W^{\prime}$ that come from a chain, respectively, an antichain with n elements, $n \geq 1$. Then we have:
(i) $H_{A\left(G^{\prime}\right)}(z)=\frac{(1+z)^{n}}{(1-z)^{2 n+1}}$. In particular, $e\left(A\left(G^{\prime}\right)\right)=2^{n}$.
(ii) $H_{A\left(G^{\prime \prime}\right)}(z)=\frac{\sum_{j=0}^{n} \sum_{l=0}^{j}\binom{n}{l} A(n-l, j-l) z^{j}}{(1-z)^{2 n+1}}$. In particular, $e\left(A\left(G^{\prime \prime}\right)\right)=n!\cdot \sum_{l=0}^{n} \frac{1}{l!}$.

Proof. (i) We may assume that $G^{\prime}=G\left(P_{n}^{\prime}\right)$, where $P_{n}^{\prime}=\left\{p_{1}^{\prime}, p_{2}^{\prime}, \ldots, p_{n}^{\prime}\right\}$ is the chain with $p_{1}^{\prime} \leq p_{2}^{\prime} \leq \ldots \leq p_{n}^{\prime}$. P_{n}^{\prime} as well as all its subposets have a unique linear extension. Therefore, the h-vector of $A\left(G^{\prime}\right)$ is $\left(\binom{n}{0},\binom{n}{1}, \ldots,\binom{n}{n}\right)$.
(ii) Let $G^{\prime \prime}=G\left(P_{n}^{\prime \prime}\right)$, where $P_{n}^{\prime \prime}=\left\{p_{1}^{\prime \prime}, \ldots, p_{n}^{\prime \prime}\right\}$ is an antichain. If $F=[n]$, then, by convention, $A(0,0)=1=h_{0}^{\bar{F}}$. If $F \varsubsetneqq[n]$, then $\mathscr{J}\left(P_{n}^{\prime \prime}(\bar{F})\right)$ is a Boolean
lattice on the set $P_{n}^{\prime \prime}(\bar{F})$, which implies that $\mathscr{J}\left(P_{n}^{\prime \prime}(\bar{F})\right)$ is isomorphic to \mathscr{L}_{n-l}, where $l=|F|$. Hence, by Remark 1.3, $h_{i}^{\bar{F}}=A(n-l, i)$, for all $0 \leq i \leq n-l-1$. If $i=n-l$, then $A(n-l, i)=0$ (by convention) and $h_{i}^{\bar{F}}=0$ (by Remark 1.3), which implies that $A(n-l, i)=h_{i}^{\bar{F}}$. By (2) we have $h_{j}^{\prime \prime}=\sum_{l=0}^{j} \sum_{\substack{F \subset[n] \\|F|=l}} h_{j-l}^{\bar{F}}$, hence $h_{j}^{\prime \prime}=\sum_{l=0}^{j}\binom{n}{l} A(n-l, j-l)$, for all $0 \leq j \leq n$.

We get $e\left(A\left(G^{\prime \prime}\right)\right)=\sum_{j=0}^{n} h_{j}^{\prime \prime}=\sum_{j=0}^{n-1} h_{j}^{\prime \prime}+1=\sum_{j=0}^{n-1} \sum_{l=0}^{j}\binom{n}{l} A(n-l, j-l)+1=$ $\sum_{l=0}^{n-1}\binom{n}{l} \sum_{j=0}^{n-l-1} A(n-l, j)+1$. We obviously have $\sum_{j=0}^{n-l-1} A(n-l, j)=(n-l)$!, for all $0 \leq l \leq n-1$. Therefore, $e\left(A\left(G^{\prime \prime}\right)\right)=\sum_{l=0}^{n-1}\binom{n}{l} \cdot(n-l)!+1=n!\cdot \sum_{l=0}^{n} \frac{1}{l!}$.

Remark 2.2. The reduced Gröbner basis \mathscr{G}^{\prime} of the toric ideal $Q_{G^{\prime}}$ of $A\left(G^{\prime}\right)$, where G^{\prime} comes from the chain $P_{n}^{\prime}=\left\{p_{1}^{\prime}, p_{2}^{\prime}, \ldots, p_{n}^{\prime}\right\}, p_{1}^{\prime} \leq p_{2}^{\prime} \leq \ldots \leq p_{n}^{\prime}$, with respect to the monomial order $<_{\text {lex }}^{\sharp}$ on the polynomial ring $B_{G^{\prime}}$ is:

$$
\left.\mathscr{G}^{\prime}=\underline{\left\{x_{j} u_{\left\{p_{1}^{\prime}, \ldots, p_{j-1}^{\prime}\right\}}\right.}-y_{j} u_{\left\{p_{1}^{\prime}, \ldots, p_{j}^{\prime}\right\}} \mid j \in[n]\right\},
$$

where the initial monomial of each binomial of \mathscr{G}^{\prime} is the first monomial.
We notice that the initial ideal in $\left.<_{l \text { lex }}^{\sharp}\left(Q_{G^{\prime}}\right)=\left(x_{j} u_{\left\{p_{1}^{\prime}, \ldots, p_{j-1}^{\prime}\right\}}\right\} j \in[n]\right)$ is a complete intersection, which implies that the toric ideal $Q_{G^{\prime}}$ is a complete intersection. Hence $A\left(G^{\prime}\right)$ has a pure resolution given by the Koszul complex.

Proposition 2.3. Let G be a Cohen-Macaulay bipartite graph on $W \cup W^{\prime}$. Then the following assertions hold:
(i) G comes from a chain if and only if $H_{A(G)}(z)=\frac{(1+z)^{n}}{(1-z)^{2 n+1}}$;
(ii) G comes from an antichain if and only if $H_{A(G)}(z)=\frac{h_{0}^{\prime \prime}+h_{1}^{\prime \prime} z+\ldots+h_{n}^{\prime \prime} z^{n}}{(1-z)^{2 n+1}}$, where $h^{\prime \prime}=\left(h_{0}^{\prime \prime}, h_{1}^{\prime \prime}, \ldots, h_{n}^{\prime \prime}\right)$ is the h-vector of the vertex cover algebra $A\left(G^{\prime \prime}\right)$ of the bipartite graph $G^{\prime \prime}$ that comes from an antichain $P_{n}^{\prime \prime}=\left\{p_{1}^{\prime \prime}, p_{2}^{\prime \prime}, \ldots, p_{n}^{\prime \prime}\right\}$.

Proof. Let us suppose that G comes from a poset $P_{n}=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}, n \geq 1$, and let $h=\left(h_{0}, h_{1}, \ldots, h_{n}\right)$ be the h-vector of $A(G)$. In the first place we need to compute the component h_{1}. By using (3), we get $h_{1}=h_{1}^{[n]}+n$. But $h_{1}^{[n]}$ is the component of rank 1 in the h-vector of $\bar{A}(G)$. By using the formula which relates the h-vector to the f-vector of the order complex $\Delta\left(\mathscr{J}\left(P_{n}\right)\right)$, we immediately get $h_{1}^{[n]}=\left|\mathscr{J}\left(P_{n}\right)\right|-n-1$, which implies that $h_{1}=\left|\mathscr{J}\left(P_{n}\right)\right|-1$.
(i) Let $h_{1}=\binom{n}{1}=n$. Then $\left|\mathscr{J}\left(P_{n}\right)\right|=n+1$, which implies that P_{n} is a chain.
(ii) Let $h_{1}=h_{1}^{\prime \prime}=\left|\mathscr{J}\left(P_{n}^{\prime \prime}\right)\right|-1=2^{n}-1$. Then $\left|\mathscr{J}\left(P_{n}\right)\right|=2^{n}$, which implies that P_{n} is an antichain.

In both cases the converse follows from Proposition 2.1.
Proposition 2.4. Let G be a Cohen-Macaulay bipartite graph on $W \cup W^{\prime}$. If $h=\left(h_{0}, h_{1}, \ldots, h_{n}\right)$ is the h-vector of $A(G)$, then $\binom{n}{j} \leq h_{j} \leq h_{j}^{\prime \prime}$, for all $0 \leq j \leq n$, where $G^{\prime \prime}$ comes from an antichain with n elements and $h^{\prime \prime}=\left(h_{0}^{\prime \prime}, h_{1}^{\prime \prime}, \ldots, h_{n}^{\prime \prime}\right)$ is the h-vector of $A\left(G^{\prime \prime}\right)$.

Proof. Let $P_{n}^{\prime}=\left\{p_{1}^{\prime}, p_{2}^{\prime}, \ldots, p_{n}^{\prime}\right\}$ be the chain with $p_{1}^{\prime} \leq p_{2}^{\prime} \leq \ldots \leq p_{n}^{\prime}$ and let $P_{n}^{\prime \prime}=\left\{p_{1}^{\prime \prime}, p_{2}^{\prime \prime}, \ldots, p_{n}^{\prime \prime}\right\}$ be an antichain. We may assume that $G=G\left(P_{n}\right)$, where $P_{n}=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ is a poset such that $p_{i} \leq p_{j}$ implies $i \leq j$.

By using (3) and (1), we get $h_{0}=1=\binom{n}{0}=h_{0}^{\prime \prime}$ and $h_{n}=1=\binom{n}{n}=h_{n}^{\prime \prime}$. Let $1 \leq j \leq n-1$. By Corollary $1.6, h_{j}$ is equal to the number of all linear extensions of all $n-l$-element subposets, which, seen as permutations of $[n-l]$, have exactly $j-l$ descents, for all $0 \leq l \leq j$. Each $n-l$-element subposet of P_{n}^{\prime}, respectively, $P_{n}^{\prime \prime}$ is a chain, respectively, an antichain, hence it has only one linear extension which corresponds to $i d_{n-l}$, respectively, it has $(n-l)$! linear extensions which correspond to all permutations of $[n-l]$. Therefore, we get $\binom{n}{j} \leq h_{j} \leq h_{j}^{\prime \prime}$, for all $1 \leq j \leq n-1$.

Corollary 2.5. Let G be a bipartite graph on $W \cup W^{\prime}$ that comes from a poset with n elements, $n \geq 1$. Then $2^{n} \leq e(A(G)) \leq n!\sum_{l=0}^{n} \frac{1}{l!}$. The left equality holds if and only if the poset is a chain and the right equality holds if and only if the poset is an antichain.

Proof. Let $G=G\left(P_{n}\right), G^{\prime}=G\left(P_{n}^{\prime}\right)$ and $G^{\prime \prime}=G\left(P_{n}^{\prime \prime}\right)$, where $P_{n}=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ is a poset such that $p_{i} \leq p_{j}$ implies $i \leq j, P_{n}^{\prime}=\left\{p_{1}^{\prime}, p_{2}^{\prime}, \ldots, p_{n}^{\prime}\right\}$ is the chain with $p_{1}^{\prime} \leq p_{2}^{\prime} \leq \ldots \leq p_{n}^{\prime}$ and $P_{n}^{\prime \prime}=\left\{p_{1}^{\prime \prime}, p_{2}^{\prime \prime}, \ldots, p_{n}^{\prime \prime}\right\}$ is an antichain. Let h, h^{\prime} and $h^{\prime \prime}$ be the h-vectors of $A(G), A\left(G^{\prime}\right)$ and $A\left(G^{\prime \prime}\right)$. By summing up the inequalities $h_{j}^{\prime} \leq h_{j} \leq h_{j}^{\prime \prime}$ from Proposition 2.4 we get $e\left(A\left(G^{\prime}\right)\right) \leq e(A(G)) \leq e\left(A\left(G^{\prime \prime}\right)\right)$. Thus the desired inequalities follow from Proposition 2.1. Moreover, the left equality, respectively, the right equality holds if and only if $h_{j}^{\prime}=h_{j}$, respectively, $h_{j}=h_{j}^{\prime \prime}$, for all $0 \leq j \leq n$, therefore, by using Proposition 2.3 , this is equivalent to $P_{n} \simeq P_{n}^{\prime}$, respectively, $P_{n} \simeq P_{n}^{\prime \prime}$.

Acknowledgements

I would like to thank the referee for helpful hints and remarks.

REFERENCES

[1] B. Benedetti - A. Constantinescu - M. Varbaro, Dimension, depth and zero-divisors of the algebra of basic k-covers of a graph, Le Matematiche 63 (2) (2008), 117156.
[2] W. Bruns - J. Herzog, Cohen-Macaulay Rings, rev. ed., Cambridge Stud. Adv. Math., 39, Cambridge Univ. Press, Cambridge, 1998.
[3] J. Herzog - T. Hibi, Distributive Lattices, Bipartite Graphs and Alexander Duality, J. Algebraic Combin. 22 (3) (2005), 289-302.
[4] J. Herzog - T. Hibi - H. Ohsugi, Unmixed bipartite graphs and sublattices of the Boolean lattices, J. Algebraic Combin. 30 (4) (2009), 415-420.
[5] J. Herzog - T. Hibi - N. V. Trung, Symbolic powers of monomial ideals and vertex cover algebras, Adv. Math. 210 (1) (2007), 304-322.
[6] V. Reiner - V. Welker, On the Charney-Davis and Neggers-Stanley conjectures, J. Combin. Theory Ser. A 109 (2) (2005), 247-280.

CRISTIAN ION
Faculty of Mathematics and Computer Science
Ovidius University
Bd. Mamaia 124
900527 Constanta, Romania
e-mail: cristian.adrian.ion@gmail.com

[^0]: Entrato in redazione: 16 marzo 2010

